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In functionally graded materials (FGM), pores have a key impact. A variety of properties,
such as resistance to mechanical shock, thermal insulation, catalytic efficiency, and the
release of thermal stress, can be added by gradually changing pores distribution from the
inner surface to the exterior surface. Tensile strength and the material's Young's modulus
are impacted by the level and distribution of porosity. Two directional functionally graded
beams are subjected to different sets of boundary conditions by employing a fifth-order
shear deformation theory. The power-law distribution shows that the material properties
of the beam change in both axial and thickness directions. Axial and transverse cross-
sectional deflections are given in polynomial forms in order to calculate the critical
buckling load. The auxiliary functions are combined with the displacement functions to
fulfill the boundary criteria. Considerations for the boundary conditions include the
following three: Clamped - clamped (CC), Simply supported (SS), and Clamped-free (CF).
The computed findings are contrasted with earlier attempts in order to aid in the
convergence and verification investigations. The effects of different aspect ratios,
boundary conditions, and gradient indices on the buckling responses of the two directional
functionally graded beams are all investigated.

1. Introduction

New generation materials have been
developed using improvements in material
manufacturing methods to suit the need for use.
Each period saw the innovation of particular
materials to support the development of
technology. Composite materials are made of two
or more different materials yet nonetheless
possess the necessary properties for a particular
application [1]. However, the differences in
mechanical properties at the interface of these
two different materials can lead to significant
interlaminar stresses [2]. Therefore, concerns
with delamination and de-bonding will manifest
in a hot environment. In general, for many years,
isotropic homogenous materials of various types,
such as those from the metal and polymer groups,
have been widely used in a variety of technical
fields [3]. The metal group of materials excels in
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great strength and toughness, whereas polymers
excel in high flexibility as well as corrosion
resistance. However, at extremely high
temperatures, these materials are unable to
withstand stresses [4]. Therefore, materials from
the ceramics family could be used to combine
these metals with polymers to benefit from their
special qualities and improve properties such as
thermal resistance [5]. A new variety of materials
must be developed in order to accommodate the
recent rise in the use of materials for engineering
constructions that are subjected to heavy
mechanical loads in hot conditions [6].

Progressive materials with mechanical
qualities that change in space are called
functionally graded materials (FGM).

Components of FGM are made to vary constantly
and smoothly in all gradient directions [7]. The
main objective of FGM research is to create
materials that can survive extremely high
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temperatures so that ceramics can be mixed with
other materials to form refractories, which are
materials with remarkable heat resistance [8].
However, it is impossible to use ceramics to build
engineering structures that can withstand
significant mechanical stress. This could be due to
the fact that ceramics have poor toughness
properties, necessitating the mixing of ceramics
with other materials such as metals and polymers
that have strong toughness capabilities [9]. The
transport industry, optics, energy storage, and
conversion systems, semiconductors, the
production of cutting tools and machine
components, biosystems, etc. are just a few of the
significant applications that the FGM could be
employed. FGM could be available to address the
issue and fulfill the requirement because certain
applications call for specific key concerns 10].

Understanding how FGM structures react
when exposed to static and dynamic loading
conditions is essential for structural designs. To
improve the predictability of how FGM structures
would respond to different mechanical loads,
numerous theories were proposed [11]. To
analyze bending, buckling, and vibration in FGMs,
several researchers have previously made
specific theoretical and experimentally validated
choices. Numerous techniques are used to
explain the gradient of FGM that are constructed
from two distinct phases of material [12]. In
general, volume fraction distributions rather
than actually graded microstructures are used to
construct the bulk of approaches. Classical beam
theory (CBT), developed by Bernoulli and Euler,
is the simplest beam theory to analyze thin beams
[13]. However, this approach is inappropriate for
the investigation of thick Functionally Graded
(FG) beams since it disregards the shear
deformation impact. The displacements and
stresses in thick beams are overestimated by
CBT. The variation in the first order in axial
displacement is an assumption made by
Timoshenko in his 1921 theory. As a result, it is
often referred to as first-order shear deformation
theory (FSDT) or Timoshenko beam theory (TBT)
[14]. The criterion for zero transverse shear
stress could not be met on the top and bottom
surfaces of the beam via FSDT. The strain energy
brought on by the shear deformation effect must
be properly taken into consideration to avoid the
use of the shear correction factor. As a result,
various scholars provide higher-order shear
deformation theories to precisely predict the
bending response. Sayyad and Ghugal [15] have
provided a comprehensive analysis.

A substance is referred to as porous if it has
pores that permit fluid to move through them. A
porous substance's porosity is one of its key
characteristics [16]. Permeability, tensile
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strength, and electrical conductivity are all
influenced by the properties of the matrix and the
fluid that fills the pores. Porous structures are
frequently used in several fields, including civil
engineering, marine engineering, and aerospace
engineering. Recently, researchers have begun to
pay more attention to functionally graded porous
materials (FGPMs) [17].

