% IN
A
) 1

Solutions and stability of a variant of Van Vleck's
and d'Alembert’s functional equations

Th.M. Rassias®*, E. Elqorachi®, A. Redouani®

2Department of Mathematics, National Technical University of Athens, Zofrafou Campus, 15780 Athens, Greece
bIbn Zohr University, Faculty of Sciences Department of Mathematic, Agadir, Morocco

(Communicated by M. Eshaghi)

Abstract

In this paper. (1) We determine the complex-valued solutions of the following variant of Van Vleck’s
functional equation

/ Flo(y)at)du(t) / Fayt)du(t) = 2f (@) f(y), 7.y € 5,
S

where S is a semigroup, ¢ is an involutive morphism of .S, and p is a complex measure that is linear
combinations of Dirac measures (6,,);cr, such that for all ¢ € I, z; is contained in the center of S.
(2) We determine the complex-valued continuous solutions of the following variant of d’Alembert’s
functional equation

/ Flaty)do(t / Fo()tz)du(t) = 2 (2)f(4), x.y € 5,

where S is a topological semigroup, ¢ is a continuous involutive automorphism of S, and v is a
complex measure with compact support and which is o-invariant. (3) We prove the superstability
theorems of the first functional equation.
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1. Introduction

In his two papers [27, 28] Van Vleck studied the continuous solutions f : R — R, f # 0 of the
following functional equation

flx—y+2z) — fle+y+2)=2f(2)f(y), z,y €R, (1.1)

where zg > 0 is fixed. He showed first that all solutions are periodic with period 4z, and then he
selected for his study any continuous solution with minimal period 4z,. He proved that any such
solution has to be the sine function

f(z) = sin(z5-2) = cos(Z- (v — %), © € R.

Stetkeer [9, Exercise 9.18] found the complex-valued solution of equation

flay™ 20) — f(zyz0) = 2f (2) f(y), =,y € G, (1.2)

on non abelian groups G and where z; is a fixed element in the center of G.
Perkins and Sahoo [20] replaced the group inversion by an involution anti-automorphism 7: G — G
and they obtained the abelian, complex-valued solutions of equation

flx7(y)20) — flzyzo) = 2f(2) f(y), z,y € G. (1.3)

Stetkeer [22] extends the results of Perkins and Sahoo [20] about equation to the more general
case where G is a semigroup and the solutions are not assumed to be abelian.

Recently, Bouikhalene and Elqorachi [1] extends the results of Stetkeer’s [22] and obtain the solutions
of the following extension of Van Vleck’s functional equations

x(W)f(x7(y)20) — f(zyzo) = 2f(x) f(y), z,y €S

and
xW) flo(y)xzo) — flxyzo) = 2f(2) f(y), z,y € M, (1.4)

where S is a semigroup, x is a multiplicative, M is a monoid, 7 is an involution anti-automorphism
of S and o is an involutive automorphism of M.
There has been quite a development of the theory of d’Alembert’s functional equation

flzy) + flzr(y) = 2f(x) f(y), =,y € G, (1.5)

on non abelian groups, as shown in works by Davison [3] 4] for general groups, even monoids. The
non-zero solutions of equation for general groups, even monoids are the normalized traces of
certain representations of the group G on C? [3|, 4].

Stetkeer [24] obtained the complex valued solutions of the following variant of d’Alembert’s func-
tional equation

flzy) + flo(y)r) = 2f(2) f(y), z,y € 5, (1.6)
where ¢ is an involutive automorphism of the semigroup S. The solutions of equation (1.6 are of
the form f(x) = M, x € GG, where x is multiplicative.

In [5] Ebanks and Stetkeer obtained the solutions f,g: G — C of the following variant of
Wilson’s functional equation (see also [26])

flxy) + fytz) = 2f(x)g(y), =,y € G.
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In 1979, a type of stability was observed by J. Baker, J. Lawrence and F. Zorzitto [5]. Indeed, they
proved that if a function is approximately exponential, then it is either a true exponential function
or bounded. Then the exponential functional equation is said to be superstable. This result was
the first result concerning the superstability phenomenon of functional equations. Later, J. Baker
[4] (see also [1, 3, 6, 13]) generalized this result as follows: Let (S,.) be an arbitrary semigroup,
and let f : S — C. Assume that f is an approximately exponential function, i.e., there exists a
nonnegative number § such that |f(zy) — f(z)f(y)| < 6 for all z,y € S. Then f is either bounded or
f is a multiplicative function. The result of Baker, Lawrence and Zorzitto [5] was generalized by L.
Székelyhidi [29, B0] in another way. We refer also to [2], [8], [11], [12], [13], [14], [16], [18], [19] and
[21] for other results concerning the stability and the superstability of functional equations

In the first part of this paper we extend the above results to the following generalization of Van
Vleck’s functional equation for the sine:

/S F(o(y)at)du(t) / f(ayt)du(t) = 2 (2)f(y), 2,y € 5. (L.7)

where S is a semigroup and o is an involutive morphism : That is ¢ is an involutive automorphism:
o(zy) = o(x)o(y) and o(o(x)) = x for all z,y or o is an involutive anti-automorphism: o(zy) =
o(y)o(x) and o(o(x)) = z for all x,y, and p is assumed to be a complex measure that is linear
combination of Dirac measures (6,,);cr, with z; contained in the center of S, for all i € I.

