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In this paper, free transverse vibration and buckling analyses of a nanobeam are 

presented by coupling the Euler-Bernoulli beam (EBT) theory and Eringen’s nonlocal 

elasticity theory. The nanobeam is embedded in the Pasternak foundation. Hamilton’s 

energy principle is used to derive governing differential equations. The Lagrange 

polynomial-based differential quadrature method (PDQM) and a harmonic differential 

quadrature method (HDQM) are used to convert the governing differential equation and 

boundary conditions into a set of linear algebraic equations. The first three frequencies 

and the lowest critical buckling loads for clamped-clamped, clamped-simply supported, 

and simply supported-simply supported boundary conditions are obtained by 

implementing the bisection method through a computer program written in C++. The 

impacts of nonlocal Eringen’s parameter (scaling effect parameter), boundary conditions, 

axial force, and elastic foundation moduli on frequencies are examined. The effects of 

nonlocal Eringen’s parameter, boundary conditions, and elastic foundation moduli on 

critical buckling load are also studied. A convergence study of both versions of DQM is 

conducted to validate the present analysis. A comparison of frequencies and critical 

buckling loads with those available in the literature is presented. 

 

1. Introduction 

After the invention of carbon nanotubes 
(Iijima [1]), small-scale structures and devices 
have been developed due to advancements in 
nanotechnology and nanoscience. Nanobeams 
and carbon nanotubes are used in micro-
electromechanical systems (MEMS), nano-
electromechanical systems (NEMS), 
microactuators, transistors and microsensors, 
etc. Due to the wide applications of 
nanotechnology and nanoscience in modern 
science and technology, researchers have 
carried out extensive research on 
nanomaterials. Nanobeams are used in cancer 
treatment. To propose new designs, an 
analysis of the mechanical behavior of 
nanobeams becomes necessary. This problem 
can be solved by atomistic mechanics 
(Baughman et al. [2]), hybrid atomistic-
continuum mechanics (Wang et al. [3]), and 
continuum mechanics approach. The first two 

approaches are computationally expensive 
and time-consuming. Therefore, the 
continuum mechanics approach has been used 
by researchers to model nano-systems as rods, 
beams, plates, and shells. In this approach, 
crystal material architecture is replaced by a 
continuous medium having homogeneous 
properties. This continuous medium can 
predict the overall response of the 
nanomaterial. Hence, new constitutive laws 
are required to study the nanoscale size effects. 
Up to a certain size, classical theories can be 
used to study the behavior of structures. 
Eringen’s nonlocal elasticity theory [4-7] has 
been proposed to incorporate the nanoscale 
effect. The work related to free vibration and 
buckling of a nanobeam has been reported in 
the literature as follows: Lu et al. [8] derived 
frequency equations and mode functions of a 
nonlocal Euler-Bernoulli beam. Xu [9] 
investigated free transverse vibration of nano-
to-micron scale beams using the integral 
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equation approach. Wang et al. [10] solved the 
free vibration problem of micro/nano beams 
analytically for different combinations of 
classical boundary conditions. Challamel and 
Wang [11] presented a small length scale effect 
for a nonlocal cantilever beam. Murmu and 
Pradhan [12] used the differential quadrature 
method to obtain the natural frequencies of a 
nonuniform cantilever nanobeam. Roque et al. 
[13] studied the bending, buckling, and free 
vibration of Timoshenko nanobeams using the 
meshless method. Mohammadi and 
Ghannadpour [14] used Chebyshev 
polynomials in the Rayleigh-Ritz method to 
study the free vibration of Timoshenko 
nanobeams. Li et al. [15] investigated the 
dynamics and stability of transverse vibration 
of nonlocal nanobeams under variable axial 
load. Vibration analysis of Euler-Bernoulli 
nanobeams has been presented by Eltaher et 
al. [16] using the finite element method. Behra 
and Chakraverty [17] used orthogonal 
polynomials in the Rayleigh-Ritz method to 
obtain frequency parameters and mode shapes 
of Euler and Timoshenko nanobeams. Rahmani 
and Pedram [18] presented a closed-form 
solution for the vibration behavior of 
functionally graded Timoshenko nanobeams. 
In another paper, Behra and Chakraverty [19] 
applied the differential quadrature method to 
study the free vibration of nanobeams based 
on various nonlocal theories. Ebrahimi and 
Salari [20] studied free flexural vibration of 
functionally graded nanobeams using the 
differential transform method. Ebrahimi et al. 
[21] investigated the vibrational 
characteristics of functionally graded 
nanobeams using the differential transform 
method. Tuna and Kirca [22] studied free 
vibration and buckling of nonlocal Euler-
Bernoulli beams utilizing the Laplace 
transform method. Hamza-Cherif et al. [23] 
employed a differential transform method to 
study the free vibration of a single-walled 
carbon nanotube resting on an elastic 
foundation under thermal effect. Aria and 
Friswell [24] used the finite element method to 
examine the free vibration and the buckling 
behavior of functionally graded Timoshenko 
nanobeams. Nikam and Sayyad [25] presented 
closed-form solutions for bending, buckling, 
and free vibration of simply supported 
nanobeams. Arian et al. [26] studied the effect 
of the thickness-to-length ratio on the 
frequency ratio of Timoshenko nanobeams and 
nanoplates. Ufuk [27] used the Ritz method in 
free transverse vibration analysis of cantilever 
nanobeam with intermediate support. Wang et 
al. [28] presented an analytical buckling 
analysis of micro and nano roads/tubes based 