FGPMs, in which the mechanical properties
change continuously throughout the structure.
These are substances whose porosity gradually
changes over the course of their volume. The
foundation material contains pores with varying
porosity distribution. Porosity variation may be
caused by modifications in pore density or size.
Depending on the cell structure, FGPMs may be
configured as open or closed cells [18]. Open-cell
structures feature pores that are connected,
whereas closed-cell structures have a substance
that surrounds and isolates each cell. Through a
gradual change in porosity, desirable qualities
can be imparted.

Magnucki [19] looked at different types of
buckling in porous beams with different
properties. They assessed how porosity affected
the strength as well as buckling load shear
deformation theory and calculated the critical
load. Magnucka-Blandzi [20], who also identified
the appropriate dimensionless parameters to
raise a critical force and lower beam mass,
effectively developed a sandwich beam with an
FG metal foam core. Using analytical solutions
and the Euler-Bernoulli theory, Mojahedin et al
[21], estimation of free vibration in FG thin beams
with pores was made. Babaei et al. used the finite
element approach to examine buckling, static,
and dynamic [22] evaluations of an FG-saturated
porous thick beam in accordance with higher-
order beam theory. Mojahedin et al. [23]
provided a solution for thermos-elastic analysis
of a saturated FG porous beam by adapting the
Timoshenko beam theory. In light of various
beam theories and Navier's solution, Hung et al.
[24] explored the static behavior of an FG
sandwich beam with a fluid-infiltrating porous
core. From the current literature, it can be
concluded that the accuracy-based fifth-order
shear deformation theory is not used to explore
the impact of porosity on FGM beams.

The major focus of this paper is the critical
buckling analysis of two-dimensional FG beams
using Power Law variations in boundary
conditions, aspect ratios, gradient indices, and
porosity indices. A unique shear shape function is
created to attain zero shear stress conditions at
the top and lower surfaces of the FG beam, and
the fifth-order theory is adjusted to take into
consideration the effects of transverse shear
deformation
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2. Formulation and Mathematics

2.1.Formulation of Porous FG beam

The coordinate system for the beam used in
the present research is presented in Figure 1. A
rectangular FG beam with dimensions of length
(L) in the x-direction, width (B) in the y-direction,
and thickness (h) in the z-direction. It is assumed
that material qualities differ continuously across
the length, and thickness, directions. By grading
the ceramic and metal phases, an FG rectangular
beam in the thickness direction is produced.
Here, the lower surface (z=-h/2) is made of metal
and the upper surface (z= +h/2) is made of
ceramic. The reference surface, or (z=0), is the
central surface of the beam. Origin (O) is the
midpoint of a rectangular beam (xy), thus
z=[-h/2,h/2]
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Fig. 1. Functionally graded beam geometry

The volume proportion of the component
materials affects the material properties of the FG
beam. It is anticipated that the thickness
coordinate and material properties will work
together. Porous volume fraction (Vf), as
indicated in Eq. 1 [25], could be represented by
the Power Law distribution in x and z.

s = (42) (Cea) )
reD=t3) 1732

here, P, and P, denote the behaviour of volume
fraction throughout the thickness and length of
the beam. Variation of porous volume fractions of

ceramic in thickness and length directions is
depicted in Figure 2.

z/h 05 0% x/L

Fig. 2. Porous volume fraction of ceramic in thickness
(z/h) and length (x/L) direction

Effective material properties in evenly
distributed porous FG beams (P) can then be
expressed as,

Pz

P(x,z) = (P. — Py) (%"'%) <%+%)

Px

(2)
a
+Pm _E(Pc +Pm)

where a represents the coefficient of porosity
(0<a<1), m and c represent the metal and
ceramic phases.

As per the aforementioned relationship,
Young's modulus (E), and mass density (p), which
are used for material stiffness and moment of
inertia estimation for evenly distributed porous
FG beams can be expressed as:

P, Py
E(x,z) = (E. — Ep) (% + %) G * %)
(2a)
+E,, — % (Ec + Ep) a
p(x,2) = (pc — pm) (% + %)Pz (% + %)Px (2b)

a
tom =5 (pc + pm)

Although there is a slight variance in Poisson's
ratio value as compared with other properties, it
is considered to be constant because
computations are made using the average value.

Likewise, the effective material properties of
unevenly distributed porous FG beams (P) can
then be expressed as,

Pz

P = b (24 2) (B4 )

Py

a 2/2
+P, _E(PC + B,) <1 _T)

Young's modulus (E), and mass density (p) for
unevenly distributed porous FG beams could be
expressed as:

st -5 (+3) (43
2/ (3a)
+E, —%(EC +E,) <1 _TZ>
and
p(r.2) = (e = o) (7 + %)P &+ %)P
(3b)

a
tpom =5 (Pc + pm) (1 - T)
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2.2.Constitute Equations for Displacement
Field

For robust constructions and to save
production costs, FG beams and plates that are
subject to static and dynamic loads must be well-
designed. When analyzing FGM constructions
made by adapting classical beam and plate
theories, the deflection findings of bending
analysis are often found to be underestimated;
nevertheless, critical loads and natural
frequencies are typically overstated. In order to
improve forecast accuracy, it is advisable to use
theories that consider the effects of shear
deformation while analyzing beams and plates
formed by FGMs. To determine the impact of
transverse shear and normal strain, Reddy's
advanced higher-order shear deformation theory
is modified. These are the displacement field and
constitutive equations:

U(x,z,t) = ug(x, t) + z0(x, t)
s aw, (4a)
@ (060 + 52 (x0)

W(x,z,t) = wy(x,t) (4b)

where U is axial displacement and W is
transverse displacement. u, and w, are the axial

displacement at a given point on the neutral axis.

