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A simple semi-analytical approach is used in the present studies to achieve a thermal response 

of composite and sandwich layered materials in stresses and displacements. Three-

dimensional (3D) heat conduction formulation has been formulated as a boundary value 

problem (BVP) to obtain accurate through-thickness temperature variation, which is further 

used for thermal stress analysis. Four layered domains of composite and/or sandwich 

laminate with variable degrees of orthotropic and several transverse and in-plane aspect 

ratios have been used for numerical investigation. Exact solutions from past studies have been 

used for comparison with the outcomes received in the present study and proved the accuracy 

and efficiency of current developments. Additionally, simple constant and linear through-

thickness temperature variation has been considered for stress analysis to highlight the 

importance and need for exact temperature distribution for thermal stress analysis of 

composite and sandwich laminates. The presented semi-analytical approach achieves the 

benefit of exact analysis and numerical analysis and leads to accuracy and computational 

efficiency. 

 

1. Introduction 

Advancements in technology demanded 
qualitative materials rather than quantities. 
Quality and accuracy in composites increase their 
uses in most of the industry. These composites 
comprise more than single pure substances that 
are macroscopically combined. Most of these 
engineered materials show superior performance 
to conventional materials like metals. Nowadays, a 
composite material formed by two or more 
materials in a macroscopic form is commonly 
used. These are engineered materials with specific 
properties that prove better than conventional 
materials like metals. 

During manufacturing processes and service 
life, these laminates formed with different 
materials are subject to thermal stresses at the 
adjacent layer due to their different thermal 
properties. External imposed mechanical and 
thermal loads cause interlaminar transverse 
stresses, delamination in laminae layers, and 

fractures in the matrix in the longitudinal 
direction. Therefore, a precise evaluation of 
transverse stresses and deformation leads to 
milestone achievement in this area. 

Pell [1] first discovered the thermal 
deformation of anisotropic thin plates subjected to 
random loading. Classical plate theory (CLT) has 
been used by Timoshenko and Woinowsky-
Krieger [2], Boley and Weiner [3], Johns [4], 
Parkus [5], Burgreen [6] and Vinson [7] for the 
calculation of thermal stresses in beams, plates, 
and shell structures. Flexural response for various 
temperatures has been noted by Srinivas and Rao 
[8]. Boleys [9] has revealed the shortcoming in 
accessing thermal stresses in beams. Bapu Rao 
[10,11] developed a three-dimensional (3D) 
formulation for a thick isotropic plate under 
thermal loading. Further, Tungikar and Rao [12] 
extended this study and developed an exact 3D 
solution for orthotropic laminate. Thermal 
stresses of symmetric and unsymmetric laminates 
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in plane strain conditions have been highlighted 
by working on it by Wu and Tauchert [13]. Finite 
element formulation depends on the displacement 
model for laminate under thermal loading was 
developed by Reddy and Chao [14] and Reddy et 
al. [15]. Carrera [16] developed equivalent-single-
layer (ESL) and layer-wise (LW) modeling for both 
classical and mixed approaches. Fourth-order 
displacement and stress field conditions are used 
to develop the thermomechanical governing 
equations. Several investigations [17, 18] have 
been carried out using four variable deformation 
theories for bending and vibration analysis of 
sandwich plates. 

Burton and Noor [19] published a critical 
review of computational models for laminates 
under thermomechanical loading and showed the 
path for future studies for modeling higher-
temperature laminates. The elastic analysis based 
on displacement-based higher-order shear 
deformation (HOSD) theories has been detailed 
with the help of formulation for composite plates 
by Jonalagadda et al. [20]. Composite laminates 
are analyzed with HOSD-based C0 iso-parametric 
FE formulation for the assumed thermal gradient. 
Four layered square laminates imposed to sudden 
uniform temperature change have been analyzed 
by presenting the transient heat conduction 
equation by Savoia and Reddy [21]. Bhaskar et al. 
[22] assumed a linear through-thickness thermal 
profile and formulated a 3Dimensional elasticity 
solution for cylindrical and bi-directional bending 
of laminate. Transverse shear stresses with the 
help of first-order shear deformation (FOSD) 
based analytical model has been presented by 
Rolfes et al. [23]. Abualnour et al. [24] studied 
thermo-mechanical bending behavior using the 
four-variable trigonometric plate theory. 
Bakoura et al. [25] studied the mechanical 
behavior of composite plates using three variable 
refined plate theory. Carrera [26,27] examined the 
thermo-mechanical response of layered, 
anisotropic plates by applying the temperature 
profile in the thickness directions. The impact of 
temperature profiles on the accuracy of plate 
models is then examined for a broad range of 
classical and advanced multilayered plate 
theories. Using the CUF and Reissner mixed 
variational theorem, Robaldo and Carrera [28] 
investigate the thermoelastic analysis of 
multilayered anisotropic plates (RMVT). To create 
the finite element (FE) matrices, the RMVT is used 
in conjunction with assumptions for the 
displacement fields in the thickness direction. 

Composite and sandwich beam has been 
analyzed with the development of HOSD 
Formulation by Kapuria et al. [29] and showed 
their accuracy compared with the zig-zag theory. 
Further, Kapuria and Achary [30] developed a 
higher-order zig-zag theory to analyze laminated 

plates under thermal loading. A similar approach 
by Tungikar and Rao [12] has been used by 
Robaldo et al. [31], who developed an FE solution 
of heat conduction for stress analysis of 
anisotropic laminates. The sandwich plate and 
viscoelastic core have been analyzed to obtain 
buckling, damping behavior, and frequency with 
the help of FE analysis by incorporating CLT 
theory as carried out by Pradeep et al. [32]. 
Gherlone and Sciuva [33] have presented thermo-
mechanical FE solutions using the Hermitian zig-
zag theory. A semi-analytical approach has been 
used by Kant et al. [34,35] for layered composite 
and sandwich laminate analysis imposed by 
thermal loading. The vibration response of 
multilayered sandwich laminate has been 
calculated by Pradeep and Ganesan [36]. Pagani 
and Carrera [37] used a unified formulation for 
laminated composite beams. Large deflection and 
post-buckling analyses of laminated composite 
with the help of a dual-phase-lag model of 
generalized thermoelasticity interaction in a 
three-dimensional homogeneous and isotropic 
sandwich structure have been investigated by Sur 
and Kanoria [38]. Garg and Chalak [39] review the 
analysis of the laminated composite and sandwich 
structures under hygrothermal conditions. 
Further, Garg and Chalak [40] analyze non-skew 
and skew laminated composite and sandwich 
plates subjected to hygro-thermo-mechanical 
conditions. Naik and Sayyad [41] developed a 
higher-order displacement model for calculating 
the cylindrical bending of laminated and sandwich 
plates subjected to Environmental loads. 