on nonlocal Timoshenko beam theory. Reddy 
[29] reformulated Euler-Bernoulli, 
Timoshenko, Reddy, and Levinson beam 
theories using the nonlocal theory for bending, 
buckling, and vibrations of beams. Pradhan 
and Phadikar [30] solved buckling, bending, 
and vibration problems of nonhomogeneous 
nanotubes using the differential quadrature 
method. Aydogdu [31] proposed a generalized 
nonlocal beam theory to study the bending, 
buckling, and free vibration of nanobeams. 
Thai [32] presented analytical solutions for 
bending, buckling, and free vibration of 
nanobeams based on a nonlocal shear 
deformation beam theory. Eltaher et al. [33] 
used Galerkin finite element method to study 
static deflection and buckling response of 
functionally graded nanobeams for different 
combinations of boundary conditions. 
Ebrahimi and Salari [34] developed a 
differential transform method solution for 
vibrational and buckling analysis of 
functionally graded nanobeams considering 
the physical neutral axis position. Buckling 
analysis of two-directional functionally graded 
Euler-Bernoulli nanobeam has been presented 
by Nejad et al. [35] using the generalized 
differential quadrature method. Safarabadi et 
al. [36] studied the effect of surface energy on 
the free vibration of rotating nanobeam using 
the differential quadrature method. 
Mohammadi et al. [37] used the differential 
quadrature method to present the hygro-
mechanical vibration of a rotating viscoelastic 
nanobeam resting on a visco-Pasternak 
foundation subjected to nonlinear 
temperature variation. An asymptotic solution 
for critical buckling load of Euler-Bernoulli 
nanobeam using Eringen’s two-phase nonlocal 
theory has been presented by Zhu et al. [38]. 
Khaniki and Hosseini-Hashemi [39] presented 
a buckling analysis of tapered nanobeam using 
nonlocal strain gradient theory and the 
generalized differential quadrature method. 
Finite element analysis of bending, buckling, 
and free vibration problems of Euler-Bernoulli 
nanobeam has been presented by Tuna and 
Kirca [40] using Eringen’s nonlocal integral 
model. Buckling analysis of nonuniform 
nonlocal strain gradient beams has been 
presented by Bakhshi et al. [41] using the 
generalized differential quadrature method. 
Stability analysis of simply supported nonlocal 
Euler-Bernoulli beam with varying cross-
sections and resting on the Pasternak 
foundation has been presented by Soltani and 
Mohammadi [42]. Xu and Zheng [43] solved 
the buckling problem of the nonlocal strain 
gradient Timoshenko beam in closed form. The 
differential quadrature method and the 
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differential transform method have been used 
by Jena and Chakraverty [44] for the buckling 
analysis of nanobeams. Ragb et al. [45] 
obtained natural frequencies of a piezoelectric 
nanobeam resting on a nonlinear Pasternak 
foundation using different versions of the 
differential quadrature method. Nazmul and 
Devnath [46] derived closed-form solutions for 
bending and buckling of functionally graded 
nanobeam using the Laplace transform. 
Karmakar and Chakravarty [47] studied the 
thermal vibration of an Euler nanobeam 
resting on the Winkler-Pasternak foundation 
using the differential quadrature method and 
the Adomian decomposition method. Zewei et 
al. [48] used the differential quadrature 
method in free vibration, buckling, and 
dynamic stability analyses of Timoshenko 
micro/nanobeams resting on the Pasternak 
foundation under axial load. Civalek et al. [49] 
studied the stability of restrained FGM 
nonlocal beams using the Fourier series. Jalaei 
et al. [50] presented an analytical transient 
response of porous viscoelastic functionally 
graded nanobeam subjected to dynamic load 
and magnetic field. Beni [51] investigated free 
vibration and static torsion of an 
electromechanical flexoelectric 
micro/nanotube. Beni and Beni [52] studied 
the dynamic stability of an isotropic 
viscoelastic/piezoelectric Euler-Bernoulli 
nanobeam using the Galerkin method. 
Numanoğlu et al. [53] presented a thermo-
mechanical vibration analysis of Timoshenko 
nanobeam using the nonlocal finite element 
method. Karmakar and Chakraverty [54] used 
the Adomian decomposition method and the 
homotopy perturbation method to study the 
thermal vibration of nonhomogeneous Euler 
nanobeam resting on the Winkler foundation. 