% is the bending slope and @ is the shear slope.

The displacement field equation in matrix
form can be expressed as,

(w) =15 S
= [z4]{d}

The shape function f(z) could be used to
determine transverse shear deformation and the
non-zero strain field equations can be computed
using Eqgs. (4a) and (4b) as,

oU _ duy 2%w,

_OZ] {UWo Wo Wox}T

(5)

&T9x ox  Cox? (62)
90 02 a
+f(Z)< WW;’)
e =20 =0 (6b)
ow,
Yoz = f [@ = (6¢)
and
f(z) =—x*sin [ﬂ*z]
(7a)

f'(z) = %* sin [%]

1 1 2n—1 (7b)
- (1 —orn ¢ (n— 1)2”‘2>

mT*n n

According to Hooke’s Law and using Eqgs. 6a,
6D, 6¢, 7a, 7b, the field equations for stress can be
deduced as follows:

Oy = Li(f ZZ) Ex (8a)
E(x,2) (8b)

Txz = myxz

2.3.Buckling Formulation in FG Beam

The Bi-directional FG beam's strain energy
can be expressed as:

th
1 L
U= Ef f (Ox&x + TyyVxz)dzdx 9
0 =
2
Substituting Egs. 6a, Eq. 6¢, Eq. 8a, and Eq. 8b

in Eq. 9, the obtained strain energy can be
expressed as,

E( )
fj 2 X,z ST s o

E(x,2)
20+

J J l E(x 2 6u0>

Buo 0%w,

szyxz) dde

—— 2f = 22)

2
.
62
+f> o Q( 2f2 (11

—22f+<6 o (f))

E(x,2)
2(1+ )

aw, )2
Chrwo (2f"%)

d*w,
+<(d 20 2)) dzdx

(2)2 (fI)Z
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Total strain energy and potential work are
added to determine the beam's total potential

energy ().

n=U+V (12)
= N .0, lot
u(x,t) j=ZA,G,(x)e .
;(x) = (x + %)pu (x — %)qu xm1
= ) iwt'
w(x, t) ;B]q)] (x)e »
Pw aw
9;(x) = (x + %) (x - g) xm-1
d(x,t) = i Cipj(x)e®t,
= (15)
P a
Y;(x) = (X +%) ’ (x —%) ¢x’"‘1

The boundary conditions proposed are
0; (x), @;(x) and Yj(x) and w, the natural
frequency of the beam. Unknown coefficients 4;,
B;,and C; could be estimated using the complex

number, i = V—1.
Substituting Eq. 14, and Eq. 15 in Eq. 13, and

adapting the principle of minimum potential
energy, we get,

o1l ol

—=0,—
9A; 9B

T g T

1,23,....,m (16)

The values of A, B;, and Cj represented with g,
can be used to estimate critical buckling loads for
a two-dimensional FG beam as given in Eq. 17,

[S11] [S12] [Sis]

[S12]" [S22] [Sas]

[0] [0] [0]

- Ncr [0] [KNO] [0]

[S13]7[S23]" [S35] [0] [0] [0] (17)
A {0}
X< By =<{0}
C {0}

The geometric stiffness and stiffness matrices
are [Kyo], and [Ski] and their components are
given by,

S )) = f LL/; 'i(f—jz [(x + g)pe (x

L/2 E
S120)) = (f—z)fm =0 (x

e
L\P®
+§> ("

L\9¢ .
- E) X, xf‘l] dzdx

E(x, Z)

S1a(i ) = sz

p6 q0

x+2) (x-2) it x+£w . (20
2 2 >
INTY
_§> x’_l] dzdx
Sy (i,)) = (Z22 —zf + f )J‘zE(x ,Z)
(+3) (-3) wrt(x+5) (=
- " j_l] dzdx +
2) X o

[ ZL% (x +§)W (x

E
Spa (i) = (F2 — f)]z . Z)

[@+9W@—9W%f*@+9w@
L\
_E> x"l] dzdx +
o [ e

chp.1 I\PY
—3) #(x+g) (v

JAAY
_E> ]dzdx

(22)
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EE ’
S = (7 [ 3 x

o) (-5 e )
LY
-3) ]+

7 [ ) (-

L\PY IN\TY
+§) (x—§> ]dzdx

(23)

L/2

Kyo(i, ) = f_L/Z [(x +%>p(p (x

L\9¢ ) L\P®
- E) x, xtt (x + E) <x (24)

2.4. Position of the Neutral Axis

According to the physical neutral surface
concept [26], the physical neutral axis of the FG
beam is given by:

h

2
I I A os)
° fg pydy G PIE Enp)

-h

2

It is clear that in a homogeneous isotropic
beam, the geometric middle surface and the
physical neutral surface are identical. The
variation of the Power Law index on the position
of the neutral axis is presented in Figure 3.