Kant and Shiyekar [42] considered linear 
through-thickness temperature variation and 
obtained an HOSD-based analytical formulation by 
incorporating the impact of shear deformation 
and transverse normal thermal strain. 
Trigonometric shear deformation theory has been 
used for the flexural analysis of cross-ply 
laminated plates subjected to nonlinear thermal 
loading by Ghugal and Kulkarni [43]. Further 
responses obtained from CPT, FOSD, and HOSD for 
symmetric cross-ply laminated plates acted linear 
and nonlinear thermal and mechanical loads 
simultaneously have also been compared by 
Ghugal and Kulkarni [44]. Sayyad et al. [45] 
outlined hyperbolic shear deformation theory for 
thermal response in stresses and displacement. 
Various combination of heat conduction, 
convection, and radiation has been considered by 
Norouzi et al. [46] to develop an exact solution for 
a multilayer spherical fiber-reinforced composite. 
The optimal buckling temperature of the 
laminated composite skew plate has been 
obtained by the differential quadrature method 
with genetic algorithms by Parviz et al. [47] with 
FOSD formulation. Cross-ply laminated composite 
plate's behavior in terms of stress analysis has 
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been derived by Sayyad et al. [48,49] by using an 
exponential shear deformation theory and four 
variables shear deformation theory, respectively. 
The effect of uniform heat flux supply on the 
circular and non-circular plate with a circular 
opening in the form of stresses and displacements 
has been noted by Jafari and Jafari [50]. 

Fazzolari and Carrera [51] developed quasi-3D 
ESL and Zig-zag theory using Carrera's unified 
formulation to examine the thermal stability of 
FGM isotropic and sandwich plates subjected to 
various through-thickness temperature 
distributions. Various researchers [52–54] used 
quasi-3D HOST to analyze the bending, buckling, 
and vibration of FG plates resting on a viscoelastic 
foundation. 

Researchers have put considerable effort into 
developing simplified and refined numerical and 
analytical models for thermal stress analyses of 
composite domains concerning the available 
literature. Mostly, simple linear and constant 
temperature gradients along the composite 
laminate depth were assumed and used for 
analyses. However, this rude assumption is not 
valid for composite laminates, which have been 
proven and reported in little research. Hence, 
efforts have been put into this paper to form 
simple and efficient semi-analytical models for 
governing heat conduction equations to obtain 
real temperature gradients along with the depth of 
laminated composites. The prime object of this 
paper is the development of a semi-analytical 
formulation for obtaining actual temperature 
variation along with stress analysis. Formulations 
include describing two-point BVP ruled by a group 
of coupled first-order ODEs (Eq. 1) within the 
depth of laminate. 

2 3 3 2 3 3

3

( ) ( ) ( ) ( )
d

X X A X X X p X
dX

= +  (1) 

Further, stress analysis has been performed 
and reported for exact as well as for simple 
assumed constant and linear temperature 
gradients along with the laminate depth. 
Numerical studies have been reported and 
discussed for a wide range of lamination schemes 
and in-plane and transverse aspect ratios. 

2. Mathematical Modelling 

A layered laminate of depth ‘d’ consisting of 
perfectly bonded isotropic/orthotropic, linearly 
elastic laminae of constant depth and having 
length and breadth dimension (l x b) as considered 
in Fig. 1. All peripheral edges are simple 
diaphragm supported as in Table 1. The plate has 
been imposed by thermal load and/or mechanical 
load on its top surface. Any other external stresses 
on all surfaces are neglected here. The fibers are 
aligned in the lamina along the laminate reference 
axis ‘X1’ and perpendicular to it. 

 
Fig. 1. 3D composite laminate 

2.1. Semi-Analytical 3D Heat conduction 
Formulation 

This section is devoted to the formation of a 
two-point boundary value problem (BVP) 
governed by a set of coupled ordinary differential 
equations (ODEs) along with the laminate 
thickness from the basic governing differential 
heat conduction Equation.  

The differential heat conduction equation for a 
homogenous isotropic/orthotropic solid for 
steady-state conditions in 3D, without internal 
heat generation, is 

1 2 3

2

2
, ,

0i

i X X X

T

i


=


=


  (2) 

 

Table 1. Boundary conditions (BCs) 

Locations 
BC imposed on the  
displacement field 

BC imposed on the 
stress field 

Face 
1 0,X l=  0v w= =  _ 

Face 
1 2X l=  0u =  

1 3
0X X =  

Face 
2 0,  X b=  0u w= =  _ 

Face 
2 2X b=  0v =  

2 3
0X X = . 

Top face 
3 2X d=  - 1 3 2 3 3X X X X Xτ = τ = 0 , σ = 0  

Bottom face 
3 2X d= −  - 

1 3 2 3 3
0X X X X X  = = =  
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According to Fourier’s theory of heat 
conduction, heat flux in direction 

1X , 
2X  and 

3X

is given by,  

( )1 2 3      , ,i i

T
q i X X X

i



= − =


 (3) 

where,  

i = coefficient of thermal conductivity in 1 1Wm K− −  

iq  = heat flux in 2Wm−  and  

T = temperature in Kelvin ( )K . 

By considering total heat remains zero due to 
heat flow, the equilibrium equation in 3D is 
written as, 

1 2 3, ,

0i

i X X X

q

i=


=


  (4) 

For exact analysis in laminated layers, the 
continuity of heat flux and temperature at the 
interface must be maintained and taken care of in 
the present development. By using the 
mathematical conversion of the Equations. (2), 
(3), and (4), a set of partial differential equations 

(PDEs) includes dependent variables T  and zq , 
only two in quantity are derived as follows, 

3

3 3

1

2 2
3

2 2

1 2

1
0

0

X

X X

X y

T T

q qX

X X



 

 
− 

        =             +
   

 (5) 

The above PDEs stated by Equation (5) can be 
converted to coupled first-order ODEs with the 
help of Fourier trigonometric series expansion 
for primary variables. These equations need to be  

( )

( )

( )

( )
3 31 2 3 3 1 2

,1 2 3 3

,
sin sin

, ,

X X

m n

q X X X q X m X n X

l bT X X X T X

       
=   

      
  (6) 

satisfied simply supported boundary conditions 
at 

1X  = 0, l and 
2X  = 0, b as follows, 

Substituting Equation (6) and its derivatives 
into Equation (5), the following set of first-order 
ODEs is obtained. 

3 3

1 2

3

2 2 2 2

2 2

3 3

  and 
X X

X x

X

q dqdT m n
T

dX dX l b

 
 



 
= − = − − 

 
 (7) 

Equation (7) shows the governing two-point 

BVP in ODEs in a domain 
2 2

d dz−    with 

known temperatures at the top and bottom 
surfaces of a beam. 

2.2. Dimensional Formulation for Stress 
Analysis by Semi-Analytical approach 

By using the primary theory of elasticity, the 
material constitutive relations in 3D for each 

layer with reference to a laminate Cartesian 
coordinate system, 3D elasticity equilibrium 
equations, and 3D strain-displacement equations 
are respectively as follows, 

       Q Q T  = −  (8) 

3 11 2 1

1

1 2 3

0  :
X XX X X

XB
X X X

   
+ + + =

  
  

3 21 2 2

2

1 2 3

0 :
X XX X X

XB
X X X

   
+ + + =

  
 (9) 

1 3 2 3 3

3

1 2 3

0
X X X X X

XB
X X X

    
+ + + =

  
  

1 1 2

1 2 1

  ;          X X X

u u v

X X X
 

  
= = +
  

  

2 1 3

2 3 1

  ;         X X X

v u w

X X X
 

  
= = +
  

 (10) 

3 2 3

3 3 2

:           X X X

w v w

X X X
 

  
= = +
  

  

in which   and   are the stress and strain 

vector correspondingly and  T  are free 

thermal strains concerning laminate axes 
(

1X ,
2X ,

3X ).  Q  is the transformed elasticity 

constants matrix of the ith lamina regarding the 
laminate axes. On performing a few algebraic 
operations on Equations (8)-(10) a set of partial 
differential equations (PDEs) that includes only 
eight chosen main variables 