The main idea is to relate the functional equation to to the following variant of d’Alembert’s
functional equation

g(ry) + g(o(y)z) = 29(x)g(y), ,y € S (1.8)

and we apply the result obtained by Stetkeer [24], 20].
In section 3, we obtain the the complex-valued continuous solutions of the following variant of
d’Alembert’s functional equation

/f xty)do(t /f y)tx)do(t) = 2f(z) f(y), =,y € S, (1.9)

where S is a topological semigroup, ¢ is a continuous involutive automorphism of S, and v is a com-
plex measure with compact support and which is o-invariant. That is [ h(o(t))dv(t) = [, h(t)dv(t
for all continuous function h on S.
In the last section we obtain the superstability theorems of the functional equation .

In all proofs of the results of this paper we use without explicit mentioning the assumption that
z; is contained in the center of S for all ¢ € I and its consequence o(z;) is contained in the center of

S.

2. The complex-valued solutions of equation (1.7)) on semigroups

In this section we determine the solutions of the variant Van Vleck’s functional equation (1.7)) on
semigroups. We first prove the following useful lemmas.

Lemma 2.1. Let S be semigroup, let o : S — S be an involutive morphism of S and p be a complex

measure that is linear combination of Dirac measures (3,,)ier, with z; contained in the center of S
forallv e I.
Let f: S — C be a non-zero solution of equation (1.7)). Then for all z,y € S we have

f(x) = =f(o(2)), (2.1)
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/ F(E)dpu(t) 0,
f(ow)r) = —fo()y),

|| far@s)dnoduts) = so) [ et
| [ fats)auteyants /f Jau(t)
/faxt :/fxtdut
/fﬂf Ydu(t) /f
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(2.2)

(2.3)

(2.4)
(2.5)
(2.6)
(2.7)

= 0. (2.8)

Equatlon . Let f # 0 be a non-zero solution of equation and assume that
= 0. Taking y = s in equatlon . ) and integrate the result obtamed with respect to s

(2.9)

/f )dp(s) =0

Replacing y by ys in (1.7) and integrating the result with respect to s and using ) and . we

get

xta

s

//f y)ats)du(t) //f xyst)du(s
=2f(y / f(xt)dp(t),
which implies that f(y) [q f ) [ flys)du(s

exists & € C\{0} such that fs ( )

/fysdu

)du(t)

) for all z,y € S. Since f # 0, then there
—af( ) for all x € S. Substituting this into (1.7)) we get

flzy) — flo(y)z) = Q%f(y) for all z,y € S. (2.10)
By interchanging = with y in (2.10) we get
Flye) ~ floahy) = - F@)f() (211)
If we replace y by o(y) in (2.10) we have
Fleal)) ~ flo) = = F@) (o)) (212)
By adding (2.12)) and | we obtain
f(zaﬁﬁ)-f@ﬂx)y)Zz2](Iﬂf(0@0)4-f(0@0)] (2.13)



Solutions and stability of a variant of Van Vleck ... 7 (2016) No. 2, 279-301 283

By replacing = by o(x) in (2.13]) we get

= flay) + flo(x)o(y)) = gf(a(w))[f(a(y)) + flo())] (2.14)
If we replace y by o(y) in (2.13) we get
= flo(z)o(y)) + f(zy) = %f(w)[f(o(w) + flo(y))]- (2.15)
Now, by adding (2.14) and (2.15) we have
[f (@) + fle@)]f(e(y) + fle@)] =0 (2.16)
That is f(o(x)) = — f(z) for all 2 € S. Now, we will discuss two cases. Case 1: If o is an involutive

anti-automorphism. Then from f(o(z)) = —f(x) for all z € S we have f(o(y)r) = —f(o(x)y) for
all x,y € S and equation (2.10) can be written as follows

flay) + Slo(aly) = 212

The left hand side of (2.18)) is unchanged under interchange of x and o(x), so we get f(z) = f(o(x))
for all z € S. Now, f(z) = —f(o(z)) = — f(x) implies that f = 0. This contradicts the assumption
that f # 0.

f(y) for all z,y e S. (2.17)

Case 2: If o is an involutive automorphism. Then from f(o(z)) = —f(z) for all z € S we have
flo(y)x) = —f(yo(x)) for all z,y € S and equation (2.10) can be written as follows
G
flzy) + f(yo(x)) = 27 (y) for all z,y € S. (2.18)

By replacing x by o(x) in and using f(o(x)) = —f(x) we get
l(yx) + l(o(z)y) = 2l(z)l(y) for all =,y € S.

where [ = —g. So, from [24] f(o(x)) = f(x) for all x € S. Consequently, f(o(x)) = f(z) = —f(x)
for all x € S, which implies that f = 0. This contradict the assumption that f # 0 and this proves

the assertion ([2.2)).
Equation (2.3)): Replacing y by yt in ((1.7) and integrating the result obtained with respect to ¢

we get
//f y)wso(t //f wyst)du(s)du(t) /f yt)dpu(t) (2.19)

Replacing = by xs in ([1.7) and integrating the result obtained with respect to s we get

//f y)xst)dpu(t) //f zyst)du(s)du(t) /f xs)du(s) (2.20)

Subtracting these equations results in

//f y)wso(t //f y)wst)du(t)dp(s) 1)

—2f(a) / F)dult) — 2/ () / F(s)du(s).
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Since from (|1.7)) we have

//f y)zsolt //f y)est)dp(t)du(s)
//f y)ws)dp(s /f y)wts)dp(s)]dp(t)

= [ 250 e iu®) = 25(c / F(t)dp(r)
Then we get
/fytd,u /fxsdu (o(y x/ftdut (2.22)
forallz,y € S. Slncef fS yt d,u fs xs du fs f(xt) d,u fs (ys)du(s
then we obtain f(o(y)z) [, f N y) Jo f N Now by using we deduce .

