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This paper presents the free vibration and buckling responses of a skew sandwich plate using higher-

order shear deformation theory (HSDT).  The governing differential equations (GDEs) for the skew 

sandwich plate are obtained using Hamilton's principle, which states that the actual motion of a 

system minimizes the total potential energy of the system. The GDEs obtained are discretized using 

radial basis function (RBF), which is a meshfree based numerical method. The vibration and buckling 

results for skew sandwich plates using meshfree methods and the effect of node distribution are not 

available in the open literature to the best of the author's knowledge. Numerous results are presented 

showing the non-dimensional frequency and buckling parameters of the skew sandwich plates for 

different values of the plate geometry, material properties, and boundary conditions. These results 

provide insights into the vibration and buckling behavior of skew sandwich plates and can be used to 

optimize the design and performance of these plates for various applications, such as aerospace 

structures, marine structures, and civil engineering structures. Convergence studies of present 

results are checked, and the results obtained are also validated with the results available in the open 

literature. The effect of span-to-thickness ratio, core-to-face thickness ratio, aspect ratio, boundary 

conditions, boundary node distribution, and skew angle is examined. The results presented in this 

paper can be useful for engineers and researchers working in the field of structural mechanics and 

can contribute to the development of safer and more efficient structures.  

 

1. Introduction 

Because of their advantageous features like 
high strength and stiffness-to-weight ratios, 
thermal properties, and a variety of other multi-
physical aspects, laminated composites and 
sandwich configurations are used in many 
lightweight structures in aviation, structural, 
maritime, and civil engineering applications. By 
giving designers of mechanical parts the 
flexibility to customize the distribution of 
materials of various qualities in accordance with 
the loading routes, these designs also enable 
custom optimization. Laminated composites are 
constructed by layering piles of composites with 
specific fiber orientations in each layer to create 
the structures. Shi et al. [1] applied a semi-
analytical approach to the buckling response 
of sandwich plates. Karakoti et al. [2] investigated 
skew-edge sandwich plates via the finite element 
method. Katariya et al. [3] studied statics and 

natural frequency of skew sandwich composite 
plates using the HSDT model.  

Radial basis function-based mesh-free 
methods have been used for the analysis of plates 
by Singh et al.[4] for free vibration of laminated 
composite plates, and Solanki et al. [5] for the 
flexure behavior of laminated plates. Singh et al. 
[6] for buckling of square sandwich plates, Shukla 
and Singh [7] for flexure analysis of angle-ply 
rectangular plates, Solanki et al. [8] for nonlinear 
vibrations of square laminated composite and 
sandwich plates, Singh et al. [9] for flexure of 
laminated composite and sandwich plates. RBFs 
have been also used to analyze the buckling 
behavior of functionally graded materials 
rectangular plates by Kumar et al. [10, 11]. 
Civalek [12] obtained the frequencies and 
buckling loads of skew laminated composite 
plates using the discrete singular convolution 
method. Ashour [13] studied the free vibration 
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response of symmetric laminated angle-ply thin 
skew plates using the finite strip transition 
matrix method. Malekzadeh and Alibeygi Beni 
[14] investigated the frequency response of skew 
FGM plates via DQM.  

The buckling response of a CFRP plate has 
been studied by Yidris et al. [15] Civalek 
and  Jalaei [16] analyzed the shear buckling of an 
FG skew plate.  Vibrational analysis of FG skew 
sandwich plates of geometric distortions has 
been carried out by Khanke and Tande [17]. Kiani 
and Żur.[18] studied the effect of vibrations on 
graphene platelet-reinforced composite skew 
plates resting on point supports. Investigating 
Responses due to the nonlinear moving load of 
FG-GPLRC skew plates has been carried out by 
Noroozi and Malekzadeh [19]. 

Sayyad and Ghugal [20] used sinusoidal beam 
theory for analysis of functionally graded 
sandwich curved beams. Flexure response of 
laminated plates [21] stress analysis of 
orthotropic laminated doubly-curved shells on 
rectangular planform under concentrated Force 
have been analysed by Sayyad and Ghugal [22]. 

Bending, buckling, vibration 0f rectangular 
laminated composite and sandwich plates has 
been studied by Sayyad and Ghugal [23–27].  

Ghugal and Sayyad [28] has studied stress 
analysis of thick laminated plates using 
trigonometric shear deformation theory. 
Laminated composite, sandwich and FGM beams 
have been analyzed by Shinde and Sayyad [29]. 