1 3 2 3
, , , ,X X X Xu v w    and 

3X  are obtained as, 

1 3

66

3 55 66 1

X X

Qu w

X Q Q X


 
= −

 
 

2 3

55

3 55 66 2

X Xv w
Q

X Q Q X

 
= −

 
 

1

3

3

31

31 32

32 333 33 1 2 33

1 X

X

y X

Qw u v T
Q Q

Q QX Q X X Q




 

    
= − − +     + +     

 

1 3

3

1

1 2 1

2

2 2

13 31
11 442 2

3 33 1 2

2

13 32 13
12 44

33 1 2 33 1

13 31
11

33

44

1 213 32
12

33

X X

X

X

X X X

X

Q Q u u
Q Q

X Q X X

Q Q v Q
Q Q

Q X X Q X

Q Q
Q

Q T T
Q B

X XQ Q
Q

Q











    
= − + − − 

   

   
+ − − +   

     

  
− +  

   
 + −      − 

   
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2 3

1

3

2

1 2 2

2

23 32
22 2

3 33 2

2 2

23 31
44 21 442

1 33 1 2

23 31
21

3323

33 2 123 32
22

33

44

2

X X

X

X

X

X X X

Q Q v
Q

X Q X

v Q Q u
Q Q Q

X Q X X

Q Q
Q

QQ T

Q X XQ Q
Q

Q

T
Q B

X










   
= − + − 

  

  
− + − 

   

  
− +  

    
− +        − 

   


 + −  

 

3 1 3 2 3

3

3 1 2

X X X X X

XB
X X X

    
= − − −

  
 (11) 

The above PDEs stated by Equation (11) can 
be converted to coupled first-order ODEs by using 
Fourier trigonometric series expansion for 
primary variables satisfying the simple 
(diaphragm) support end conditions at 

1X  = 0, l 

and 
2X  = 0, b as shown below, 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 3 1 3

2 3 2 3

3 3

1 2 3 3 1 2

1 2 3 3

1 2 3 3 1 2

1 2 3 3

1 2 3 3

1 2 3 3

, ,
cos sin

, ,

, ,
sin cos

, ,

, ,

, ,

mn

mnX X X X mn

mn

mnX X X X mn

mn

X X mn

u X X X u X m X n X

X X X X l b

v X X X v X m X n X

X X X X l b

w X X X w X

X X X X

 

 

 

 

 

      
=   

      

      
=   

      

    
=  

    





1 2sin sin
mn

m X n X

l b

 





 (12) 

where m, n=1, 3, 5, ……. 

Next, temperature changes along the in-plane 
directions are also shown in sinusoidal form as, 

1 2 3

1 2

3

( , , )

( ) sin sin
mn

mn

T X X X

m X n X
T X

l b

 

=


 (13) 

Substituting Equations (12) and (13) and their 
differentiation into Equation (11), the below 6 
coupled first-order Ordinary Differential 
Equations (ODEs) are derived.  

1 3

3

3 3

3 55

( ) 1
( ) ( )

mn

mn X X mn

du X m
w X X

dX l Q


= − +

  
   
   

 

2 3

3
3 3

3 66

( ) 1
( ) ( )mn

mn X X mn

dv X n
w X X

dX b Q




  
= − +   
   

 

( )
3

3 31 32
3 3

3 33 33

3

33

31 32 33 3

33

( )
( ) ( )

1
                ( )

1
                ( )

mn
mn mn

zmn

x y X

dw X Q Qm n
u X v X

dX l Q b Q

X
Q

Q Q Q T X
Q

 



  

   
= +   
   

 
+  
 

+ + +

 

1 3

2 2 2 2
3 13 31

11 44 32 2

3 33

2

13 32
12 44 3

33

13
3 1 2 3

33

( )
( )

                     + ( )

                    ( ) ( , , ) 

                    

X X mn

mn

mn

zmn x

d X Q Q m n
Q Q u X

dX Q l b

Q Q mn
Q Q v X

Q lb

Q m
X B X X X

Q a

  






  
= − +  

  

 
− + 

 

 
− − 
 

2

13 31
11

33

3

13 32
12

33

( )

x

X

Q Q
Q

Q m
T X

lQ Q
Q

Q






  
− + +  
  

−
 
 
 − + 
   

 

2 3

3

2
3 31 23

21 44 3

3 33

2 2 2 2

23 32
22 44 32 2

33

23
3 1 2 3

33

( )
( )

                     + ( )
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3

3

3 3

3
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( )
( ) ( )

                   ( , , )

X mn

X X mn X X mn

X

d X m n
X X

dX l b
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 

   
= +   
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(14) 

Equation (14) represents the governing two-

point BVP in ODEs in the domain 32 2
d dX−    

with stress components known at the upper and 
bottom surfaces of a laminate. 

The solution of BVP obtained in Equations (7) 
and (14) are obtained by converting BVP into 
initial value problems (IVPs) (Tables 2 and 3). 
Finally, one non-homogeneous and n/2 
homogeneous solution has been formed with the 

satisfaction of BCs at 
3X = +

2
d  , as detailed by 

Kant and Ramesh [55]. Changes in the material 
properties (Table 4) are inserted by the change in 
the coefficient of the material matrix 
appropriately during numerical integration 
performed by the fourth-order Runge-Kutta Gill 
algorithm. 

Table 2. Transformation of BVP into IVPs for thermal analysis 

In
te

gr
at

io
n

 
N

o
. 

Bottom edge 

( )3 2
dX −=  

Top edge 

( )3 2
dX =  

3( )T X  
3 3( )Xq X  

3( )T X  
3 3( )Xq X  

1 known 
0  
(assumed) 

M11 M21 

2 
0 
(assumed) 

1 
(assumed) 

M12 M22 

3 
(Final) 

( )T d  

(known) 
K1 

( )T d  

(known) 
3
( )Xq d  
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Table 3. Transformation of BVP into IVPs for stress analysis 

Integration 
No. 

Starting edge; 
3 2X d= −  Final Edge; 

3 2X d=  

Load 
term 

u  v  w  
1 3X X  

2 3X X  
3X  u  v  w  

1 3X X  
2 3X X  

3X  

1 
0  
(assumed) 

0  
(assumed) 

0  
(assumed) 

0 
(known) 

0 
(known) 

0 
(known) 

Y11 Y21 Y31 Y41 Y51 Y61 Include 

2 
1 
(unity) 

0 0 0 0 0 Y12 Y22 Y32 Y42 Y52 Y62 Delete 

3 0 
1  
(unity) 

0 0 0 0 Y13 Y23 Y33 Y43 Y53 Y63 Delete 

4 0 0 
1 
(unity) 

0 0 0 Y14 Y24 Y34 Y44 Y54 Y64  Delete 

Final Xa Xb Xc known known known Tu  
Tv  

Tw  0 0 0 Include 

Table 4. Material Properties 

Set Material Property 

I 
1 2

3 6.9 GPa

E E

E

= =

=
 

12 13 23 0.25  = = =  12 13

23 1.38 GPa

G G

G

= =

=
 1 2

-1

3 35.6 6 KE

 