[

[
[

4 § H 10 1 M 1 18 1
Power volume fraction (¥,)

Fig. 3. Variation of Power Law index on the position
of the neutral axis

3. Numerical Computation - Results

and Discussion

The accuracy of the current approach is
examined using several numerical examples,
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including the impacts of gradient indexes i.e.,
material composition, on the buckling behaviour
of two-dimensional FG beams, boundary
conditions, and aspect ratios (L/h) have also been
studied. Material properties of the constituents of
the considered FG beam are as follows:

Alumina:  Ec=380 GPa, pc=3960 kg/m3, uc=0.3

Aluminium: Em=70 GPa,
um=0.3

pm=2702 kg/m3,

To analyze the shear deformation, the height
of the beam is varied. Three varied boundary
conditions, such as SS, CF, and CC are applied and
tabulated in Table 1.

Table 1. Boundary conditions for the FG beam

Boundary

condition *~ "L/2 x=1/2

SS u=0, w=0 w=0

CF u=0, w=0, =0, w'=0

cc u=0, w=0, $=0, w'=0 u=0, w=0, ¢=0, w'=0

The FG beam material properties fluctuate in
the axial (L) and thickness direction (h),
governed by the Power Law. Non-dimensional
buckling load parameter, (Ncr) could be used for
the representation of results. where,

12N, L*
E,bh’?

Ner =

(26)

A homogeneous beam is taken into account
for the convergence and verification
investigations, and displacement functions with
various numbers of terms (m=2, 4, 6, 8, 10, and
12) are used [27].

The calculated findings are provided as a
dimensionless critical buckling load taking into
account different gradient indices in both
directions, aspect ratios, and boundary
conditions, specifically SS, CC, and CF.

For comparison, the findings from the earlier
investigations [25] in terms of dimensionless
critical buckling load are utilized as presented in
Table 2.

Table 2 shows that the results for the buckling
behavior of SS and CF beams quickly converge
since the displacement function has six terms.
However, by employing 6 terms in the
displacement function, the agreed findings of the
CC boundary condition are obtained. To ensure
accuracy, 12 terms from the polynomial
expansion are employed for the complete
buckling analysis of two directional FG beams
[28].
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Table 2. Critical buckling load of FGM beams with respect to
various boundary conditions and aspect ratio (L/h) change

L/ Boundary Conditions

Theory
SS CC CF

[25] 57925 158936 13.156
P 2 terms 58.427 159.438 13.658
I' 4 terms 49.123 154.538 13.562

5 € 6terms 49.098 152.649 13.561
S 8terms 49.098 152.649 13.561
Iel 10 terms 49.098 152.649 13.561
¢ 12terms 49.098 152.649 13.561
[25] 63.148 223944 13.474
P 2 terms 63.937 224733 14.263
I' 4 terms 54.053 212.887 14.194

20 € 6terms 54.026 209.741 14.162
S 8terms 54.026 209.741 14.162
i 10 terms 54.026 209.741 14.162
¢ 12terms 54.026 209.741 14.162

From Tables 3-5, shown in Appendix, the first
three dimensionless critical buckling loads of the
2D-FGBs with SS, CC, and CF boundary conditions
are presented for two different aspect ratios
(L/h=5 and L/h=20), and a range of gradient
indices in both directions (Pz and Px ). The first
three critical buckling loads are seen to decrease
for all sorts of boundary conditions as the
gradient indices increase. It is found that the
shear deformation effect increases in importance
as the buckling mode number increases. The
relative difference between the critical buckling
loads with respect to aspect ratio change
increases for CC beams as the buckling mode
order increases [29].

Comparing the values of the critical buckling
loads for aspect ratios of L/h =5 and L/h = 20 for
the suggested boundary conditions, it can be
deduced that the CF beam has the lowest value
while the CC beam has the largest value. Finally,
the dimensionless critical buckling load is
reduced by the gradient index variation in the x-
direction more so than the gradient index
variation in the z-direction.

The effects of gradient indices (px and pz) and
aspect ratios on the dimensionless buckling
stresses of the 2D-FGBs under various boundary
conditions are shown in Figures 4 to 6. It has been
found that the dimensionless critical buckling
load decreases as gradient indices increase.

This results from a reduction in the stiffness
of the beam [30]. It shows that the gradient index
in the x direction has a bigger effect on the
dimensionless critical buckling load than the
gradient index in the z direction for all types of
boundary conditions.

cal Buckling-Necr

Criti

Critical Buckling-Ner

o
S

Aspect Ratio L/h
L5
[ Lh-20

B
(=)

w
S

n
(=]

=)

o
L wd

T, 0 o Gr

Fig. 4. Critical buckling (Ncr) of SS beam at various
aspect ratios and gradient index
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Fig. 5. Critical buckling (Ncr) of CF beam at various aspect
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Fig. 6. Critical buckling (Ncr) of CC beam at various aspect

ratios and gradient index
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The influence of porosity pattern (even and
uneven) on the critical buckling load is presented
in Tables 6 to 8 and Figures 7 to 9. The critical
buckling load for a pure ceramic FG beam is
observed to be at its maximum value, and the
buckling load decreases as the gradient index
value increases because the metal constituent of
the FG beam increases as the gradient index
increases [23, 30].