Equation (2.7 - Replacmg x by xa( ) and mtegratlng the result obtalned with respect to
s we get

/ / F(o(y)eso(s)t)dpu(s)du(t) — / / F(ayo(s))du(s)du(t)
575 (2.23)
—2f(y) / f (o (s))du(s).
By using (Z3) we have f(z(yo(s)t)) = — f(o(yo(s)t)o(x)) = — f(o(y)o(z)o(t)s) and then

//fxya t)dpu(s)du(t) //f dp(s)du(t),

so equation (|2 can be written as follows

//f y)wso( //f dp(s)dp()
— 24y /S F(zo(s)du(s). >

The left hand 81de of - is unchanged under interchange of x and o(x), so since f # 0 we get

. By using ) and . we get

/ffvsdu /f

=~ [ Har(s)auts / flo
This proves (2.6)).
Equation (2.1)): By replacing = by o(z) in we obtain

/ oo / flo @)yt du(t) = 2f(0(2)) £ (). (2.25)
S

If ¢ is an involutive automorphism then from (2.6)) we have

[S F(o(y)ol / F (o (y)t)du(t) / F(yet)du(t)
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and it follows from (2.25) that

/ fywt)dp(t) / flo(@)yt)du(t) = 2f (o () f(y)-
Since

/f yat)du(t) /f z)yt)dp(t) {/f z)yt)dp(t) /f yat)du(t } = —2f(y)f(z),

then we conclude that
—2f(2)f(y) = 2f(o(z)) f(y)

for all z,y € S. Since f # 0 then we get (2.1)).
If o is an involutive anti-automorphism then from (2.6)) we have

/f(a(y) /f o (zy)t)du(t) /f zyt)dp(t)

and [, f(o(x)yt)du(t) = [ f(o(y)zt)du(t). Equation (2.25) implies that

/fxytdu /f z)yt)dpu(t) {/f z)yt)dpu(t) /f:vytdu }

__[/Sf(o Yat)dp(t) /fxyt dp(t }——2f(:c)f(y)-

Since f # 0 then we get again (12.1)).
Equation (2.4): Putting x = o(s) in (1.7)), using (2.1)) and integrating the result obtained with
respect to s we get by a computation that

[S / F(o(y)o(s))dp / / F(o()yt)ds / f(o

— 2f(y) /S F()dp(s).

[ [ 1w - - / [ Stsoto)iutsyints
/ / f(a(s)yt)dp(s / F(s)du(s

for all y € 5, Wthh proves
Equation ([2.5): By using , replacing y by s in ([1.7) and integrating the result obtained with

respect to s we get
//f §)at)du(s) //fxstd,u Ydu(t)
/f Jalu(s /f (s //fxstdu )yt

Since

then we get
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Equation (|2 By replacing x by s in and integrating the result obtained with respect to

s we get [g fs s)t)du(s) = [ Js f( st du du(t). From we have f(o(s)t) = —f(o(t)s)

for all s,t € S, then
/S / F(o(s))du(s)dpu(t) = — / / F(o(s))du(s)du(t)

which implies ([2.8]) and this completes the proof. [

Lemma 2.2. Let f: S — C be a non-zero solution of equation (1.7)). Then
(1) The function defined by
Iof Js flat)du(t) f(xt) d,u
g(x) =

Js F@du(t)
18 a non-zero solution of the variant of d’Alembert’s functz’onal equation 1) . Furthermore, fs g(s)du(s) =
0. (2) The function g from (1) has the form g = X+2—X°", where x : S — C, x # 0, is a multiplicative
function.

for:c es

Proof . (1) From . and the definition of g we have

(/Sﬂt)du(t))?g (zy) +g(o /f )dp(t /f y)xs)du(s) /f Vdp(t /fxys du(s

/ / / flo(y)xso(t)k)du(s)du(t)du(k) — / / / f(xystk)du(s)du(t)dp(k)
///f o(yt)(zs)k)du(s)du(t)du(k ///f xs)(yt)k)dp(s)du(t)du(k)
=2 [ fs)duts) [ smauts

Dividing by ([ f(t)du(t))* we get g satisfies the variant of d’Alembert’s functional equation (1.6).
From ([2.5)) and the definition of g we get

// (ts)du(t)du(s) = Js Js Js flts d ()du( )

- fsf<s'f>du<j>d fsE Sf)<s>du<5> _ /S F()dp(s) # 0.
S

From ([2.8) and the definition of g we get

 [s f(st)du(s)du(t) 0 B
L“SW(S) U@ e fde)

Furthermore, [, [ g(st)du(t)du(s) # 0, so g is non-zero solution of equation (1.6).
(2) Let f be a non-zero solution of (1.7). Replacing = by xs in (1.7)) and integrating the result
obtained with respect to s we get

//f y)wst)du(s //f xyst)du(s)du(t) /f xs)du(s (2.26)
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By using (2.4), (2.5) equation (2.26]) can be written as follows
— floW)z) + flay) = 2f(y)g(x), z,y €S, (2.27)

where ¢ is the function defined above. If we replace y by ys in (1.7) and integrating the result
obtained with respect to s we get

/S/Sf(d(y)xa(s //fxyst du(s)du(t) /fys du(s (2.28)

By using , we obtain
flo(y)z) + f(zy) = 2f(2)g(y), z.y € S. (2.29)
By adding and we get that the pairf, g satisfies the sine addition law
flzy) = f(x)g9(y) + f(y)g(z) for all z,y € S.