= =

= −
 

1 2

-1 -1

3 0.12 W-m K

 



= =

=
 

II 
1

2 3

224.25 GPa

6.9 GPa

E

E E

=

= =
 12 13 23 0.25  = = =  12 13

23

56.58 GPa

1.38 GPa

G G

G

= =

=
 

-1

1

-1

2 3

0.25 6 K

35.6 6 K

E

E



 

= −

= = −
 

-1 -1

1

-1 -1

2 3

7.2 W-m K

1.44 W-m K



 

=

= =
 

III 
1

2 3

172.5 GPa

6.9 GPa

E

E E

=

= =
 12 13 23 0.25  = = =  12 13

23

3.45 GPa

1.38 GPa

G G

G

= =

=
 

-1

1

-1

2 3

0.57 6 K

35.6 6 K

E

E



 

= −

= = −
 

-1 -1

1

-1 -1

2 3

1.92 W-m K

0.96 W-m K



 

=

= =
 

IV 
1

2 3

181 GPa

10.3 GPa

E

E E

=

= =
 

12 13

23

0.28

0.33

 



= =

=
 

12 13

23

7.17 GPa

2.87 GPa

G G

G

= =

=
 

-1

1

-1

2 3

2.00 08 K

2.25 05 K

E

E



 

= −

= = −
 

-1 -1

1

-1 -1

2 3

1.5 W-m K

0.5 W-m K



 

=

= =
 

Face 
1

2 3

131.1 GPa

6.90 GPa

E

E E

=

= =
 
12

13 23

0.32

0.49



 

=

= =
 

12 13

23

3.588 GPa

2.332 GPa

G G

G

= =

=
 

-1

1

-1

2 3

0.023 6 K

22.5 6 K

E

E



 

= −

= = −
 

-1 -1

1

-1 -1

2 3

1.5 W-m K

0.5 W-m K



 

=

= =
 

Core 

1

2

3

0.2208 MPa

0.2001 MPa

2760.0 MPa

E

E

E

=

=

=

 
12

13 23

0.99

3 5E



 

=

= = −
 

12

13

23

16.56 MPa

545.1 MPa

455.4 MPa

G

G

G

=

=

=

 -1

1 2 3 30.6 6 KE  = = = −  -1 -1

1 2 3 3.0 W-m K  = = =  

i = thermal conductivity coefficient ( 1,2,3)i =                                    
i = coefficient of thermal expansion ( 1,2,3)i =  

 Ref: Kapuria and Acharya [30] 

3. Numerical Investigation 

Four, all-around simply supported composite 
laminates, (A), (B), (C), and (D) having different 
material schemes and lamination properties 
(Table 4) showing high in-homogeneous 
characteristics and variable degrees of 
orthotropic have been assessed for various 
transverse and in-plane aspect ratios. These are 

correlated with the real solution presented by 
Kapuria and Achary [30] wherever available. 

A five-layered composite laminate (A) has 
been considered with variable in-homogenous 
properties for tension and shear stiffness as well 
as thermal coefficients and conductivity. It has 
individual layer thickness as 
0.1d/0.25d/0.15d/0.2d/0.3d of material sets 
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I/ II/ III/ III/ III with orientations 
0 0 0 0 00 / 0 / 0 / 90 / 0   . 

Laminates (B) and (C) are symmetric 
0 0 0 00 / 90 / 90 / 0    and anti-symmetric 

0 0 0 090 / 0 / 90 / 0    cross-ply composites of 

material set IV consisting of four equal 
thicknesses (0.25d) of the lamina. 

Further, five-layered sandwich laminate (D) 
has graphite-epoxy faces  0 0

0 / 90 and soft-core 

with a thickness of each lamina as 
0.05d/0.05d/0.8d/0.05d/0.05d has been 
considered.  

Two different temperature cases, viz, constant 
temperature rise [Equation 15] along the 
laminate thickness simulating thermal stretching 
and equal rise (laminate top surface) and fall 
(laminate bottom surface) simulating thermal 
bending [Equation 16] have been considered 
here whereas along with in-plane directions, 
bidirectional sinusoidal variation is assumed 
[Equation 13]. 

1 2
1 2 3( , , ) ( )sin sin

2
X XdT X X T X

l b
 

 =  (15) 

1 2 1 2

1 2
3

( , , ) ( , , )
2 2

                       ( )sin sin

d dT X X T X X

X X
T X

l b
 

−= −

=

 (16) 

For maintaining the consistency in numerical 
values comparison, the coefficients presented in 
Equation 17 have been used here for 
normalization. 

3

3

1 3

1 0 1

3

4

1 0 2 1 0

1
;                  , ( ; )

 ;           
X

X

l
s u v u v

d d T s

d w
w

T l E T






 

= =

= =

 

(17) 

( ) ( )

( ) ( )

1 2 1 2 1 2 1 2

1 3 2 3 1 3 2 3

2

2 1 0 1

2 1 0 1

1
; ; ; ;

1
; ;

X X X X X X X X

X X X X X X X X

E T s

E T s

     


   


=

=

 

Firstly, heat conduction solutions have 
determined the exact thermal gradient for both 
load Case I and II, and the same has been used for 
thermal stress analysis (termed as Present Model 
1). 

Thermal stress analyses have also been 
performed for simple constant and linear 
(generally cited in literature) thermal gradient 
approximation (Present Model 2). 

These parametric studies mainly aimed to 
show and compare structural responses for the 
exact and approximate thermal gradient. 

Transverse aspect ratios ( )1
ls
d

=  ranging from 

thick to thin and in-plane aspect ratios ( )2
bs

l
=  

1.5, 2, and 3 have also been considered for 
parametric studies, both for thermal and stress 
analyses.  

Through thickness, thermal gradients have 
been presented in Figures 2 to 4 for composite 
laminates (A), (B), and a sandwich (D), 
respectively, and compared with available exact 
solutions (Kapuria and Achary [30]) to prove its 
accuracy. From Figures 2 to 4, it has been 
observed that thermal variation along with the 
depth of all composite laminates, (A), (B), and (D) 
remains constant for a transverse aspect ratio 

( )1
ls
d

= of more than 20 when the domain is 

exposed to the thermal load case I. However, for 
thick and moderately thick laminates, these 
variations showed a considerable reduction of 
temperature value when compared to reference 
constant temperature. Nearly 60% reduction in 
reference temperature has been noted for all 
cases. In symmetric laminates, the maximum 
reduction is noted at the half depth of laminates 
(Figures 4 and 5).  

In contrast, for composite laminate (A), 
maximum reduction (more than 70%) has been 
located at the height of 0.3d from the bottom 
surface. Moreover, when the domain is exposed 
to thermal load case II, the depth distribution of 
temperature depends on the lamination 
configuration. For symmetric composite laminate 
(B), thermal variation is observed to be linear, 
whereas, for laminates (A) and (D), a change in 
gradient has been observed at the lamina 
interfaces. However, the transverse aspect ratio 
effect is absent in this case.  

Figures 5 to 7 depicted through depth thermal 
gradient for rectangular laminates. In-plane 
ratios affected temperature distribution along 
with the depth of laminates when the domain is 
subjected to thermal load Case I and not to 
thermal load Case II. 