This paper aims at providing a numerical 
solution for free transverse vibration and 
buckling of a nanobeam under axial load and 
resting on the Pasternak foundation. Eringen’s 
nonlocal elasticity theory along with the Euler-
Bernoulli beam theory is used to develop the 
mathematical model. The PDQM and the HDQM 
are used to obtain the first three frequencies 
and the lowest critical buckling loads for 
clamped-clamped (C-C), clamped-simply 
supported (C-S), and simply supported-simply 
supported (S-S) beams. 

The impacts of nonlocal parameters, axial 
force, and elastic foundation moduli on 
frequencies are studied. The effects of nonlocal 
parameters, boundary conditions, and elastic 
foundation moduli on critical buckling load are 
also studied. 

2. Formulation of the Problem 

Consider an isotropic uniform nanobeam of 
length 𝐿, cross-section area 𝐴 , density 𝜌, and 
transverse deflection 𝑤(𝑥, 𝑡) as shown in Fig. 1. 
Here, t denotes the time. The beam is resting on 
the Pasternak foundation and is also subjected 
to uniform compressive load p.  

The fundamental assumptions of the Euler-
Bernoulli beam theory (Abbas et al. [55]) are: 

(i) The cross-section of the beam remains 
plane to the deformed axis of the beam. 

(ii) Deformed angles of rotation of the 
neutral axis are small.  

This theory does not account for the effect 
of transverse shear strain and overpredicts 
natural frequencies.  

 
Fig. 1. Geometry of a Euler-Bernoulli nanobeam 

resting on Pasternak foundation  

The strain energy of the beam is expressed 
as (Wang et al. [56]): 

𝑈 =
1

2
∫ ∫𝜎𝑥𝑥𝜀𝑥𝑥𝑑𝐴𝑑𝑥

𝐴

𝐿

0

 (1) 

where 𝜎𝑥𝑥  is normal stress.

  Normal strain 𝜀𝑥𝑥  in terms of deflection is 
represented as

 
𝜀𝑥𝑥 = −𝑧

𝑑2𝑤

𝑑𝑥2
. (2) 

Using (2), strain energy given by (1) 

becomes 

𝑈 = −
1

2
∫ 𝑀

𝑑2𝑤

𝑑𝑥2
𝑑𝑥

𝐿

0

 (3) 

where M is the bending moment and is defined 

as 

𝑀 = ∫𝑧𝜎𝑥𝑥𝑑𝐴.
𝐴

 (4) 

The kinetic energy of the beam is expressed 
as (Wang et al. [56]) 
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𝑇 =
1

2
∫ 𝜌𝐴 (

𝜕𝑤

𝜕𝑡
)

2𝐿

0

𝑑𝑥. (5) 

The potential energy due to the Pasternak 
foundation is represented as

 
𝑊𝑓 =

1

2
∫ (𝑘𝑤𝑤2 + 𝑘𝑔 (

𝑑𝑤

𝑑𝑥
)

2

)
𝐿

0

𝑑𝑥 (6) 

where 𝑘𝑤  and 𝑘𝑔 are the Winkler and the 

Pasternak (shear) foundation stiffnesses, 
respectively. 