On the other hand, as the FG beam goes from
being perfect to imperfect, the critical buckling
load declines noticeably with the high buckling

modes. When it comes to porosity patterns, an
uneven pattern is more noticeable than a uniform
one in terms of buckling curves. This can be
explained by the way that porosity is dispersed
throughout the entire structure, with
concentrated pores in the middle of the beam
having a major impact on buckling response
more so than evenly distributed pores [31]. As a
result, while analyzing the stability of such
structural components, the distribution profile of
pores is a crucial factor in the buckling response
of the FG beam.

Table 6. Influence of gradient exponents and porosity distribution on dimensionless critical buckling of
a simply supported (SS) 2D FG beam at aspect ratio L/h=5

Even Porosity

Uneven Porosity

Px & Pz
0 0.1 0.2 0.3 0 0.1 0.2 0.3
0 49.0987 46.2213 43.3438 40.4664 49.0987 48.1533 47.2021 46.2449
0.5 30.036 27.4438 24.8864 22.3692 30.036 29.1784 28.3137 27.441
1 20.6701 18.0904 15.5585 13.0814 20.6701 19.8135 18.9472 18.0694
2 16.7171 14.07 11.4592 8.8354 16.7171 15.7872 14.8342 13.8512
5 13.2142 10.4455 7.7 45981 13.2142 12.2171 11.1895 10.1219
10 11.4151 8.5481 5.6932 2.7892 11.4151 10.3859 9.3216 8.2144
Table 7. Influence of gradient exponents and porosity distribution on dimensionless critical buckling of
a clamped free (CF) 2D FG beam at the aspect ratio L/h=5
Px & Even Porosity Uneven Porosity
Pz 0 0.1 0.2 0.3 0 0.1 0.2 0.3
0 13.5618 12.7885 12.0153 11.24198 13.5618 13.3208 13.0794 12.8374
0.5 5.747 5.4364 5.1259 4.8153 5.747 5.6502 5.5533 5.4561
1 4.0713 3.6412 3.2111 2.781 4.0713 3.9367 3.8015 3.6656
2 3.3054 3.0915 2.4749 2.0486 3.3054 3.1676 3.0274 2.884
5 2.9733 29117 2.3462 1.687 2.9733 29334 2.903 2.8725
10 29181 2.7511 2.0898 1.3764 2.9181 2.7939 2.6793 2.62
Table 8. Influence of gradient exponents and porosity distribution on dimensionless critical buckling of
a clamped -clamped (CC) 2D FG beam at the aspect ratio L/h=5
Px & Even Porosity Uneven Porosity
Pz 0 0.1 0.2 0.3 0 0.1 0.2 0.3
0 152.6496 143.6405 134.6318 125.6231 152.6496  149.9487 147.247 144.544
0.5 80.0819 67.4412 56.5971 44.3822 80.0819 74.5723 71.3645 68.0884
1 50.5415 41.0822 30.1532 16.7305 50.5415 48.1873 449595 41.642
2 38.2772 31.0614 20.4039 8.5326 38.2772 38.0332 34.8157 31.4762
5 319311 24.8779 14.8718 3.989 31.9311 31.5725 28.5979 25.5229
10 30.1944 21.9149 12.5248 2.6324 30.1944 28.3847 25.6111 22.7969
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Critical Buckling-Ner

Fig. 7. Critical buckling of SS beam with even porosity and
uneven porosity at aspect ratio L/h=5

Porosity Index
12 EEEven
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Fig. 8. Critical buckling of CC beam with even porosity and
uneven porosity at aspect ratio L/h=5

Porosity Index

Critical Buckling-Ner

Fig. 9. Critical buckling of CC beam with even porosity and
uneven porosity at aspect ratio L/h=5

4. Conclusions

This study shows the buckling behaviour of
two-directional functionally graded beams with
various boundary conditions. By using various
gradient indices in both the axial and thickness
directions, analytical polynomial series solutions
are obtained for the boundary conditions Simply
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supported - Simply supported (SS), Clamped -
clamped (CC), and Clamped-free (CF). It is
studied how boundary conditions, gradient
indices, and aspect ratios affect the circular
buckling stress of 2D FG beams. The boundary
conditions are met by the use of auxiliary
functions. It is evident from the findings of the in-
depth investigation that the gradient indices have
a significant impact on the dimensionless
buckling load of the 2D FG beams. However, the
gradient index's impact in the z direction is more
profound than its impact in the x direction.

By choosing appropriate gradient indexes, the
buckling behaviour of the 2D FG beams can be
managed to satisfy design requirements. The
shear deformation effect on the critical buckling
loads of the 2D FG beam reduces as the aspect
ratio rises. The CC 2D FG beam is found to be
significantly more susceptible to the shear
deformation effect than the other 2D FG beam
models.

The shear correction factor is not necessary
since the third-order shear deformable beam
theory that is used in this study to solve the
buckling behavior of the two directional FGBs
fulfills the zero traction boundary conditions on
the top and bottom surfaces of the beam. It
enables better buckling response prediction for
the 2D FG Dbeams. Higher-order shear
deformation beam theories are required because
the shear deformation effect 1is crucial,
particularly for thick beams. Finally, the
suggested theory effectively addresses the
buckling behaviour of the 2D FG beams and yields
accurate findings.