Further, obtained thermal gradient from heat 
conduction solutions has been used for stress 
analyses. Structural responses for in-plane 

stresses, ( )
1 2
,X X   in-plane and transverse shear 

stresses ( )
1 2 1 3 2 3

, ,X X X X X X   , and transverse 

displacement ( )w  at silent locations for thermal 

stress analysis have been presented in Tables 5 to 
8 for laminates A, B, C, and D, respectively. 

Comparisons have been made against exact 
solutions presented by Kapuria and Acharya [30] 
and noted to match them exactly here. Moreover, 
an additional comparison has also been made 
with a Model 2 solution obtained for simple 
constant (Case I) and linear (Case II) thermal 
gradient along with the laminate depth.  
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Fig. 2. Through thickness temperature variation in a five-layered symmetric composite laminate 
 for the thermal load; (a) Case I and (b) Case II 
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Fig. 3. Through thickness temperature variation in a four-layered symmetric composite laminate 
for the thermal load (a) Case I and (b) Case II 
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Fig. 4. Through thickness temperature variation in the five-layered sandwich composite plate  
for thermal load; (a) Case I and (b) Case II 
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Fig. 5. Through thickness temperature variation in a five-layered rectangular symmetric  
0 0 0 0 00 / 0 / 0 / 90 / 0    composite plate for thermal load; (a) Case I and (b) Case II 
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Fig. 6. Through thickness temperature variation in the four-layered rectangular symmetric composite plate 
for thermal load; (a) Case I and (b) Case II 
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Fig. 7. Through thickness temperature variation in a five-layered rectangular sandwich composite plate 
 for thermal load; (a) Case I and (b) Case II 
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For load Case I, it is worth to be noted that 
simple constant and linear thermal gradient 
assumptions and over-estimate responses for all 
parameters are considered here. As expected, 
these over-estimations are maximum for thick 
laminates and minimum for thin laminates. 
(transverse aspect ratio, 

1s  > 30) as expected.  

The approximate percentage differences 
between Model 1 and Model 2 for composite 
laminate (A) are 30% (in-plane stresses), 45% 
(transverse shear stresses), 38% (in-plane shear 
stress) and 45% (transverse displacement) have 
noted whereas, for symmetric and anti-
symmetric laminates (B, C), these differences are 
20% (in-plane stresses), 19% (transverse shear 
stresses), 12% (in-plane shear stress) and 12% 
(transverse displacement). For load Case II, the 
marginal difference between numerical values 
obtained from Model 1 and Model 2 analyses 
expects few locations to be noticed for composite 
laminates A, B, and C.  

However, the under-estimate structural 
response has been observed for in-plane normal 
stresses and transverse shear stresses for thick 
laminates A. In contrast, over-estimation has 
been observed for transverse displacement and 
in-plane shear stresses.  

Further, these responses have been reversed 
for thin composite laminates. For cross-ply 
symmetric and anti-symmetric composite 
laminates (B and C), the variation between Model 
1 and Model 2 has a uniform from thick to thin 
laminates.  

All displacements and stress parameters have 
been over-estimated marginally for thick 
laminates, whereas for thin laminates, the 
difference between Model 1 and Model 2 analyses 
has almost been nullified. Moreover, for sandwich 
laminate (D), the comparison between Model 1 
and Model 2 numerical values showed very large 
differences even for thin laminates in both Cases 
I and II. It is established that considered 
temperature variation over-predicts the 
structural response as much as 300% for thick 
plates, which is minimized to approximately 
135% for a thin plate with an aspect ratio greater 
than 30. 

Through depth, variations of all 
displacements and stresses were available in the 
paper presented by Kapuria and Achary [30] and 
compared in present studies. 

However, concerning the presented tables in 
the previous section, the accuracy of the current 
development has been very well proven. 
Therefore, only a few through-thickness 
variations showing the major discrepancy 
between Model 1 and Model 2 analyses have been 

presented in this paper for the sake of brevity. 
Through-thickness variations of in-plane 

displacement ( )v , transverse displacement ( )w , 

transverse shear stress ( )
2 3X X , and in-plane 

normal stress ( )
2X  have been depicted in 

Figures 8 and 9 for sandwich laminate (D) 
subjected to Case I and II thermal loadings. 
Through thickness distribution of transverse 

stress ( )
2 3X X  and in-plane normal stress ( )

2X

indicates a very large discrepancy and different 
variation patterns for the assumed thermal 
gradient (Model 2) when compared with Model 1. 
Within the core section of sandwich laminates, 

transverse shear stress ( )
2 3X X shows linear and 

parabolic patterns for Case I and Case II when the 
sandwich plate is subjected to an assumed 
thermal gradient which is supposed to be 
constant as observed in Model 1 analyses. 
Moreover, the analysis response has shifted from 
positive to negative ordinates between Model 1 
and Model 2. 

For in-plane and transverse displacements, 
variation showed a similar pattern; however, 
major differences have been noticed between 
numerical values. These observations have also 
been noticed in other examples; however, fewer 
differences have been noted than sandwich 
laminates.  

Therefore, it needs to determine the exact 
thermal gradient when laminates are subjected to 
temperature loading and mechanical loading to 
capture proper behavior. Simple assumptions, 
either constant, linear or any other patterns, will 
lead to wrong determination and interpretation 
of structural responses in laminated composites, 
especially composite with a high degree of 
orthotropic like sandwich laminates and lower 
transverse aspect ratios (a/h) that is thick 
laminates. Further, a selective result for 
rectangular plates has been presented here for 
future-ready reference. 

Normalized in-plane normal stresses
1 2

( , )
X X

  , 

transverse shear stresses 
1 3 2 3

( , )X X X X   and the 

transverse displacement ( )w  of four-layered 

symmetric 0 0 0 00 / 90 / 90 / 0    composite 

rectangular (
2s  = 2) laminate have depicted in 

Table 9.  

Through depth, changes of in-plane 
displacement ( )v , transverse displacement ( )w

transverse shear stress ( )
2 3X X , and in-plane 

normal stress ( )y had shown in Figures 10 and 

11 for five-layered homogeneous orthotropic 
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laminates (A) and sandwich laminates (D) when 
laminates were subjected to thermal load Case I.  

Additionally, changes of normalized in-plane 

displacement ( )u  transverse displacement ( )w , 

transverse shear stress ( )
1 3X X , and in-plane 

normal stress ( )
1X  along with the thickness for 

four-layered symmetric (B) and anti-symmetric 

(C) laminates have presented in Figures 12 and 

13, respectively under the applied thermal load 

Case II. A mixed kind of observations has been 

drawn from these parametric studies. 

The effect of in-plane aspect ratios (b/a) has 
been observed for some parameters [Figure 10 
(a, b, c), Figure 11 (a), Figure 12 (b, c, d), and 
Figure 12 (b)]. In contrast, in a few parameters, 
partial parts of laminate along the depth remain 
independent to in-plane aspect ratios, viz Figure 
10 (d), Figure 11 (b, c, d), Figure 12 (a), and 
Figure 13 (a, c, d). 

4. Conclusion 

Efforts have been made to determine the exact 
thermal gradient for laminated plates by solving 
heat-conduction equations with the help of a 
semi-analytical approach followed by stress 
analyses under applied two thermal loading cases 
defining stretching and bending effects. The 
formulation depends on the formation of BVP 
along with the depth of laminate, and then the 
solution is attempted by adopting a shooting 
approach. Obtained thermal gradients and stress 
analyses result from extensive numerical studies 
have been compared with available solutions, and 
the accuracy of current development has been 
proved. 