Now, in view of [[6], Lemma 3.4.] ¢ is abelian. Since g is a non-zero solution of d’Alembert’s
functional equation (1.6)) then from [[23], Theorem 9.21] there exists a non-zero multiplicative function
x: S — C such that g = % This completes the proof. [J

Now we are ready to prove the main result of the present section.

Theorem 2.3. The non-zero solutions f : S — C of the functional equation (1.7)) are the functions
of the form

oo —
£ =X272X [ \aute), (2.30)
s
where x : S — C is a multiplicative function such that [¢x(t)du(t) # 0 and [ x(o(t))du(t) =

= Jox()du(t)

If S is a topological semigroup and that o : S — S is continuous then the non-zero solution f of
equation (1.7) is continuous, if and only if x is continuous.

Proof . Simple computations show that f defined by (2.30)) is a solution of ([1.7)). Conversely, let
f S — C be a non-zero solution of the functional equation ([1.7). Putting y = s in (1.7)) and
integrating the result obtained with respect to s we get

Js Js fo(s)zt)dp(s fsfsfs f(xst)dp(s)dpu(t)
@) = e

= l(/Sg(a(s)x)d,u(s) —[qg($3)dﬂ<3))y

(2.31)

2
where ¢ is the function defined by g = ”TXO", and where xy : S — C, x # 0 is a multiplicative
function. Substituting this into (2.31)) we find that f has the form
f - ) — o)) oo = 2

Furthermore, from (2.6) f satisfies [, f(o(x) = [ f(xs)du(s) for all z € S. By applying the
last expression of f in ([2.6) we get after computatlons that

{/Sx(a(t))du(t) + /S X(t)dﬂ(t)} [y — xoo] =0.
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Since x # x o 0, we obtain [, x(o(t))du(t) + [¢x(t)du(t) = 0 and then from (2.32) we have

£ = X202 [ wano),

For the topological statement we use [[23], Theorem 3.18(d)]. This completes the proof. (]

If w =9,, where zy is a fixed element of the center of S we get the following particular result
obtained by Bouikhalene and Elqorachi on monoids [1].

Corollary 2.4. [I] Let M be a monoid, let o: M — M be an involutive automorphism. The
non-zero solutions f : S — C of the functional equation

flo(y)zzo) — flayzo) = 2f () f(y), v,y € M
are the functions of the form
X000 —X
R
where x : M — C is a multiplicative function such that x(z9) # 0
and x(o(20)) = —x(20)-

f = x(z (2.33)

3. The complex-valued continuous solutions of equation (1.9) on a topological semi-
group.

The following lemma will be used to construct some particular solutions of equation ([1.9).

Lemma 3.1. Let S be a locally compact semigroup, let v be a complex measure with compact support.
The continuous solutions of the functional equation

Lf@mﬂdﬂszﬁwhayes (3.1)

are the functions
f=x [ xodeto), (32)
S
where x: S — C is a continuous multiplicative function on S.

Proof . We use in the proof similar Stetkeer’s computations [[25], Proposition 16] used for the special
case of v = 0, , where sy € S. Let f be a continuous solution of (3.1). Replacing y by s in (3.1]) and
integrating the result obtained with respect to s we get

//f:vstdv Ydu(t /f )dvu(s), z € S. (3.3)

Assume that f # 0, we will show that [¢ f(s)dv(s) # 0. By replacing = by xs, y by yk in (3.1) and
integrating the result obtained with respect to s and k we get I s [ [(zsykt)dv(s)dv(k)du(t) =
[ f(zs)du(s) [ f(yk)dv(k). On the other hand, from we have

///fxsyk;tdv Ydo(k)dv(t /fxsydv /f t)dv(t
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So, if [ f(s)dv(s) = 0 then we get [, f(xs)dv(s) [4 f(yk)dv(k) = 0 for all z,y € S and it follows

that [, f( xys dv( )=0= f(z)f(y) for all z,y € S. Which contradicts the assumption that f # 0.
From (3.1)) and (3.3)) we have

/f )du(s /f xty)du(t //f:ntysk: Ydvu(t)dvu(s)dvu(k)
//ftysdv £)dv(s /f Dot

This implies that

quwmww:f@vw> (3.4
for all z,y € S. Now, let I

o = s flat)du(t) f(xt dv(t )

x(x) = fs o) es.

In view of (3.1), (3.3) and (3.4) we have

(Lf@mwﬂxmn@waéﬂwquéﬂwmw@
// F(at) f(ys)]do(t)dv(s ///fmtysk Ydv (k)] do(t)du(s)
/f Ydu(k /fmtydv /f Vo (k /fxytdv
= (Jrwen) BIEEEE = ([ 0ew) rcew

Which proves that y is a multiplicative function. Finally, from (3.3]) we have

Fla) = Jég“ d“”:LMmMM@zﬂwlx@mwy

This completes the proof. [

The continuous solutions of ([1.9) are described in the following theorem.

