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Abstract

A fixed point theorem is proved using a newly constructed contraction operator in this article, and the solvability of
a more general type of fractional integrals based here on the proportional derivative is analyzed. We also use suitable
examples to illustrate our findings.
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1 Introduction

Fractional integral equations play a decisive role in real-world problems. The importance of fractional order
integral equations has gained much research interest. The concept of an MNC is important in fixed point theory.
Kuratowski [23] pioneered the idea of an MNC. Using the idea of an MNC, Darbo [12] established a result proving
the presence of a fixed point for the so-called condensing operators in 1955. Fixed point theory and the MNC have
numerous applications in analyzing various integral equations found in a wide range of real-world problems (see
[3, 18, 14, 15, 17 [19] 20} 25 [13]). This theorem was highly valuable in establishing the solvability of several kinds of
differential and integral equations ([0} [7, [8, 14} [16 [30], for example).

This article aims to generalize the fixed-point theorem of Darbo and apply this theorem in the control of the
solvability of a fractional integral equation.

Let (3,] . ||) be a real Banach space and B(0,7) = {z€3:]|z—0||<r}. If & 0) C 3. Also, € and Conve
represent the closure and convex closure of . Furthermore, let

o M3 = The collection of all non-empty and bounded subsets of 3,
e I3 = The collection of all relatively compact sets,

e R=(—00,00),
and
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° R+ = [O, OO) .
The definition of an MNC is as follows: [9].

Definition 1.1. A function 2 : M5 — [0, 00) is said to be an MNC in 3 if it fulfills axioms:

(i) for all € € M3, 2(€E) =0 gives € is relatively compact.
(i) ker 2 ={E M3 : N2(€E) =0} # ¢ and ker 2 C N;3.
(iii) €C ¢ = N(E) < N(&).

)
)
(iv) 2(€) =0(¢).
(v) 2(Conv€) = 2(€).
(vi) 2(x€+(1-— )(’31_) (¢)+(1- )Q(Q‘El)forxe[o,l].
(vii) if €. € M3, € =&, €.y C €, for c=1,2,3,... and lim 2(€.) =0 then (2, €. # 0.

c—00

The family ker(2 is said to be the kernel of measure 2. Since 2(€) < 2(€.), 2(Ex) = 0. So, Ex =z, €. €
ker(2.

Some important theorems and definitions

The following are some fundamental theorems to recall:

Theorem 1.2. (Shauder [I]) Let 4 be a non-empty, closed and convex subset of a Banach Space 3. Then every
compactt continuous map & : 4 — 4l has at least one fixed point.

Theorem 1.3. (Darbo[I2]) Let il be a non-empty, bounded, closed and convex (NBCC) subset of a Banach Space 3.
Let & : 4 — 4 be a continuous mapping and there is a constant x € [0, 1) such that

N(BB) < xN2(B), B C 4.
Then & has a fixed point.
The following related concepts are needed to establish an extension of Darbo’s fixed point theorem:

Definition 1.4. ([26]) Let A;, Ag : [0,00) — R be the two functions. Then the pair of maps (A1, Ag) is called a pair
of shifting distance functions, if it satisfies following conditions:

1. For z,y € [0,00) if Aj(x) < Ag(y) then z < y.
2. For p,y, € [0,00) such that lim x, = lim y, = z, if A1(x,) < As(y,) V n then z = 0.
n—oo n—oo

We denote by A a pair (A1, As) of shifting distance functions.

As examples, we put Aj(z) =z, As(z) = ez, x > 0 and € € [0,1). They are obviously a pair of shifting distance
functions.

Definition 1.5. [2] A continuous function g : [0,00) x [0,00) — R is a function of C- class if subsequent axioms hold
true:

(1) glm,n) < m,

(2) g(m,n) = m implies that either m = 0 or n = 0. Also g(0,0) = 0. A C- class function is symbolized by C.

For example,
(1) g(m,n) =m —n,
(2) g(m,n) =am, 0 <a<1.

Definition 1.6. [22] A function € : [0,00) — [0, 00) is an alternating distance function if:
(1) £(x) = 0 if and only if z = 0.
(2) ¢ is continuous and increasing.
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We use Z to denote this class of functions. For example, {(x) = (1 —b)x, 0 <b < 1.

Definition 1.7. [2] A continuous function ¢ : [0,00) — [0,00) is an ultra altering distance function if ¢(0) > 0 and
o(t) >0, t > 0.

We use ® to denote this class of functions.