Further, comparisons have also been 
documented for simple through thickness 
constant and linear thermal profiles. It is 
observed and noted here that it is needed to 
capture the exact thermal profile when laminate 
components are subjected to thermal loading 
with/without other kinds of loading. 
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Fig. 8. Through thickness variation of normalized  (a) in-plane displacement  (b) transverse displacement  (c) transverse shear stress 
(d) in-plane normal stress of five-layered sandwich composite laminate subjected to the thermal load, (Case I) 
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Fig. 9. Through thickness variation of normalized  (a) in-plane displacement  (b) transverse displacement  (c) transverse shear stress 
(d) in-plane normal stress of five-layered sandwich composite laminate subjected to the thermal load, (Case II) 
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Fig. 10. Through thickness variation of normalized (a) in-plane displacement (b) transverse displacement (c) transverse shear stress 

(d) in-plane normal stress of five-layered homogeneous orthotropic laminate subjected 
to thermal load (Case II) for different in-plane (s2) aspect ratio 
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The degree of orthotropic, lamination scheme, 
and transverse and in-plane aspect ratios are 
sensitive parameters toward the correct 
response prediction for laminated structures 
when subjected to thermal loading. The present 
formulation uses analytical and numerical 
approaches, achieving accuracy and simplicity. 

 It also helps to reduce the dimension of the 
elasticity problem and helps to avoid a complex 
3D stress analysis. This unique formulation can 
analyze composite material subjected to 

environmental/externally imposed loads such as 
thermal, hygrothermal, piezoelectric, mechanical, 
and its combinations with little modification in 
the future. 

Moreover, the application of present semi-
analytical models for multi-directional FG 
materials can also be tested in the future. 
However, the presented formulation is restricted 
to simply supported boundary conditions and 
distributed transverse loading in bi-directional 
sinusoidal and uniform loading conditions. 
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Fig. 11. Through thickness variation of normalized (a) in-plane displacement (b) transverse displacement (c) transverse shear stress 
(d) in-plane normal stress   of five-layered sandwich composite laminate subjected 

 to the thermal load, (Case I) for different in-plane aspect ratio 
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Fig. 12. Through thickness variation of normalized (a) in-plane displacement (b) transverse displacement 

 (c) transverse shear stress (d) in-plane normal stress of four-layered symmetric laminate subjected  
to the thermal load, (Case II) for different in-plane aspect ratio 

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.5 2.0 2.5 3.0 3.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2 3 4 5 6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0.0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-1.0 -0.5 0.0 0.5 1.0

3x3x

3x

( )3, ,
2 2

l bw x

s1=5

 s2 = 3

 s2 = 2

 s2 = 1.5

 s2 = 1

3x

( )30, ,
2

bu x

 s2 = 3

 s2 = 2

 s2 = 1.5

 s2 = 1

s1=5

(d)(c)

(b)(a)

( )
1 3 30, ,

2x x
b x

s1=5

 s2 = 3

 s2 = 2

 s2 = 1.5

 s2 = 1

( )
1 3, ,

2 2x
l b x

s1=5

 s2 = 3

 s2 = 2

 s2 = 1.5

 s2 = 1

 

Fig. 13. Through thickness variation of normalized (a) in-plane displacement (b) transverse displacement (c) transverse  
shear stress (d) in-plane normal stress of four-layered anti-symmetric composite laminate subjected  

to the thermal load, (Case II) for different in-plane aspect ratio. 
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Table 5. In-plane normal stresses
1 2

( , )X X  , transverse shear stresses 
1 3 2 3

( , )X X X X   , and the transverse displacement ( )w  

of five-layered 0 0 0 0 00 / 0 / 0 / 90 / 0    orthotropic composite square laminates 

C
as

e 
I 

s Source ( )
1

,
2 2X

dl  ( )
1 3

0,0.2
X X

d  ( ),
2 2

dlw  ( )
2

,0
2x

l
+  ( )

1 2

0, 0.4
X X

d
+

−  ( )
2 3

0,0
X X

  

5 

1Exact solutions 0.6799 0.2610 -1.5802      2.3311 1.3365 -1.1570 0.3155 
Present Model 1 0.6803 0.2611 -1.5804      2.3319 1.3370 -1.1573 0.3156 
Present Model 2 0.8918 0.3281 -2.3291       2.6962 1.6647 -1.5978 0.4619 

10 

1Exact solutions 0.3441 0.2083 -0.3989       0.7718 1.8825 -1.0761 0.5273 
Present Model 1 0.3442 0.2083 -0.3989       0.7719 1.8827 -1.0762 0.5274 
Present Model 2 0.3712 0.2159 -0.4805       0.7802 2.0083 -1.1836 0.5874 

20 

1Exact solutions 0.1996 0.1595 0.0259        0.3351 2.0871 -1.0060 0.6292 
Present Model 1 0.1996 0.1595 0.0259        0.3351 2.0871 -1.0060 0.6292 
Present Model 2 0.2032 0.1597 0.0159        0.3312 2.1229 -1.0313 0.6471 

40 

1Exact solutions 0.1564 0.1422 0.1461        0.2245 2.1452 -0.9812 0.6608 
Present Model 1 0.1564 0.1422 0.1461        0.2245 2.1452 -0.9812 0.6608 
Present Model 2 0.1571 0.1421 0.1444        0.2232 2.1545 -0.9874 0.6655 

C
as

e 
II

 

s Source ( )
1

,
2 2X

dl  ( )
1 3

0,0.2dX X  ( ),0 & 
2 2

dlw  ( )
2

, 0.2
2X

l d
−  ( )

1 2

0, 0.4
X X

d
+

−  ( )
2 3

0,0.2
X X

d  

5 

1Exact solutions 0.8914 0.3787 1.3061       2.8454 1.3531 0.4574 -0.5237 
Present Model 1 0.8918 0.3788 1.3064       2.8461 1.3536 0.4574 -0.5239 
Present Model 2 0.8368 0.3702 1.5743       2.7791 0.9534 1.2766 -0.4846 

10 

1Exact solutions 0.8037 0.5004 1.0784       1.4850 1.1968 0.2924 -0.6036 
Present Model 1 0.8038 0.5004 1.0784       1.4886 1.1969 0.2924 -0.6037 
Present Model 2 0.8877 0.5676 1.3723        1.6761 0.6143 0.9427 -0.5425 

20 

1Exact solutions 0.7849 0.5501 0.9827        1.0872 1.1241 0.2237 -0.6291 
Present Model 1 0.7849 0.5501 0.9827        1.0872 1.1241 0.2236 -0.6291 
Present Model 2 0.9318 0.6595 1.2562        1.3324 0.4502 0.7967 -0.5629 

40 

1Exact solutions 0.7810 0.5647 0.9547        0.9810 1.1020 0.2032 -0.6360 
Present Model 1 0.7810 0.5648 0.9547        0.9810 1.1020 0.2032 -0.6360 
Present Model 2 0.9469 0.6877 1.2195        1.2385 0.3993 0.7525 -0.5686 

1Exact solutions = Kapuria and Achary [30] 