Theorem 3.2. Let S be a locally compact semigroup, let o : S — S be a continuous involutive
automorphism of S, and let v be a Borel complexr measure with compact support and which is o-
invariant. The continuous solutions of the functional equation (1.9) are the functions

Ytdoo

J="

where 1: S — C is a continuous v-spherical function. That is [¢(xsy)du(s) = V()Y (y) for all
x,y €8S.
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Proof . Same computations that are needed in our discussion are due to Stetkeer [24]. Let f be a
solution of (1.9) and let x,y,2z € S. If we replace = by xzsy and y by z in ((1.9) and integrating the
result obtained with respect to s we get

//fxsytz Ydvu(s)du(t //f 2)txsy)du(t)d /fa:sy Ydv(s (3.6)

On the other hand if we replace x by o(z)sz in (1.9 and integrate the resul obtained with respect
to s we obtain

//f 2)swty)du(s //f (2)sz)dv(t)d /f )sz)dv(s)
—2f(y) [2f<x>f<z> -/ f<xsz>dv<s>] |

Since, v is o-invariant, so we have

//f 2)sz)do(t //f (yt2)sz)dv(t)dv(s)

/f ytz)do(t //f xsytz)du(s)du(t).
Thus, we get

//f 2)saty)do(s)du(t) + 2f (x /fysz e //fa;sytz Jdu(s)do(t)  (3.7)

=21 211 (:) - [ Foss)ins)|

Subtracting this from (3.6) we get

//f(xsytz)dv(s)dv(t) (3.8)
sJs

~ (o) /S f(ysz)do(s) + £(2) /S fasy)du(s) + f(y) /S Fasz)du(s) — 2£ (4) F(@) (2).

With the notation

~ [ fasvts) - 1)) (39)
equation can be written as follows
[ flesniots) = L))+ Fn)f(e). 2. € 5. (3.10)

equation which was solved on groups in [9].

If f,=0for all @ € S, then f is a v-spherical function. Substituting f into (1.9 we obtain that
f=foo. So, f= %, with ¢» = f a v-spherical function.

If there exists a € S such that f, # 0 then from [J], there exist two v-spherical functions 1, 1)s:
S — C such that f = % If ¢y # 1y by substituting f = % into we get after a
computation that

1 (@) [1h2(y) — 1o (y))] + 2 (@)[¥1(y) — tha(o(y))] = 0 (3.11)
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for all z,y €. 1y # 1y, then (¢q,1)9) are linearly independent [9], so from (3.11]) we get ¥o(y) =
Y1 (o(y)) for all y € S. This completes the proof. [

By using Theorem [3.2] and Lemma [3.1] we get the following result.

Corollary 3.3. Let S be a locally compact semigroup, let ¢ : S — S be a continuous involu-
tive automorphism of S, and let v be a complex Borel o-invariant measure with compact support
contained in the center of S. The continuous solutions of the functional equation

/f xyt)du(t /f y)xt)du(t) = 2f(x)f(y), z,y € S (3.12)
are the functions
£ =527 [ ot (313)
s
where y: S — C is a continuous multiplicative function.

Remark 3.4. Let S be alocally compact semigroup, o be a continuous involutive anti-automorphism
of S, and v be a complex measure with compact support and which is o-invariant. If f is a con-
tinuous solution of the functional equation . ) then by adapting the Computations used in [20]
with the followmg mappings R(y = [ h(xty)do(t = [ f(o(y)tz)duv(t) we get that
Iof o f(aty)dvo(t =[of o fytz)dvu(t for all r,y € 5. So, equation can be ertten as follow

/fmty Ydo(t /f (xto(y))do(t) = 2f(x) f(y) z,y € S.

The last functional equation has been studied in [9].

4. The superstability of the functional equation (|1.7))

In this section we obtain the superstability of the variant Van Vleck’s functional equation (|1.7]) on
semigroups.

Lemma 4.1. Let S be a semigroup, let o be an involutive morphism of S. Let pu be a complex measure
that is a linear combination of Dirac measures (0,,)icr, such that for all i € I, z; is contained in the
center of S. Let d > 0 be fized. If f: S — C is an unbounded function which satisfies the inequality

‘/f(a(y)xt)du(t)—/f(xyt)d#(t)—Qf(ff)f(y) <0 (4.1)
S S

for all x,y € S. Then, for all x,y € S

Fo(@) = — (@) (42)
otals) + Frla)o)] < 7 35”“” (4.3)
‘//f xo(s)t)du(s)du(t) /f Ydu(s 5”“” (4.4)

‘//fm dp(s)du(t) + f(z /f Vdp(t ‘ 35”“” (4.5)
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[ 10t #0, (1.6)
[ far(sauts) = [ fo@a(s)duts), (@.7)
S
[ #taants) = [ ot < (45)
s
The function g defined by
g(zr) = ffs Jat) dﬂ forx es (4.9)
st

1s unbounded on S and satisfies the following mequality

o(e) + 9(0 ) ~ 20@)9(0)] < [ Fogl (4.10)
s

for all x,y € S. Furthermore, g satisfies (1.8)), [ fsg(st)d,u(s)dp(t) #0 and [5g(s)du(s) = 0.
Proof . Equation (4.6)): Let f: S — C be an unbounded function which satisfies (4.58). Equation