Thermoelastic analysis of laminated plates 
has been done by Sayyad et al. [30] using four 
variable plate theory. 

The literature review indicates that there has 
been limited research on the buckling and 
vibration analysis of skew-laminated sandwich 
plates. Therefore, this paper aims to address 
these gaps by using theoretical approaches.  

The paper derives the GDEs for buckling and 
vibration characteristics and reveals the 
influence of skew angles. The GDEs are derived 
via Hamilton’s principle and discretized via the 
RBF approach.  

Overall, this study provides valuable insights 
into the behavior of skew laminated plates, which 
can be applied in various engineering 
applications, such as aviation and civil 
engineering. 

2. Mathematical Formulation 

Figure 1 shows the geometry of a skew 
plate with a skew angle (  ) where thickness ‘h’ 

along the z-axis has been considered. 

 
Figure.1.  Geometry of skew plate 

The displacement variables are expressed as 
Srivastava and Singh [31], [32]: 
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For the present analysis, the transverse shear 
stress has been considered as proposed by 
Touratier [33]. 

The GDEs of the skew plate along with 
boundary conditions are derived using 
Hamilton’s principle, which is expressed as [34]: 

2
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Ldt =  (2) 

where, L is Lagrangian and defined as 

( )L KE UE VE= − +  (3) 

where, 

KE = Kinetic energy,  UE = Strain energy, 

VE = Potential energy due to external loads 

The expressions for kinetic energy and strain 
energy of the plate can be written as[35]: 
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The potential energy due to in-plane 
mechanical loading can be expressed as [36],[37]; 
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In Equation (6) ,b b
x yN N  and b

xyN  are the 

applied in-plane compressive loadings in x and y 
directions and shear loading, respectively. The 
governing differential equations of the plate are 
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obtained by collecting the coefficients of  , 

 ,   ,  x and  y can be expressed as: 
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The simply supported boundary conditions 
are taken as: 
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3. Solution Methodology 

A skew domain with NB boundary nodes and 
NI interior nodes is obtained and shown in 
Figure 2. 

 
CASE-1 

 
CASE-2 

Fig. 2. Geometry of skew plate with nodes 

The field variables 0 0 0, , , xu v w   and y  of 

Eq (1) are assumed in terms of radial basis 
function as [38], [39]: 
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where, 0 0 0[ ]yxu v w 
      are unknown 

coefficients, ( ),jg X X c−  is RBF, is the radial 

distance between the nodes, and c is the shape 
parameter. For the present analysis, RBF taken is 

a thin plate spline 2 logcg r r=  with c=3. 

( ) ( )
2 2

( ) / ( ) /j j jr X X x x a y y b= − = − + −
 

(17) 

The GDEs along with boundary conditions are 
discretized and expressed in compact matrix 
form as: 

    G[K]+ [K] M =     (18) 

For Buckling analysis  =0 and =1 

For Vibration analysis  =1 and =0 

here, [K] is the stiffness matrix obtained using 
equations [7-11] for interior nodes and using 
equation [14] for boundary nodes. [M] is the mass 
matrix obtained using equation [7-14]. The final 
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expressions for vibration analysis can be 
expressed as [40] 
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The eigenvectors (V) and eigenvalues (D) are 
calculated as: 
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Frequency (ω) = D  

For buckling analysis, the final equation can 
be expressed as [41]: 
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where [K]G is the geometric matric obtained from 
equation [9]. [K]L denotes the stiffness matrix at 
domain nodes and [K]B for boundary nodes. 

The eigenvectors (V) and eigenvalues (D) are 
calculated as: 
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Finally, the buckling load is calculated as  
(λ) = (D). 

4. Result and Discussion 

Present section deals with numerical 
experimentations and validation of obtained 
results. A square sandwich plate (a/h=10) 
consisting of two orthotropic face layers of 0.1 
times thickness and a core layer of 0.8 times 

thickness is considered. The material properties 
taken for the core layer are as Pandit et al. [42]. 

E22/E11=0.543, E1=1, 12 =0.3, 

G12/E11=0.2629, G13/E11=0.1599, 

G23/E11=0.2668,   =1.  

The elastic modulus of face sheets has been 
varied with a factor Rf. 

The frequency and buckling responses are 

normalized as 
(1/2)
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h
100

E

 
 =   

 

 and 

2 3
2fb / (E h ) =   respectively. 