Work done by the compressive load p is 
expressed as

 
𝑊𝑝 = −

1

2
∫ 𝑝 (

𝑑𝑤

𝑑𝑥
)

2𝐿

0

𝑑𝑥. (7) 

Using Hamilton’s principle 

∫ 𝛿(𝑇 − 𝑈 − 𝑊𝑓 − 𝑊𝑝)
𝑡

0

𝑑𝑡 = 0
 

(8) 

The equation of motion of the beam is 
obtained as follows: 

𝑑2𝑀

𝑑𝑥2
+ (𝑘𝑔 − 𝑝)

𝑑2𝑤

𝑑𝑥2
 

+(𝜌𝐴𝜔2 − 𝑘𝑤)𝑤 = 0.
 

(9) 

Based on Eringen’s nonlocal elasticity 
theory, the nonlocal stress tensor 𝜎 at a point 𝑥 
is given as (Murmu and Adhikari [57])  

𝜎(𝑥) = ∫ ∫ ∫ 𝐾(⌈𝑥 − 𝑥′⌉, 𝛼)  𝜏 𝑑𝑉(𝑥′) (10) 

where 𝜏 and 𝐾(⌈𝑥 − 𝑥′⌉, 𝛼) are classical stress 
and nonlocal modulus, respectively. 

The differential form of the above integral 
constitutive relation (Murmu and Adhikari 
[57]) is  

(1 − (𝑒0𝑎)2𝛻2) 𝜎 = 𝜏 (11) 

where 𝑒0 is a material constant, 𝛻2 is the 
Laplace operator and a is the internal 
characteristic length. 

For Euler-Bernoulli nanobeam, the 
relationship between local and nonlocal 
stresses (Eringen [5]) given by Eq. (11) can be 
rewritten as follows:  

𝜎𝑥𝑥 − (𝑒0𝑎)2
𝑑2𝜎𝑥𝑥

𝑑𝑥2
= 𝐸𝜀𝑥𝑥 . (12) 

Multiplying the equation (12) by z dA and 

integrating over the area A, we obtain 

𝑀 − (𝑒0𝑎)2
𝑑2𝑀

𝑑𝑥2
= −𝐸𝐼

𝑑2𝑤

𝑑𝑥2

 

(13) 

where E is Young’s modulus and  

𝐼 = ∫𝑧2𝑑𝐴 
𝐴

 (14) 

is the second moment of the area. 

By using Eqs. (9) and (13), the equation of 
motion is obtained as follows: 

(1 + 𝐿𝑖
2(𝐾𝑔 − 𝑃))

𝑑4𝑊

𝑑𝑋4
 

+(𝑃 + 𝐿𝑖
2(𝛺2 − 𝐾𝑤) − 𝐾𝑔)

𝑑2𝑊

𝑑𝑋2
 

+(𝐾𝑤 − 𝛺2)𝑊 = 0 

(15) 

where 𝑋 =
𝑥

𝐿
,     𝑊 =

𝑤

𝐿
,     𝑙𝑖 = 𝑒0𝑎,     𝑃 =

𝑝𝐿2

𝐸𝐼
, 

𝐾𝑤 =
𝑘𝑤𝐿4

𝐸𝐼
,   𝐾𝑔 =

𝑘𝑔𝐿2

𝐸𝐼
,     𝐿𝑖 = (

𝑒0𝑎

𝐿
)  is the 

nonlocal parameter and 𝛺 = 𝜔𝐿2√
𝜌𝐴

𝐸𝐼
 is the 

frequency parameter. 

The buckling problem is obtained by 
putting 𝛺 = 0 in Eq. (15) and is given as 
follows: 

(1 + 𝐿𝑖
2(𝐾𝑔 − 𝑃𝑐𝑟))

𝑑4𝑊

𝑑𝑋4
 

+(𝑃𝑐𝑟 − 𝐿𝑖
2𝐾𝑤 − 𝐾𝑔)

𝑑2𝑊

𝑑𝑋2
+ 𝐾𝑤𝑊 = 0 

(16) 

where 𝑃𝑐𝑟  is the critical buckling load.   