(.6): First, We prove that [, f(s)du(s) # 0. Assume that [, f(s)du(s) = 0. By replacing y by s
and = by o(y)z in (4.58)) and integrating the result obtained with respect to s we get

0 [ [ sttt >du<t>'s5uun. (4.11)

Replacing y by ys in (4.58)) and integrating the result obtained with respect to s we have

< . (4.12)

—//f(xyst)d,u(s)du(t)—2f($)/f(y5)d#(5)
sJs o

On the other hand by replacing = by xs in (4.58)) and integrating the result obtained with respect
to s we obtain

y)xst)du(s) //f zyst)du(s)du(t) —2f(y /f xs)du(s)| < dljpl|.  (4.13)

By subtracting the result of equation (4.13]) from the result of (4.12)) and using the triangle inequality,

we get after computation that
/ / flo(y)zst)du(s)dp(t)

(4.14)
@) [ 19)dn(s) = 1) [ Fs)duts)] < 200
From (4.11)), (4.14]) and the triangle inequality we get
30
f ys)dp(s f ws)dp(s)| < o lull- (4.15)
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f is assumed to be unbounded function on S then f # 0. Let yo € S such that f(yo) # 0. Equation
(4.15) can be written as follows

30
2|1 (yo)

[l (4.16)

/S f(as)du(s) — af(z)] <

where a = W. Of course a # 0 because if a« = 0 then by using (4.16) we deduce that

the function © — [, f(xs)du(s) is bounded and from (4.58) and the triangle inequality we get f
bounded. Which contradict the assumption that f is an unbounded function on S.
Now, from (4.16]) and the triangle inequality equation (4.58) can be written as follows

solul g

(o)) = fay) = = @) w)] < T = ar (117)

for all z,y € S. Since [ f(s)du(s) = 0. So, if we replace y by s in (4.17) and integrating the result
obtained with respect to s we get

< M ||p]| for all x € S. (4.18)

/S F(o(s)2)du(s) — / F(@3)dp(s)

Replacing y by = and = by s in (4.17)) and integrating the result obtained with respect to s we get

< M||p|| for all z € S. (4.19)

/S F(o(2)s)dp(s) - /S £(s2)du(s)

Subtracting the result of (4.18) from the result of (4.19) and using the triangle inequality we get

/f(a(x)s)du(s) - / flo(s)z)du(s)| < 2M||p| for all x € S. (4.20)
S s
By interchanging = with y in (4.17)) we get
Flot@y) — flyo) = = F(@)f )] < M. (421)
If we replace y by o(y) in we have
Flym) — Flaoy) — = F(@) (o) < M. (122

By adding the results of (4.22)) and (4.21]) and using the triangle inequality we obtain
2
[flo(2)y) = flza(y)) — — f(@)[f(o(y)) + flom)]] = 2M. (4.23)
By replacing x by o(z) in (4.23) we get

[f(zy) = fo(x)o(y)) — %f(a(flf))[f(a(y)) + /(o) < 2M. (4.24)
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If we replace y by o(y) in (4.23) we get

[f(o(x)o(y)) — flxy) — %f(w)[f(o(y)) + flo()]l <2M. (4.25)

Now, by adding the results of and and using the triangle inequality we have
|Lf () + flo(@)][f(e(y) + flew)]] < 2M]al. (4.26)
That is 2 —> f (z) + f(o(z)) is a bounded function on S. So, the functlon x— [4 f( ) )du(s) +

Jg f(zo(s))du(s) is also a bounded function on S. Since, from (4.20) we have z — fs (x)s)du(s)—
Js f(zo(s))du(s) is a bounded functlon on S. Consequently, the function z — [, f xs)d,u(s) is a
bounded function on S and from (| and the triangle inequality we get that f is a bounded func-
tion on S. Which contradict the assumption that f is an unbounded function on S and this proves

)
Equation (4.3)): By replacing y by ys in (4.58)) and integrating the result obtained with respect

to s we get

’/S/Sf(a(y)xa(s)t)d,u(s)dﬂ(t)—/S/Sf(xyst)du(s)du(t)—Qf(a:)/Sf(ys)dﬂ(s)

If we replace x by zs in (4.58) and integrating the result obtained with respect to s we get

< dlull. (427)

y)ast)du(s //f zyst)du(s)du(t) — 2f (y /f xs)du(s)| < dljpl|.  (4.28)

By subtracting the result of (4.28]) from the result of (4.27) and using the triangle inequality we

obtain
/ / flo(y)zst)du(s)dp(t)
/fysdu /fxsdu )

Replacing y by s and z by o(y)x in (4.58) and integrating the result obtained with respect to s we
< 0|l

//f y)wst)dp(s)dp(t) — 2f (o /f Jdp(s
(4.30)

By subtracting the result of (4.29)) from the result of (4.30)) and using the triangle inequality we

obtain
36
/f Ydp(s /f ys)du(s /f xs)du(s | H (4.31)

By interchanging x and y in (4.31]) we have

@) [ £dus) = 150) [ es)duts) = ) [ rsyiuts) <Ml )

(4.29)
< 20 |||
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By adding the result of (4.31)) and the result of (4.32)) and using the triangle inequality we get
35H#H

[f(o(2)y) + flo(y)z)] < T A (4.33)

for all =,y € S. This proves
Equation (4.7): Replacing x by a:cr( ) in (4.58) and integrating the result obtained with respect to s
< 0|pu]-

we get
= [ [ stevonduts)intt) - 27(w) [ flaoto)duts
SJS S
(4.34)