Two cases of node generation have been 
considered here to see the effect of change in the 
position of boundary nodes while applying the 
boundary conditions. CASE-1 represents the 
position when boundary nodes are at the corner 
while CASE-2 represents when boundary nodes 
are not at the corner. 

The convergence and validation study for the 
fundamental frequency parameter and buckling 
parameter of a simply supported square 
sandwich plate are obtained and presented in 
Table 1 and Table 2 and the same has been 
depicted in Fig. 3 and Fig. 4 respectively. Results 
obtained are compared with results due by 
Srinivas and Rao [43] for free vibration analysis. 
It can be seen that the present results converged 
for both cases within 1% and became closer to 
the results of Srinivas and Rao [43] for vibration 
analysis at 15X 15 nodes. From Fig. 3 and Fig. 4, it 
is observed that convergence is better when a 
plate is rectangular as compared to that of for 
skew plate with a skew angle of 45. 

Table 1. Frequency parameter   for different skew angles ( )[Rf=10] 

No. of Nodes 
CASE=1 CASE-2 

 =0  =45  =0  =45 

5x5 16.2389 11.5657 18.0937 10.6235 
7x7 11.7651 20.0860 5.3638 18.1613 
9x9 10.3759 15.3905 10.3735 16.1812 
11x11 10.0651 14.4978 10.0258 15.2517 
13x13 9.9713 14.0399 9.9311 14.6074 
15x15 9.9339 13.7013 9.8979 14.1129 

Srinivas and Rao [43] 9.8104 -------- 9.8104 --------- 

Table 2. Buckling parameter   for different skew angles (  ) [Rf=10] 

No. of Nodes 
CASE=1 CASE-2 

 =0  =45  =0  =45 

5x5 1.5920 1.3842 3.1811 3.4106 
7x7 1.6854 5.0083 4.3924 7.8329 
9x9 2.5082 6.7541 2.7162 8.4169 
11x11 2.5336 7.4413 2.5470 8.4519 
13x13 2.5355 7.3135 2.4984 8.0468 
15x15 2.5723 7.0777 2.4791 7.7763 
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Figure 3. Convergence of frequency parameter   

 

Figure 4. Convergence of Buckling parameter    

Table 3 presents the comparison of present 
results with Pandit et al.[42] and Srinivas and Rao 
[43].  

Present results are in good agreement with 
published results. Further, the effect of the span-
to-thickness ratio with the variation of Rf is 
studied. 

The results obtained for the fundamental 
frequency parameter and buckling parameter are 

obtained and shown in Fig. 5 and Fig. 6 
respectively. It is observed that with increase in 
span to thickness ratio fundamental frequency 
parameter decreases while fundamental buckling 
parameter increases, and its effect is negligible 
after b/h=40. It can be also seen that with 
increase in Rf fundamental frequency parameter 
increases while fundamental buckling parameter 
decreases. 

Table 3. Frequency parameter of a square sandwich plate of orthotropic layers 

References 
Rf 

1 2 5 10 15 

Pandit et al.[42] 4.7283 5.6871 7.6933 9.7870 11.1816 

Srinivas and Rao [43] 4.7419 5.7041 7.7148 9.8104 11.2034 

Present 4.7544 5.7134 7.7232 9.8979 11.2123 
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Figure5. Effect of span-to-thickness ratio on frequency parameter   for different Rf [ =30] 

 
Figure6. Effect of span-to-thickness ratio on buckling parameter   for different Rf  [ =30] 

The effect of core to face thickness ratio with 
skew angles are also considered. Results 
obtained are presented in Table 4 and Table 5 for 

vibration and buckling analysis respectively. 
With increase in skew angle both the parameters 
increases while with increase in core to face 
thickness ratio it decreases. 

Table 4. Frequency parameter   for different skew angles ( )[ Rf =10, b/h==20]   

Core-to-face thickness ratio 


 
0 15 30 45 60 

2 3.5614 3.6574  4.1697 5.5115 9.2500 
4 3.2055 3.2555  3.6937 4.8455 8.1457 
6 2.9469 2.9916  3.3934 4.4501 7.4817 
8 2.7547 2.8052 3.1844 4.1827 7.0308 
10 2.6046 2.6615 3.0253 3.9822 6.6909 
12 2.4834 2.5452 2.8974 3.8224 6.4186 

Table 5. Buckling parameter   for different skew angles ( )[ Rf =10, b/h==20] 

Core-to-face thickness ratio 


 
0 15 30 45 60 

2 3.7971 4.0713 5.3611 8.4687 15.1909 
4 3.0755 3.1932 4.1918 6.4315 11.7088 
6 2.5993 2.6951 3.5371 5.4216 9.8650 
8 2.2714 2.3775 3.1181 4.8068 8.7795 
10 2.0308 2.1472 2.8174 4.3786 7.9987 
12 1.8462 1.9685 2.5867 4.0555 7.3618 
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Further, the effect of boundary conditions 
with aspect ratio are also considered presented 
in Fig. 7. It is observed that with increase in 
aspect ratio, the buckling parameter decreases 
for both the cases. 