Definition 1.8. A continuous function & : [0,00) — [0,00) is a function of A class if h(z) > x, = € (0,00). Also
h(0) = 0.

For example, h(z) = max, m > 1.

Definition 1.9. Let v: Ry — Ry is a continuous and non-decreasing mapping of B class if y(t) = ¢, ¢ > 0.

2 Main Results
Theorem 2.1. Let U be a NBCC subset of a Banach space 3. Also, let 7 : U — U be continuous mapping with

AP € {p (T + (u (T < Aafg [E{1 () + 7 (1 ()}, & {1 () + 7 (1 (2))}] (2.1)

where Q@ C U and p is an arbitrary MNC and (A1,A2) € A, ¢ € P, £ €=, g€, h € Aand v € B. Then T has at
least one fixed point in U.

Proof . Let us create a sequence {Up};il with U; = U and Upy1 = Conv(TU,) for p e N. Also TU; =TUCU =
Uy, Ug = Conu(TU;) C U = Uy. Continuing in the similar manner gives U DU, D U3 2 ...2U, D2 Up1 D ...

If there exists py € N satistying p(Up,) = 0 then U, is a compact set. In this case Schauder’s theorem implies 7
has a FP in U. Let u(C,) > 0, p € N. Now, for p € N, we have

A [R[E{p (Upgr) + (1 (Upra) ] = A [R [€ {1 (ConvTUy) + v (1 (ConvTU,)) |
= A [h[E{p(TU,) + 7 (1 (TUp)) ]
< Aofg[E{n (Up) + (1 (Up))}, & {n (Up) + v (1 (Up))}]-

Using the condition (1) of definition we get

hIE{p (Upt1) +v (1 (Up1))}] < g[€{n (Up) + v (1 (Up))}, & {p (Up) + v (1 (Up))}]
< E{p(Up) + (1 (Up))} -

Clearly {¢€{n(U,) +~ (1 ([Up))}};i1 is a non-negative and non-increasing sequence hence there exists a > 0 such
that

Tim € (U,) +7 (1(U,)} = a.

If possible let a > 0. As p — oo, we get
h(a) <a

which is a contradiction hence a = 0, i.e.,

¢ lim {re (Up) +7 (1 (Up))}] =0
ie.,
Tim [0 (0,) + 7 (1 (U,))] = 0.
Using the definition [T.9] ,we get
pILH;O 1 (Up) =0.
Since U, 2 U,41, by definition we get Uy = ﬂ;ozl U, is a nonempty, closed and convex subset of U and Uy
is T invariant. Thus theorem implies that 7 has a fixed point in U. This completes the proof. [J
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Theorem 2.2. Let U be a NBCC subset of a Banach space 3. Also 7 : U — U is a continuous mapping with

RIE{ (TQ) + 4 (u (T} < kg€ (Q) + (1 ()}, {p () + (1 (2))}] (2.2)

where 2 C U and p is an arbitrary MNC and ¢ € ®,£ € 2, g€ C, h € A and v € B. Then 7 has at least one fixed
point in U.

Proof . The result follows by taking Aj(x) = z and Ay(z) = kz in Theorem [2.1} O

Theorem 2.3. Let U be a NBCC subset of a Banach space 3. Also, let 7 : U — U be a continuous mapping with

h1E{2u (T} < kg [€{2u (D)}, 0 {20 (D)}] (2:3)

where 2 C U and p is an arbitrary MNC and ¢ € ®,£ € =, g € C and h € A. Then T has at least one fixed point in
U.

Proof . The result follows by taking v(z) = « in Theorem O

Theorem 2.4. Let U be a NBCC subset of a Banach space 3. Also, let 7 : U — U be a continuous mapping with

hIE{2u (TR} < kE{21 ()} (2.4)

where Q C U and p is an arbitrary MNC and € € E and h € A. Then 7T has at least one fixed point in U.

Proof . Use g(m,n) < m in Theorem O
Corollary 2.5. Let U be a NBCC subset of a Banach space 3. Also, let 7 : U — U be a continuous mapping with

p(T9) <M (), A= T € (0,1) (2.5)

where 2 C U and p is an arbitrary MNC. Then 7 has at least one fixed point in U.