Nomenclature

FGM
cc Clamped - clamped

Functionally graded materials

SS Simply supported
CF Clamped-free

CBT Classical beam theory

TBT  Timoshenko beam theory

L Length

B Width

h Thickness

%3 Porous volume fraction

Px Volume fraction through thickness
Pz Volume fraction through length

a Coefficient of porosity

E Young's modulus

p Mass density

U Axial displacement

w Transverse displacement
) Shear slope

Shape function



Bridjesh et al. / Mechanics of Advanced Composite Structures 10 (2023) 393 - 406

Acknowledgments

The authors would like to thank the
Managements of Dayananda Sagar College of
Engineering and MLR Institute of Technology for
having given the necessary facilities to publish
the findings of this research in the form of
technical paper. The authors also express
gratitude to his superiors, peers and colleagues
who were instrumental in providing their rich
experience, suggestions and guidance which

Appendix

resulted in shaping the technical paper to the
current form.

Conflicts of Interest

The authors declares that there is no conflict
of interest regarding the publication of this
manuscript. In addition, the authors have entirely
observed the ethical issues, including plagiarism,
informed consent, misconduct, data fabrication
and/or falsification, double publication and/or
submission, and redundancy.

Table 3. Influence of gradient exponents and aspect ratio on dimensionless critical buckling (Ncr) of
a SS two directional FG beam, L/h=5 and L/h=20

L/h=5 for Pz L/h=20 for Pz
Beam Theory Px
0 0.5 1 2 5 10 0 0.5 1 2 5 10

P 2 terms 58.43 4049 34.68 2830 21.20 1731 63.65 44.65 39.64 32.62 26.60 19.57
R 4 terms 49.12  32.69 2540 19.68 1645 1459 53.77 3526 27.08 2133 1810 16.72
E 6 terms 49.10 3237 2509 19.57 16.15 14,55 53.74 3504 27.06 2122 1799 1641
2 8 terms 0 49.10 3237 2509 19.57 16.15 14,55 53.74 3504 27.06 2122 1799 1641
N 10 terms 49.10 3237 2509 19.57 16.15 14,55 53.74 3504 27.06 2122 1799 1641
T 12 terms 49.10 3237 2509 19.57 16.15 14,55 53.74 3504 27.06 2122 1799 1641
P 2 terms 42.70 3346 2684 22.64 18.00 1550 46.51 34.64 29.75 25.22 2036 16.73
R 4 terms 36.76 2477 2219 1856 14.77 13.75 4134 2933 2332 1931 17.29 16.27
E 6 terms 3477 2450 20.08 16.74 1450 13.26 39.05 27.02 22.01 1838 16.18 14.85
2 8 terms 05 3477 2450 20.08 16.74 1450 13.26 39.05 27.02 22.01 1838 16.18 14.85
N 10 terms 3477 2450 20.08 16.74 1450 13.26 39.05 27.02 22.01 1838 16.18 14.85
T 12 terms 3477 2450 20.08 16.74 1450 13.26 39.05 27.02 22.01 1838 16.18 14.85

2 terms 3482 3041 2293 19.79 1634 1449 3792 3380 2460 2121 17.60 15.66
g 4 terms 27.20 2055 1885 16.53 14.09 1247 3131 2431 2130 1729 16.27 15.24
E 6 terms 1 2549 1945 1682 14.78 13.25 1228 29.01 21.62 1854 16.27 1472 13.67
S 8 terms 2549 1945 1682 14.78 13.25 1228 29.01 21.62 1854 16.27 1472 13.67
,';:, 10 terms 2549 1945 1682 14.78 13.25 1228 29.01 21.62 1854 16.27 1472 13.67

12 terms 2549 1945 1682 14.78 1325 12.28 29.01 21.62 1854 1627 14.72 13.67

2 terms 2694 2346 19.01 1693 14.65 1343 2933 3.65 2045 1820 1581 14.53
g 4 terms 18.18 16.18 14.17 13.16 1214 11.12 2134 1834 1633 1471 1410 13.27
E 6 terms 5 17.13 1458 1344 1251 11.67 11.08 19.15 16.05 14.72 13.70 1286 12.22
S 8 terms 17.13 1458 1344 1251 11.67 11.08 19.15 16.05 14.72 13.70 1286 12.22
ﬁ 10 terms 1713 1458 1344 1251 11.67 11.08 19.15 16.05 14.72 13.70 1286 12.22
T 12 terms 1713 1458 1344 1251 11.67 11.08 19.15 16.05 14.72 13.70 1286 12.22
P 2 terms 19.06 17.46 15.09 14.06 1294 1235 20.74 1815 16.29 1518 14.00 13.38
R 4 terms 13.18 1217 1146 11.15 10.83 10.11 14.64 1433 1392 1281 1229 11.27
E 6 terms 1149 1091 10.65 1040 10.12 9.93 1243 1178 1150 11.27 11.04 10.85
2 8 terms > 1149 1091 10.65 10.40 10.12 9.93 1243 11.78 11.50 11.27 11.04 10.85
N 10 terms 1149 1091 10.65 10.40 10.12 9.93 1243 11.78 11.50 11.27 11.04 10.85
T 12 terms 1149 1091 10.65 10.40 10.12 9.93 1243 11.78 11.50 11.27 11.04 10.85