Table 6. In-plane normal stresses
1 2

( , )X X  , transverse shear stresses 
1 3 2 3

( , )X X X X  , and the transverse displacement ( )w  

of four-layered symmetric 0 0 0 00 / 90 / 90 / 0    composite square laminates 

C
as

e 
I 

s Source ( )
1

,
2 2X

dl  ( )
1 3

0, 0.25d
X X
 −  ( ),

2 2
dlw  ( )

2

, 0.25
2X

l d
+

−  ( )
1 2

0,
2X X

d −  ( )
2 3

0, 0.25X X d −  

5 

1Exact solutions 0.9134 -0.5603 -2.2777     2.2777 0.9186 -0.1426 0.5553 
Present Model 1 0.9138 -0.5605 -2.2784     2.2784 0.9190 -0.1427 0.5554 
Present Model 2 1.1023 -0.6678 -2.5672     2.5673 1.0011 -0.1598 0.5916 

10 

1Exact solutions 0.8075 -0.6356 -0.6256     0.6256 0.8108 -0.0996 0.6338 
Present Model 1 0.8076 -0.6356 -0.6256     0.6256 0.8109 -0.0996 0.6338 
Present Model 2 0.8520 -0.6657 -0.6460     0.6460 0.8279 -0.1027 0.6452 

20 

1Exact solutions 0.7753 -0.6572 -0.1604     0.1604 0.7763 -0.0868 0.6567 
Present Model 1 0.7753 -0.6572 -0.1604     0.1604 0.7763 -0.0868 0.6567 
Present Model 2 0.7862 -0.6649 -0.1617     0.1617 0.7803 -0.0875 0.6597 

40 

1Exact solutions 0.7668 -0.6628 -0.0404     0.0404 0.7671 -0.0835 0.6627 
Present Model 1 0.7668 -0.6628 -0.0404     0.0404 0.7671 -0.0835 0.6627 
Present Model 2 0.7695 -0.6648 -0.0404     0.0404 0.7680 -0.0837 0.6634 

C
as

e 
II

 

s Source ( )
1

,
2 2X

dl  ( )
1 3

0,0X X  ( ),  & 0
2 2

dlw −  ( )
2

, 0.25
2X

l d
+

−  ( )
1 2

0,
2X X

d  ( )
2 3

0,0
X X

  

5 

1Exact solutions 0.7463 0.1933 2.7529       1.5126 -0.7510 -0.1316 -0.1403 
Present Model 1 0.7466 0.1933 2.7537       1.5131 -0.7513 -0.1317 -0.1403 
Present Model 2 0.7745 0.1934 2.8210       1.5399 -0.7646 -0.1348 -0.1463 

10 

1Exact solutions 0.7524 0.2850 1.6449       1.3250 -0.5152 -0.0975 -0.2632 
Present Model 1 0.7525 0.2850 1.6450       1.3251 -0.5152 -0.0975 -0.2632 
Present Model 2 0.7593 0.2855 1.6554       1.3329 -0.5175 -0.0981 -0.2652 

20 

1Exact solutions 0.7603 0.3193 1.3155       1.2349 -0.4192 -0.0864 -0.3130 
Present Model 1 0.7603 0.3193 1.3155       1.2349 -0.4192 -0.0864 -0.3130 
Present Model 2 0.7621 0.3195 1.3177       1.2368 -0.4196 -0.0865 -0.3136 

40 

1Exact solutions 0.7630 0.3290 1.2283       1.2081 -0.3916 -0.0834 -0.3274 
Present Model 1 0.7630 0.3290 1.2284       1.2081 -0.3915 -0.0834 -0.3274 
Present Model 2 0.7634 0.3291 1.2289       1.2086 -0.3917 -0.0834 -0.3275 

1Exact solutions = Kapuria and Achary [30] 
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Table 7. In-plane normal stresses
1 2

( , )X X  , transverse shear stresses 
1 3 2 3

( , )X X X X   , and the transverse displacement ( )w  

 of four-layered anti-symmetric 0 0 0 090 / 0 / 90 / 0    composite square laminates 

C
as

e 
I 

s Source ( )
1

,
2 2X

dl  ( )
1 3

0,0.25X X d  ( ),
2 2

dlw  ( )
2

,
2 2X

dl −  ( )
1 2

0,
2X X

d −  ( )
2 3

0, 0.25X X d −  

5 

1Exact solutions 0.8549 0.5091 -2.2801        2.2801 0.8549 -0.1429 -0.5091 

Present Model 1 0.8553 0.5093 -2.2808        2.2808 0.8553 -0.1429 -0.5093 

Present Model 2 1.0176 0.5936 -2.5707        2.5707 1.0176 -0.1601 -0.5936 

10 

1Exact solutions 0.7771 0.6110 -0.6257        0.6257 0.7771 -0.0996 -0.6110 

Present Model 1 0.7771 0.6111 -0.6257        0.6257 0.7772 -0.0996 -0.6111 

Present Model 2 0.8137 0.6347 -0.6461        0.6461 0.8137 -0.1028 -0.6347 

20 

1Exact solutions 0.7657 0.6496 -0.1604        0.1604 0.7657 -0.0868 -0.6497 

Present Model 1 0.7657 0.6496 -0.1604        0.1604 0.7657 -0.0868 -0.6496 

Present Model 2 0.7745 0.6557 -0.1617        0.1617 0.7745 -0.0875 -0.6557 

40 

1Exact solutions 0.7643 0.6608 -0.0404        0.0404 0.7643 -0.0835 -0.6608 

Present Model 1 0.7643 0.6608 -0.0404        0.0404 0.7643 -0.0835 -0.6608 

Present Model 2 0.7664 0.6623 -0.0404        0.0404 0.7664 -0.0837 -0.6623 

C
as

e 
II

 

s Source ( )
1

,
2 2X

dl  ( )
1 3

0,0.25X X d  ( ),  & 0
2 2

dlw −  ( ),
2 2y

dl  ( )
1 2

0,
2X X

d  ( )
2 3

0,0.25X X d  

5 

1Exact solutions 0.6473 0.2648 2.7869        1.5492 -0.8426 -0.1380 -0.4145 

Present Model 1 0.6476 0.2649 2.7878        1.5497 -0.8426 -0.1380 -0.4146 

Present Model 2 0.6737 0.2735 2.8557        1.5772 -0.8389 -0.1413 -0.4248 

10 

1Exact solutions 0.5917 0.2942 1.8455        1.5276 -0.8768 -0.1130 -0.4471 

Present Model 1 0.5918 0.2942 1.8457        1.5277 -0.8768 -0.1130 -0.4471 

Present Model 2 0.5979 0.2966 1.8569        1.5364 -0.8760 -0.1137 -0.4499 

20 

1Exact solutions 0.5759 0.3025 1.5937        1.5136 -0.8863 -0.1060 -0.4561 

Present Model 1 0.5759 0.3025 1.5937        1.5137 -0.8863 -0.1060 -0.4561 

Present Model 2 0.5774 0.3031 1.5961        1.5159 -0.8861 -0.1062 -0.4568 

40 

1Exact solutions 0.5718 0.3046 1.5296        1.5095 -0.8888 -0.1042 -0.4584 

Present Model 1 0.5718 0.3046 1.5296        1.5095 -0.8888 -0.1042 -0.4584 

Present Model 2 0.5722 0.3047 1.5302        1.5101 -0.8887 -0.1043 -0.4586 

1Exact solutions = Kapuria and Achary [30] 