Proof . Using £(z) = 2 and h(x) = kx where 0 < k < 1, k > 1 in Theorem [2.40 we get DPFT. O

3 Measure of noncompactness on C([0, I])

Consider the space 3 = C(U) which is the set of real continuous functions on U, where U = [0, I]. Then 3 is a
Banach space with the norm

| All=sup{|A(t)|:t €U}, A€ 3.
Let T(# 0) C 3 be bounded. For A € T and ¢ > 0, denote by pu(A, ) the modulus of the continuity of A, i.e.,

,LL(A,E) = Sup{|/l(t1) — A(tz)‘ tt1,tg € (]7 |t1 — t2| < 6}.

Moreover, we set

u(T,) = sup {u(A,€) : A€ T}; puo(T) = lim (T ).

It is well-known that the function s is a MNC in 3 such that the Hausdorff MNC T is given by I'(T) = £uo(T)
(see [9]).

4 Solvability of a fractional integral equation

For h € (0,1] and w € C, Re(w) > 0, we define the left fractional integral of w by [21]

1 /

(") () = 37 / TS () (9 w(9)o (9)d0.
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In this section, we will study the fractional integral equation shown below

Hp) = U(p, T (2. H(9)), (U H) (¢))
where w > 0, h € (0,1], ¢ € U = [0,1]. Let

Doy = {H €3:| 1< co}-

Assume that

(A) V:UXxRxR—=R, J:U xR — R be continuous and there exists constants 81, B2, f3 > 0 satisfying

|\I’(<pa\77U1)_\I’(<p7j7UI)’ Sﬁl |j_j‘ +BQ’U1_ﬁ1

and
|T (0, L1) — T (@, La)| < B3| L1 — La|, L1, Lo € R.

(B) There exists eg > 0 satisfying

v :sup{|\lf(<p,j,U1)| HINS U,j € [_jajLUl € [_Z/A[az;[]} S €0,

and
BB <1,
where
J =sup{|T (0, H(9))| : ¢ € U, H(p) € [0, e0]}
and

U = sup {|(0U“"™7H) (¢)| : ¢ € U, H(p) € [—eo, 0]} -
(C) Let 0 : R — R be a strictly increasing continuous function.
(D) [¥(¢,0,0)] =0, T(p,0) =0.
(E) There exists a positive solution eg of the inequality
l82eolw_1 (h—1)I

B1Bseq + e 1(h — T (w) e <Zep.

Theorem 4.1. If conditions (A)-(E) hold, then the Eq.(4.1]) has a solution in 3 = C(U).

Proof . Set the operator S : 3 — 3 as follows:
(SH) (@) = ¥(p, T (0, H(¥)), (U™ H) () -

Step 1: We show that the function S maps D, into D.,. Let H € D,,. We have

€0

(SH) ()| < [T, T (0. H()), (U H) () — ¥ (,0,0)| + | ¥ (,0,0)|
< BT (e, H(p)) — 0] + B2 | (U™ H) () — 0]
< B1Bs|H ()| + B2 | (U™ H) (¥)].

Also,
(o U*"7) ()] = L / TR ) () (9)d
hT(w) Jo

1 ? (1) (9)=e () 1

< - B —— _ w—

<o [ T o) o) ) o) ao
€o ? (=) (o) =) w1’

< 2 _

< o [T ) o) )a

S eolw 1 (}L;,l)l

ho=1(h — DD (w)

,<p€U; j,Ul,j,Ul eR

121

(4.1)
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Hence, || S ||< eg gives
Baegl“ 1 (=11

< - e o <e.
| SI< BiBseo + o 1(h — (@) o <eg

Due to the assumption (E), S maps D., into D.,.
Step 2: We show that S is continuous on D, . Let ¢ > 0 and H,H € D,, such that | H — H ||< e. We now have

(SH) () — (SH) ()] < ¥ (0, T (0 ,H< ), (oU“’h’“HM )) =¥ (0, T (0, H (), (GU="H) ()]
< Bu|T (e, 1) — T(e, 7Hp)| + B2 | (U H) (@) — (0U*™"H) (¢)].
Also,
QU= H) (0) = (U= H) ()] = | py [ e 00— 00 () (00) — W) o
< mr [T ) - o) 0) [H00) — Ao a0

eo—te T
< .
he—1(h — 1)I(w)

Hence, || H — H ||< & gives
6\52‘[“}71 (hfhl)l

[(SH) () = (SH) (9)] < BiBse + he1(h — 1)T(w)’

As e = 0, we get [(SH) (¢) — (SH) (¢)| — 0. This shows that S is continuous on De,.

Step 3: An estimate of S with respect to po: Assume that A(# ) C D,,. Let € > 0 be arbitrary and choose
H € A and ¢1, 92 € U such that |p3 — p1| < e and ¢ > 1.