2.1. Boundary Conditions 

Boundary conditions at the ends 𝑋 = 0 and 
𝑋 = 1 are given as 

For C-C beam 

𝑊(0) = 0,
𝑑𝑊(0)

𝑑𝑋
= 0. 

𝑊(1) = 0,
𝑑𝑊(1)

𝑑𝑋
= 0. 

(17a-17d) 

For C-S beam 

𝑊(0) = 0,
𝑑𝑊(0)

𝑑𝑋
= 0 

(18𝑎 − 18𝑑) 
𝑊(1) = 0, 

(1 − 𝐿𝑖
2(𝑃 − 𝐾𝑔))

𝑑2𝑊(1)

𝑑𝑋2
 

+𝐿𝑖
2(𝛺2 − 𝐾𝑤)𝑊(1) = 0. 

For S-S beam 

𝑊(0) = 0, 

(1 − 𝐿𝑖
2(𝑃 − 𝐾𝑔))

𝑑2𝑊(0)

𝑑𝑋2
 

+𝐿𝑖
2(𝛺2 − 𝐾𝑤)𝑊(0) = 0.  

(19a-19d) 
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𝑊(1) = 0, 

(1 − 𝐿𝑖
2(𝑃 − 𝐾𝑔))

𝑑2𝑊(1)

𝑑𝑋2
 

+𝐿𝑖
2(𝛺2 − 𝐾𝑤)𝑊(1) = 0. 

Using the PDQM and the HDQM, free 
vibration and buckling problems are reduced 
to eigenvalue problems which are solved for 
frequencies and critical buckling loads, 
respectively. 

2.2. PDQM (Bert and Malik [58]) 

The displacement 𝑊 and its derivatives are 
approximated by a weighted linear sum of 
functional values at grid points 0 = 𝑋1 < 𝑋2 <
⋯ < 𝑋𝑁 = 1  as follows: 

𝑑𝑚𝑊(𝑋𝑖)

𝑑𝑋𝑚
= ∑ 𝐶𝑖𝑗

(𝑚)𝑊(𝑋𝑗)

𝑁

𝑗=1

     (20) 

𝐶𝑖𝑗
(1) =

𝑀(𝑋𝑖)

(𝑋𝑖 − 𝑋𝑗)𝑀(𝑋𝑗)
 (21) 

𝑀(𝑋𝑖) = ∏(𝑋𝑖 − 𝑋𝑗)

𝑁

𝑗=1
𝑗≠𝑖

 

𝑖 = 1,2,3, … , 𝑁     and     𝑖 ≠ 𝑗. 

(22) 

𝐶𝑖𝑗
(𝑚) = 𝑚 (𝐶𝑖𝑖

(𝑚−1)𝐶𝑖𝑗
(1) −

𝐶𝑖𝑗
(𝑚−1)

(𝑋𝑖 − 𝑋𝑗)
) 

𝑖 ≠ 𝑗   and   𝑚 = 2,3, . . . , 𝑁 − 1. 

(23) 

𝐶𝑖𝑖
(𝑚) = − ∑ 𝐶𝑖𝑗

(𝑚)

𝑁

𝑗=1
𝑗≠𝑖

 

𝑖 = 1,2,3, … , 𝑁         and  

𝑚 = 1,2, . . . , 𝑁 − 1. 

(24) 

2.3. HDQM (Civalek [59]) 

In this method, the weighting coefficients of 
the first, second, third, and fourth order 
derivatives are obtained as follows: 

𝐶𝑖𝑗
(1) =

(
𝜋
2

) 𝑀(𝑋𝑖)

𝑀(𝑋𝑗)𝑠𝑖𝑛 [
(𝑋𝑖 − 𝑋𝑗)𝜋

2
]

     (25) 

𝑀(𝑋𝑖) = ∏ 𝑠𝑖𝑛 [
(𝑋𝑖 − 𝑋𝑗)𝜋

2
]   

𝑁

𝑗=1,𝑗≠𝑖

 (26) 

𝐶𝑖𝑗
(2) = 𝐶𝑖𝑗

(1) [

2𝐶𝑖𝑖
(1) −

𝜋 𝑐𝑜𝑡 {
(𝑋𝑖 − 𝑋𝑗)𝜋

2
}

]  

𝑖, 𝑗 = 1,2,3, . . . , 𝑁   and   𝑖 ≠ 𝑗. 