Table 8. In-plane normal stresses
1 2

( , )X X  , transverse shear stresses 
1 3 2 3

( , )X X X X   , and the transverse displacement ( )w  

 of five-layered sandwich composite square laminates 

C
as

e 
I 

s Source ( )
1

,
2 2X

dl −  ( )
1 3

0, 0.45X X d −  ( ),
2 2

dlw  ( )
2

, 0.45
2X

l d +−  ( )
1 2

0,
2X X

d −  ( )
2 3

0, 0.45X X d −  

5 

1Exact solutions 0.7973 -0.1215 -2.2860            2.2860 0.8580 -0.0679 0.1285 

Present Model 1 0.7974 -0.1215 -2.2867            2.2867 0.8580 -0.0679 0.1285 

Present Model 2 2.5120 -0.3997 -2.7229            2.7271 2.1455 -0.7503 0.1070 

10 

1Exact solutions 0.8045 -0.1322 -0.6544            0.6544 0.8220 -0.0633 0.1338 

Present Model 1 0.8045 -0.1321 -0.6545            0.6545 0.8220 -0.0633 0.1338 

Present Model 2 2.0543 -0.3372 -0.6792            0.6871 1.7637 -0.1222 0.1155 

20 

1Exact solutions 0.8068 -0.1354 -0.1699            0.1699 0.8112 -0.0620 0.1354 

Present Model 1 0.8068 -0.1354 -0.1699            0.1699 0.8112 -0.0620 0.1354 

Present Model 2 1.9337 -0.3207 -0.1665            0.1753 1.6676 -0.1151 0.1171 

40 

1Exact solutions 0.8075 -0.1362 -0.0429            0.0429 0.8084 -0.0616 0.1359 

Present Model 1 0.8075 -0.1362 -0.0429            0.0429 0.8084 -0.0616 0.1359 

Present Model 2 1.9032 -0.3165 -0.0382             0.0472 1.6435 -0.1133 0.1182 

C
as

e 
II

 

s Source ( )
1

,0.45
2X

l d  ( )
1 3

0, 0.45X X d −  ( ),  & 0
2 2

dlw −  ( )
2

,
2 2X

dl  ( )
1 2

0,
2X X

d −  ( )
2 3

0, 0.45X X d −  

5 

1Exact solutions -0.6455 0.0817 1.6070             0.7887 -0.9357 0.0513 -0.1161 

Present Model 1 -0.6455 0.0817 1.6071             0.7887 -0.9357 0.0513 -0.1161 

Present Model 2 1.3497 0.1978 2.8026             1.4228 1.2760 0.4752 -0.1177 

10 

1Exact solutions -0.6486 0.0890 1.1075             0.8991 -0.9411 0.0491 -0.1173 

Present Model 1 -0.6485 0.0890 1.1075             0.8991 -0.9411 0.0491 -0.1173 

Present Model 2 1.2902 0.1919 1.9804             1.6352 1.2116 0.8947 -0.1192 

20 

1Exact solutions -0.6487 0.0938 0.9821             0.9298 -0.9432 0.0485 -0.1177 

Present Model 1 -0.6487 0.0938 0.9821             0.9298 -0.9432 0.0485 -0.1177 

Present Model 2 1.2752 0.1904 1.7749             1.6886 1.1953 1.7611 -0.1196 

40 

1Exact solutions -0.6486 0.0956 0.9510             0.9379 -0.9439 0.0483 -0.1178 

Present Model 1 -0.6486 0.0956 0.9510             0.9379 -0.9439 0.0483 -0.1178 

Present Model 2 1.2714 0.1900 1.7235             1.7020 1.1912 3.5082 -0.1197 

1Exact solutions = Kapuria and Achary [30] 
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Table 9. In-plane normal stresses, transverse shear stresses 
1 3 2 3

( , )X X X X  , and the transverse displacement ( )w  

 of four-layered symmetric 
0 0 0 00 / 90 / 90 / 0    composite rectangular (b /l = 2) laminates 

C
as

e 
I 

s Source ( )
1

,
2 2X

dl −  ( )
1 3 4

0,X X
d −  ( ),

2 2
dlw  ( )

2
,0

2X
l  ( )

1 2
0,

2X X
d −  ( )

2 3
0, 0.25X X d −  

5 

1Exact solutions 1.0756 -0.6300 -2.3984        2.3984 0.4826 -0.1197 0.2685 

Present Model 1 1.0758 -0.6301 -2.3989        2.3989 0.4828 -0.1197 0.2686 

Present Model 2 1.1930 -0.6942 -2.5710        2.5710 0.4948 -0.1273 0.2794 

10 

1Exact solutions 0.9038 -0.6764 -0.6354        0.6354 0.5529 -0.0979 0.2900 

Present Model 1 0.9039 -0.6764 -0.6355        0.6355 0.5530 -0.0979 0.2900 

Present Model 2 0.9301 -0.6935 -0.6470        0.6470 0.5572 -0.0995 0.2931 

20 

1Exact solutions 0.8546 -0.6888 -0.1613        0.1613 0.5723 -0.0919 0.2959 

Present Model 1 0.8546 -0.6888 -0.1613        0.1613 0.5723 -0.0919 0.2959 

Present Model 2 0.8609 -0.6931 -0.1620        0.1620 0.5735 -0.0922 0.2966 

40 

1Exact solutions 0.8418 -0.6920 -0.0405        0.0405 0.5773 -0.0903 0.2974 

Present Model 1 0.8418 -0.6920 -0.0405        0.0405 0.5773 -0.0903 0.2974 

Present Model 2 0.8434 -0.6931 -0.0405        0.0405 0.5776 -0.0904 0.2976 

C
as

e 
II

 

s Source ( )
1

,
2 2X

dl −  ( )
1 3

0,0X X  ( ),  & 0
2 2

dlw −  ( )
2

,
2 2X

dl −  ( )
1 2

0,
2X X

d −  ( )
2 3

0,0X X  

5 

1Exact solutions -0.4641 0.0101 1.9951          0.7105 0.9653 0.0529 -0.2371 

Present Model 1 -0.4643 0.0101 1.9956          0.7107 0.9652 0.0530 -0.2371 

Present Model 2 -0.4796 0.0077 2.0316          0.7176 0.9645 0.0539 -0.2419 

10 

1Exact solutions -0.3879 0.0259 1.0780          0.7504 0.9796 0.0332 -0.2693 

Present Model 1 -0.3879 0.0259 1.0781          0.7504 0.9796 0.0332 -0.2693 

Present Model 2 -0.3914 0.0253 1.0833          0.7538 0.9795 0.0334 -0.2707 

20 

1Exact solutions -0.3664 0.0305 0.8333           0.7509 0.9836 0.0277 -0.2787 

Present Model 1 -0.3664 0.0305 0.8333           0.7509 0.9836 0.0277 -0.2787 

Present Model 2 -0.3673 0.0304 0.8343           0.7519 0.9836 0.0277 -0.2790 

40 

1Exact solutions -0.3609 0.0318 0.7710           0.7504 0.9847 0.0263 -0.2812 

Present Model 1 -0.3609 0.0317 0.7710          0.7504 0.9847 0.0262 -0.2811 

Present Model 2 -0.3611 0.0317 0.7712           0.7506 0.9847 0.0263 -0.2812 

1Exact solutions = Kapuria and Achary [30] 
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