If we replace y by ys and z by zt in (4.33)) and integrating the result obtained with respect to s and
t we obtain

[ [ sttt + [ [ stotmasinai ‘_Ussauuni” )

By subtracting the result of (4.34) from the result of (4.35)) and using the triangle inequality we get

n [S F(yo(s))du(s)du(t) + 2/ (v) /S f (o ()dps)

, (4.36)
36
S 1Ts F(yngsy) Ol
Replacing = by o(x) in - we get
\ / / F(ayo(t)s)du(s)dp(t) + / F(o(2)yo (s)t)du(s)dp(t) + 2£ () / f(o(@)o(s)du(s)|  (437)

30| e*

= s Fs)dats)

Subtracting the result of (4.37)) from the result of (4.36) and using the triangle inequality we get

‘21” /fa:a Jdp(s /f u(s)| < 5”“”3

[ Js /(
Since f is assumed to be unbounded then we deduce (4.7)).
Equation (4.8): If we replace y by o(s) in (4.33]) and integrating the result obtained with respect to
s we obtain

| +0ull-

-+ 20| (4.38)

30| pll”
f xs)du(s / flo < 4.39
In view of (4.7) the 1nequahty can be written as follows
2
/f xs)du(s /f xo(s))du(s)| < 35HM” (4.40)
[ Js £
Replacing y by s in (4.33) and integrating the result obtained with respect to s we get
30| |ull”
flzo(s))du(s / f(o < (4.41)
’ / | fs f(s)du(s)
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By subtracting the result of (4.40) from the result of (4.41)) we obtain (4.8)).
Equation (4.2)): Replacing x by o(x) in (4.58) we get

/f D)yt)dp(s)dp(t) — 2f (o) F ()| < 6. (4.42)

Now, we will discuss two cases.
Case 1. If ¢ is an involutive automorphism of S. Replacing x by yz in (4.8) we obtain

60|l
Flyes)duts) = [ Fowows)ints)| < (4.3
/ | [s f(s)dp(s)
Adding the result of (4.42)) to the result of (4.43)) and using the triangle inequality we get
i S,
f ys)du(s f x)ys)du(s) — 2f(o(x)) f(y)| < T +o (4.44)
s
By interchanging x and y in (4.58) we get
Duls) = [ Sauts) ~ 2501 <5 (4.45)
By adding the result of (4.45)) and the result of (4.44]) and using the triangle inequality we obtain
66 | ul ’
R (o(o) + )] < i + 2. (1.46)
s

Since f is unbounded then we get (4.2)).
Case 2. If ¢ is an involutive anti-automorphism of S. By replacing x by yx in (4.8]) we have

2
(yzs)du(s /f (s)‘ < 66““” (4.47)
[ Js £
If we replace y by x and y by o(y) in (4.58]) we get
|/f(a(x)a /f y)at)du(t) —2f(a(y)) f(x)] < 0. (4.48)
S
By adding the results of (4.47) and (4.48]) and using the triangle inequality we get
6<5||M||2
(etdu(t) ~ [ flotendntt) ~20GuNIw)| <o+ bl @
S
From (4.58) we have
| flo@aut) = [ fustiant - 26 )| < 5 (4.50)
and from (4.8) we have
5 2
x)ys)du(s /f y)xs)du(s)| < T 0 ||,u|| (4.51)
S
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By subtracting the results of (4.50) and (4.51)) and using the triangle inequality we get

6f5||u||2

netydutt) = [ fyrtdut) - 25 @) 1) <3+ (452
S
By adding the results of (4.52)) and (|4.49))
5 2
0 ”“” TR (4.53)

12/ (2)(f(y) + Flo(y)] < T A

for all =,y € S. Since f is unbounded then we we get (4.2 -

Equation (4.4): If we replace z by o(s) in (4.58) and using (4.2) and integrating the result
obtained with respect to s we get

‘ | [ ssoanauan) = [ [ rwotmantsin) +206) [ s

which proves (4.4)).
Equation (4.5)): By replacing y by s in (4.58|) and integrating the result obtained with respect to

s we get
/f:ca t)dp(s)du(t) //fxstdu Ydu(t) — 2f(x /f Ydp(s

From (4.4) and the triangle inequality we obtain

<o, (4.54)

<Oflpll- - (4.55)

au(t)+ 10) | spauts)| < ol + 2L

for all z € S. This proves ({4.5)).
Equation (4.10): Let g be the function defined by g(z) = ff
S

fxt)du(t)

GLe) for x € S. Then we have

/ £(s)du(s / Fk)du(k)lg(zy) + 9(o(w)z) — 29(2)g(w) (4.56)

/5 B)du(k /fxytdu /f Jdp(s /f y)at)dp(t —2/fx8du /fysdu)
= [trtan) [ sty + [ [ rayhs)auiuldn)
/ y)at) / £(5)du(s) / / F (o y)ata(k)s)dp(k)du(s) dpt)
/ / / F(o(yk)wst)du(t) / F(wsyhst)du(t)

—2f(ws) f(yk)]du(k)dp(s).