Now,
(57 (p2) = (57) ()] = [ (02, T (g2, 2)), (U5 () = Wleor, T (i1, o)), (U731) 1)
< [0, 7 (o2, ), (U H) (2)) = Wl T (2 i) (U H) 1)
+ U2, T (02, H(p2)), (0U"H) (1)) = U2, T (01, H(21)), (U™ 7H) (101))]
+ W02, T (01, H(91)), (U H) (1)) — U1, T (1, H(g1)), (U haH) (@1)]
< B2 |(0U" H) (p2) — (0U“™7H) (p1)| + B1 |T (02, H(p2)) — T (01, H(01))| + pw (U, )
< B2 | (UM H) (p2) — (GU ™ H) (p1)| + B18s [H(p2) — H(pr)| + M(U o),
where
e PO G s}
Also

o [ TR o) - 0(0) H0)6 900
= hwl—‘(w) . e glP2 g g

1 Pl (-1 (e(en =) w1 ,
o e (oti1) — 010~ H(0)e (9)a9

< 1
~ hvI(w)

P2 (1) (o(pn) = ()
h

(0(p2) — o(9))* " H(I)o (9)dv




The existence of a solution to more general proportional forms of fractional integrals ... 123

PL (- )(etep -0 (9) ,
—/ e (o(er) —o(@) T HW)o (9)dY
0

1

= 7T (w)

®2 —1)(o(p2)—=0o( /
/ ew@'(@ﬂ _ U(ﬁ))w—l’}{(ﬁ)a (9)dd
0

P1 v—1)(o(p2)—0o /
- / ew(o(m) — () H D)o (9)dY
0

1

* [T ) — s M) 0)a0
(@) | Jo M 7

Pl (h—1)(o(py)—0 ,
*/ e T (0(0y) — 0 ()T H(Y)o (9)d
0

1 2 (h—1)(o(pp) =0 () )
< (h=D(oler)=0 () _ w-1l
= hwr(w)[p ¢ " (0(p2) — o(9)“ 7 [H(W)| o (9)dd

1

1 #1 (h=1) (o () =0 () (h=1)(o(p1) =0 (D)) /
+ 7/ e g (0(p2) —0(0))*"! —e g (0(p1) =g (@)™ |H(I)o (9)|dV
heT'(w) Jo
_e(h—l)I
< _ w—1
= hw_l(h — l)F(w) H H || (902 Qol)
¥1 —1)(o(p2)—0 h—1)(o(p1)=0o ’

+ ;l'wﬁaljl) / ( R () — o (0) T e () aw»“‘l) o’ (9)|av.

As £ = 0, then @2 — 1 and so, | (oU“ "™ H) (¢2) — (0U*"™"H) (¢1)| — 0. Hence,
[(SH) (¢2) — (SH) (¢1)| < B2 ’(oUw’h’WH) (p2) — (oUw’h’U/H) (<P1)| + B1B3p(H, €) + pw (U, €),
gives
1(SH,e) < Ba| (U H) (p2) — (U™ H) (¢1)] + B1Bsp(H, &) + pw (U, €).
By the uniform continuity of ¥ on U x [—7,J] x [-U, U] we have g (U,€) — 0, as & — 0.
Taking supyca and € — 0 we get,
po(SA) < B1Bspo(A).
Thus by Corollary S has a fixed point in A C D, i.e. equation (4.1) has a solution in 3. OJ
Example 4.2. Consider the equation below
1,%,@
I (a04224) (&) 42)
9+ ot 20 ’

for ¢ € [0,3] = U.

We have
o(p) = ¢;

(OUL%WH) () = % /0 " =203y (9)dp.

Also, U(p, J,Uy) =T + % and J (¢, H) = ﬁ. It is trivial that both ¥, J are continuous satisfying

Li—L
|j(907L1) - j(¢7L2)| S %7
and

_ _ 1 _
(e, T, Un) = (e, T, 00)| < 1T = T| + 55 [U2 = T
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Therefore, f1 =1, B2 = 55, B3 = é and B183 = § < 1. If || H ||< ep then

L e
-3
and . 3¢ (1 . i)
2 I
Further,

whi

ach

If we choose ey = 3 then
ch gives ~
v < 3.

For ey = 3, however, assumption (E) is also satisfied. We can see that all of Theorem s assumptions are
ieved, from (A) to (E). Equation (4.2)), according to Theorem has a solution in 3 = C(U).
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