2 terms 1548 1341 1331 1276 1216 1185 1783 1559 1441 13.80 13.18 12.85
E 4 terms 1115 1075 1034 10.12 9091 9.68 13.31 1271 1230 11.89 11.27 10.74
E 6 terms 10.09 9.93 9.84 9.76 9.65 9.58 10.85 10.69 10.62 10.56 10.50 10.45
S 8terms 10 10,09 993 9.84 9.76 9.65 9.58 10.85 10.69 10.62 10.56 10.50 10.45
ﬁ 10 terms 10.09 9.93 9.84 9.76 9.65 9.58 1085 10.69 10.62 10.56 10.50 10.45
T 12 terms 10.09 9.93 9.84 9.76 9.65 9.58 10.85 10.69 10.62 10.56 10.50 10.45
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a CF two directional FG beam, L/h=5 and L/h=20

Table 4. Influence of gradient exponents and aspect ratio on dimensionless critical buckling (Ncr) of

L/h=5 Pz L/h=20 Pz
Beam Theory Px
0 0.5 1 2 5 10 0 0.5 1 2 5 10
2 terms 13.66  9.00 7.08 6.66 478  4.50 1398 994 793 6.81 500  4.60
g 4 terms 13.56  9.00 7.04 663 478 443 1391 943 7.33 6.79 495 455
E 6 terms 13.56  8.99 7.04 661 477 438 13.87 9.17 7.17 674 490 451
Z 8 terms ° 13.56  8.99 7.04 661 477 438 13.87 9.17 717 674 490 451
rl;l 10 terms 13.56  8.99 7.04 661 477 438 13.87 9.17 717 674 490 451
12 terms 13.56  8.99 7.04  6.61 477  4.38 13.87  9.17 717 674 490 451
2 terms 8.56 6.38 543 472 401 3.73 8.75 6.70 556 482 410 3.82
g 4 terms 7.79 5.97 517 459 3.99 3.73 8.00 6.40 524 465 4.09 3.82
E 6 terms 7.59 575 497 439 3.99 3.72 7.70 5.83 504 447 4.08 3.81
2 8 terms 05 7.59 575 497 439 3.99 3.72 7.70 5.83 504 447 4.08 3.81
!1:] 10 terms 7.59 575 497 439 3.99 3.72 7.70 5.83 504 447 4.08 3.81
12 terms 7.59 575 497 439 3.99 3.72 7.70 5.83 5.04 447 4.08 3.81
2 terms 7.02 459 451 419 3.69 3.42 7.17 476 461 428 3.77 3.50
P 4 terms 5.49 446 417 394 3.62 3.40 5.76 454 434 403 3.67 3.47
g 6 terms 5.25 443 407 3.79 3.56 3.39 5.31 448 412 3.85 3.63 3.47
Z 8 terms ' 5.25 443 407 3.79 3.56 3.39 5.31 448 412 3.85 3.63 3.47
T 10 terms 5.25 443 407  3.79 3.56 3.39 5.31 448 412 3.85 3.63 3.47
12 terms 5.25 443 407 3.79 3.56 3.39 5.31 448 412 3.85 3.63 3.47
2 terms 6.01 449  4.23 3.84 347 328 6.14 4.71 433 3.93 3.55 3.35
P 4 terms 4.37 3.97 3.83 3.65 3.27 313 451 4.01 391 376  3.29 3.22
R 6 terms 3.83 3.54 3.41 3.30 3.20 3.12 3.87 3.58 346 335 3.26 3.19
E 8terms 2 3.83 3.54 3.41 3.30 3.20 3.12 3.87 3.58 346 335 3.26 3.19
ﬁ 10 terms 3.83 3.54 3.41 3.30 3.20 3.12 3.87 3.58 346 335 3.26 3.19
12 terms 3.83 3.54 3.41 3.30 3.20 3.12 3.87 3.58 346 335 3.26 3.19
2 terms 5.06 3.98 3.83 356  3.30 3.17 5.17 4.10 391 3.63 3.37 3.24
g 4 terms 3.86 3.37 320 319 3.18 3.07 431 3.42 327 322 3.20 3.12
E 6 terms 3.11 3.05 3.02 3.00 297 295 3.15 3.09 3.07 3.05 3.03 3.01
2 8 terms ® 3.11 3.05 3.02 3.00 297 295 3.15 3.09 3.07 3.05 3.03 3.01
vll\wl 10 terms 3.11 3.05 3.02 3.00 297 295 3.15 3.09 3.07 3.05 3.03 3.01
12 terms 3.11 3.05 3.02 3.00 297 295 3.15 3.09 3.07 3.05 3.03 3.01
2 terms 4.37 364 354 336 319 310 447 3.76 3.62 3.43 3.26 3.17
E 4 terms 3.79 3.32 317 317 3.06 296 3.96 3.39 328 322 3.09 3.01
E 6 terms 2.96 2.95 294 293 292 2.92 3.01 299 299 298 298 2.97
Z 8 terms 10 2.96 2.95 294 293 292 2.92 3.01 299 299 298 298 2.97
;:I 10 terms 2.96 2.95 294 293 292 2.92 3.01 299 299 298 298 2.97
12 terms 2.96 2.95 294 293 292 2.92 3.01 299 299 298 298 2.97
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Table 5. Influence of gradient exponents and aspect ratio on dimensionless critical buckling (Ncr) of
a CC two directional FG beam, L/h=5 and L/h=20