So, from , and ( m we get
/f e /f (k) [g(zy) + 9(o(9)z) — 20(2)g(w)
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30 ul|* ol
< M W = s

Which proves (4.10). Now, since f is unbounded then ¢ is unbounded and satisfies (4.10). So,
by using same computations used in [I0] g satisfies the variant of d’Alembert’s functional equation

9(xy) + g(o(y)z) = 29(x)g(y) for all z,y € 5.
Finally, from (4.4)), (4.5) and the triangle inequality we have

‘/S/Sf(JJU(S)t)dM(S)dM(t)—i—/Sf(xst)du(s)d,u(t)’ < 26| (4.57)

for all z,y € S. By using the definition of g the inequality (4.57)) can be written as follows

[ £0au) | ateoanio + [

Sg(xk)du(kn\ < 28],

On the other hand ¢ is a solution of d’Alembert’s functional equation (1.8) then ¢ is central and

we get [2g(z) [q g(k)du(k)| < %%L% for all x € S. Since g is unbounded then we deduce that

Js 9(k)dp(k) = 0. That is [ [ f(st)du(s)dp(t) =0. O

Theorem 4.2. Let S be a semigroup, let o be an involutive morphism of S. Let v be a complex
measure that is a linear combination of Dirac measures (6,,)icr, such that for alli € I, z; is contained
wn the center of S. Let § > 0 be fixed. If f : S — C is a function which satisfies the inequality

\ [ ottt [ st 205w <5 (4.58)
S S

for all x,y € S. Then, either f is bounded on S and |f(x)| < Neli/ " +28 W forallz € S or f is a
solution of the variant Van Vleck’s functional equation (1.7)).

Proof . Assume that f is an unbounded solution of (4.58]). Replacing y by ys in (4.58) and
integrating the result obtained with respect to s we get

/ / F(o () (s)t)da(s)dpu(t) — / / f(eyst)dp(s)du(t) — 2f(z) / F(ys)du(s)| < 8l (4.59)
S JS S JS S
for all x,y € S. By using , and and the triangle inequality we get

/ F()dpa(s) () + / £(8)du(s) f (o (w)z) — 2f(2) / fs)du(s)| < 38llul  (4.60)

S S S
for all z,y € S which can be written as follows
. o)a) — 2 F(x 30 ull
29) + o) =290 < [y (4.61)

for all x,y € S, where ¢ is the function defined above. Replacing x by xs in (4.58) and integrating
the result obtained with respect to s we get

\ / / F(o(y)est)du(s)du(t) — / / f(ayst)du(s)du(t) — 2f(y) / Fles)du(s)| < olull  (4.62)
SJS S JS S
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for all z,y € S. By using (4.58]), (4.5) and the triangle inequality we get

Han) = Fo)a) = 25 0)alo)] < ol (4.63)
| s £(
for all z,y € S. By adding the result of (4.63) and (4.61)) we get
ot e 20|l
|f(2y) — f(@)g(y) — f(x)g(y)| < T 7)) (4.64)

for all x,y € S. Now, we will show that if af + Sg is a bounded function on S then o = g = 0.
Assume that there exits M such that

af(z) + 8 / Flat)du(t)| < M (1.65)
s
for all € S. Then |af(o(z)) + 3 [ f( du(t)] < M. Since f(o(x)) = —f(z). So, by using (4.8)

and the triangle 1nequahty we get

Slull2
| — af(x —i—ﬁ/fxtd,u )]<M+|m%
sf

By adding the result of (4.65) and (4.66) we get 24 [ f(xt)du(t) is a bounded function. Since g is
unbounded then 8 = 0 and consequently o = 0. Now, from [[31], Lemma 2.1] we conclude that f,g
are solutions of the sine addition law

(4.66)

flay) = f(@)g(y) + f(y)g(z) z,y € 5. (4.67)
Since f(o(z)) = —f(z) and g(o(x) = g(x) for all x € S then the pair f,g satisfies the variant
Wilson’s functional equation

flzy) + flo(y)x) = 2f(2)g(y) =,y € S. (4.68)

Taking y = s in (4.68)) and integrating the result obtained with respect to s we get

/f xs)du(s /f =0, (4.69)

because [ g(s)du(s) = 0. By replacing y by so(k) in in (4.67) and integrating the result obtained
with respect to s and k£ we obtain

//fxsa Ydpu(s)dpu(k //fxsa Vdpu(s)dpu(k // so(k))dp(s)dp(k).

That is
/fxsa Ydp(s)du(k // so(k))du(s)du(k). (4.70)

Now from (4.4) and ([£.70) we get

// s (k) dp(s)dp(k /f () < 21l
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for all z € S. Since f is assumed to be unbounded then we get

// so(k))du(s)du(k /f )dp(t) (4.71)

g satisfies (1.8) and [, g(s) ( ) = 0 implies that [ g(yk)du(s) = — [4g(yo(k))du(s). So, by using
the definition of g, equations (4.70)) and ( - we have

/Sg(?ﬂf)du(k) = — /Sg(ya(k))d/i(k?) _ —Js Js /( f (k’)d,u( )

Y) fs fs Q(J(k)t)dﬂ(k)dﬂ(t)
T 75)du(s)

o) fo FOantt)

i)~ W

Finally, From (4.67), (4.63), (4.70) and (4.72) for all x,y € S we have

/S Flotwyetaut) = [ fevt)dntt) / Flotwyao)dn(t) = [ flaytydu(y
/f o(yt)z)dpu(t) /fxytdu (t)]

_ 2f(x) / g(y)dp(t) = 2/ (x)f(y).

That is f is a solution of Van Vleck’s functional equation ([1.7)). This completes the proof. [J

(4.72)
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