The effect of skew angle for different modes 
are presented in Table 6 and Table 7 for vibration 
and buckling analysis respectively. 

Table 8 shows the results for buckling 
parameter with different skew angles and in-
plane loadings of all edges simply supported. 

Fig. 8 and Fig. 9 shows the contours of 
different mode shapes. Present methodology 
shows the capability to obtain the contours for 
different mode shapes. 

 
Figure7.  Effect of boundary conditions of buckling parameter   

Table 6. Frequency parameter   for different skew angle ( )[ Rf =10, b/h==20] 

Modes 
Skew angle 

0 30 60 75 

1 1.9115 2.0409 3.7674 12.2436 
2 2.7678 3.0178 5.4304 14.3424 
3 4.1911 4.7656 7.8702 17.0028 
4 6.1185 5.5724 9.4601 19.8703 
5 6.2410 6.3289 11.0003 23.4864 
6 7.0057 6.5226 12.0317 25.7191 
7 8.2896 8.2046 12.0317 30.6092 
8 8.5213 8.7674 13.8923 30.6092 

Table 7. Buckling parameter   for different skew angle ( )[ Rf =10, b/h==20] 

Modes 
Skew angle 

0 30 60 75 

1 1.0920 1.4481 4.8325 14.5690 
2 2.2901 2.3145 5.9576 14.6059 
3 2.9371 2.8061 6.7724 15.8205 
4 3.6965 2.9614 7.3035 15.8245 
5 4.9850 3.9249 8.1120 17.1792 
6 5.1586 4.4415 8.8965 18.3184 
7 5.2388 5.4227 9.5923 20.1938 
8 5.5972 5.6897 10.5197 20.4136 

Table 8. Buckling parameter   for different square skew angle ( )[ Rf =5, b/h==10, SSSS] 

CASE 
Skew angle 

 0 15 30 45 75 

CASE-1 
Uniaxial 2.2580 1.5514 2.7289 3.3884 12.0979 
Biaxial 1.1293 0.8432 1.0850 1.2930 4.6472 
Pure Shear 3.8800 3.8396 2.5300 2.2732 11.8956 

CASE-2 
Uniaxial 2.2680 2.3005 3.0076 3.3884 12.2728 
Biaxial 1.1341 1.1118 1.1405 1.2439 4.9167 
Pure Shear 3.8412 3.4927 2.5288 1.9828 12.5058 
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CASE-1 CASE-2 

    
Mode-1 Mode-1 Mode-4 Mode-4 

Figure 8. Different mode frequency of sandwich plate [Rf=5, hc/hf=8,  =30] 

CASE-1 

  

CASE-2 

  

Uni-axial loading Pure shear 

Figure 9. Different modes   of the sandwich plate under in-plane loading conditions [Rf=5, hc/hf=8,  =30] 

5. Conclusions 

In this study, the buckling and free vibration 
characteristics of laminated sandwich plates are 
investigated using the HSDT. 

• The present solution methodology is easy 
to implement for acceptable results. 

• With an increase of span to thickness 
ratio, the frequency parameter decreases 
and after a/h =40, its effect is negligible. 

• With an increase in core-to-face thickness 
ratio, frequency and buckling parameter 
decreases. 

• With an increase in skew angle, the 
frequency parameter as well as the 
buckling parameter increases. 

• There is a considerable effect on results 
with node distribution on boundaries. 

• New results for vibration and buckling 
analysis of skew sandwich plates have 
been produced, which can be used for 
validation by other research groups. 

The results of this study can be useful for 
optimizing the design and performance of 
laminated sandwich plates for various 
applications, such as aerospace structures, 
marine structures, and civil engineering 
structures. 

By understanding the buckling and free 
vibration behavior of these plates, engineers can 
design structures that can withstand expected 
loads and vibrations, thereby increasing the 
safety and reliability of the structures. 
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