L/h=5 Pz L/h=20 Pz
Beam Theory Px
0 0.5 1 2 5 10 0 0.5 1 2 5 10
2 terms 159.44 123.05 100.16 7581 6237 56.17 22445 14587 121.30 92.53 76.11 68.55
E 4 terms 154.54 109.73 89.28 67.68 55.62 50.02 212.60 136.85 112.10 8490 69.76 62.77
E 6 terms 152.65 102.77 7999 6138 47.39 4149 20946 13637 105.07 8197 6883 62.50
Z 8 terms ° 152.65 102.77 79.99 6138 47.39 4149 20946 13637 105.07 8197 6883 62.50
¥ 10 terms 152.65 102.77 79.99 6138 47.39 4149 20946 13637 105.07 8197 6883 62.50
12 terms 152.65 102.77 79.99 6138 47.39 4149 20946 13637 105.07 8197 6883 62.50
2 terms 12839 93.76 7580 62.87 5463 49.89 152.04 11578 9251 76.72 66.66 60.86
E 4 terms 106.55 81.74 6734 5599 4870 44.52 142.23 107.85 8452 70.25 61.11 55.85
E 6 terms 99.75 73.08 60.69 50.19 4157 3756 13850 9819 81.00 6813 59.92 5513
2 8 terms 05 99.75 73.08 60.69 50.19 4157 3756 13850 9819 81.00 6813 59.92 5513
¥ 10 terms 99.75 73.08 60.69 50.19 4157 37.56 13850 9819 81.00 6813 59.92 5513
12 terms 99.75 73.08 60.69 50.19 4157 37.56 13850 9819 81.00 6813 59.92 55.13
2 terms 10192 8181 66.64 5748 51.14 47.27 12328 9390 80.09 6894 6097 57.16
P 4 terms 7892  64.66 59.38 51.25 45.63 4219 113.57 87.89 7445 64.26 57.22 5291
g 6 terms . 72.60 57.87 5054 4399 3827 3540 10547 8031 69.25 60.71 5485 51.19
2 8 terms 72.60 57.87 5054 4399 3827 3540 10547 8031 69.25 60.71 5485 51.19
T 10 terms 72,60 57.87 50.54 4399 3827 3540 10547 8031 69.25 60.71 54.85 51.19
12 terms 72,60 57.87 50.54 4399 3827 3540 10547 8031 69.25 60.71 54.85 51.19
2 terms 65.84 5373 4793 4253 3856 36.26 8444 7185 67.07 57.54 53.00 46.47
P 4 terms 5259 4549 41.77 3828 35.01 33.21 7787 6449 5833 5337 49.71 43.50
g 6 terms , 5259 4549 41.77 3828 35.01 33.21 7787 6449 5833 5337 49.71 43.50
2 8 terms 5259 4549 41.77 3828 35.01 33.21 7787 6449 5833 5337 49.71 43.50
!;I 10 terms 5259 4549 4177 3828 35.01 3321 77.87 6449 5833 5337 49.71 43.50
12 terms 5259 4549 4177 3828 35.01 3321 77.87 6449 5833 5337 49.71 43.50
2 terms 70.08 57.76  52.26 4819 4499 4283 7202 63.73 5876 5486 50.79 45123
E 4 terms 5198 4184 3848 3530 3278 32.14 6521 56.65 52.64 49.84 47.03 41.54
E 6 terms 3938 3646 34.88 3337 3193 31.08 57.16 5159 4886 46.57 44.78 39.75
2 8 terms ° 3938 3646 34.88 3337 3193 31.08 57.16 5159 4886 46.57 44.78 39.75
¥ 10 terms 3938 3646 34.88 3337 3193 31.08 57.16 5159 4886 46.57 4478 39.75
12 terms 3938 3646 34.88 3337 3193 31.08 57.16 51.59 4886 46.57 4478 39.75
2 terms 59.26  49.61 46.84 4447 4248 41.04 5991 5490 5210 4886 4582 43.77
f{ 4 terms 43.03 3876 3556 3348 31.75 30.62 54.24 50.09 4795 4554 44.02 43.36
E 6 terms 3454 33.00 3217 3140 30.68 30.20 49.87 46.79 4524 4391 4281 41.97
Z 8 terms 0 3454 33.00 3217 3140 30.68 30.20 49.87 46.79 4524 4391 4281 41.97
rl;] 10 terms 3454 33.00 3217 31.40 30.68 30.20 49.87 46.79 4524 4391 4281 41.97
12 terms 3454 33.00 3217 31.40 30.68 30.20 49.87 46.79 4524 4391 4281 41.97
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