(27) 

𝐶𝑖𝑖
(𝑝) = − ∑ 𝐶𝑖𝑗

(𝑝)

𝑁

𝑗=1,𝑗≠𝑖

, 𝑝 = 1 𝑜𝑟 2 (28) 

𝐶𝑖𝑗
(3) = ∑ 𝐶𝑖𝑘

(1)

𝑁

𝑘=1

𝐶𝑘𝑗
(2)  (29) 

𝐶𝑖𝑗
(4) = ∑ 𝐶𝑖𝑘

(2)

𝑁

𝑘=1

𝐶𝑘𝑗
(2)  

 𝑖, 𝑗 = 1,2,3, … , 𝑁. 

(30) 

The Gauss-Chebyshev-Lobatto grid points 
(Chang [60]) in the range [0, 1] are given 
below as: 

𝑋𝑖 =
1

2
[1 − 𝑐𝑜𝑠 (

𝑖 − 1

𝑁 − 1
𝜋)] 

𝑖 = 1,2,3, . . . , 𝑁. 

(31) 

We obtain a set of  (𝑁 − 4) equations in 𝑁 
unknowns 𝑋1, 𝑋2, … , 𝑋𝑁 by discretizing the 
equation of motion (15) at grid points 
𝑋𝑖  (𝑖 = 3,4, … . , 𝑁 − 2) as follows: 

(1 + 𝐿𝑖
2(𝐾𝑔 − 𝑃)) ∑ 𝐶𝑖𝑗

(4)𝑊(𝑋𝑗)

𝑁

𝑗=1

 

+(𝑃 + 𝐿𝑖
2(𝛺2 − 𝐾𝑤) − 𝐾𝑔) 

× ∑ 𝐶𝑖𝑗
(2)𝑊(𝑋𝑗)

𝑁

𝑗=1

 

+(𝐾𝑤 − 𝛺2)𝑊(𝑋𝑖) = 0,

 

(32) 

Similarly, the buckling problem (16) can be 
discretized as follows: 

(1 + 𝐿𝑖
2(𝐾𝑔 − 𝑃𝑐𝑟)) ∑ 𝐶𝑖𝑗

(4)𝑊(𝑋𝑗)

𝑁

𝑗=1

 

+(𝑃𝑐𝑟 − 𝐿𝑖
2𝐾𝑤 − 𝐾𝑔) ∑ 𝐶𝑖𝑗

(2)𝑊(𝑋𝑗)

𝑁

𝑗=1

 

+𝐾𝑤𝑊(𝑋𝑖) = 0. 

(33) 

By discretizing boundary conditions 
(17a-17d) for the C-C beam, we obtain a set of 
four equations in 𝑁 unknowns 𝑋1, 𝑋2, … , 𝑋𝑁  
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𝑊(0) = 0, ∑ 𝐶1𝑗
(1)𝑊(𝑋𝑗)

𝑁

𝑗=1

= 0, 

(34a-34d) 

𝑊(1) = 0, ∑ 𝐶𝑁𝑗
(1)𝑊(𝑋𝑗)

𝑁

𝑗=1

= 0. 

Equations (32) and (34a-34d) form a set of 
𝑁 algebraic linear equations in 𝑁 unknowns. 
This set represents a generalized eigenvalue 
problem that is solved to obtain frequencies for 
the C-C beam.  

The boundary conditions for C-S and S-S 
beams are discretized as  

𝑊(0) = 0,  

∑ 𝐶1𝑗
(1)𝑊(𝑋𝑗)

𝑁

𝑗=1

= 0, 

𝑊(1) = 0, 

(1 − 𝐿𝑖
2(𝑃 − 𝐾𝑔)) ∑ 𝐶𝑁𝑗

(2)𝑊(𝑋𝑗)

𝑁

𝑗=1

 

+𝐿𝑖
2(𝛺2 − 𝐾𝑤)𝑊(1) = 0. 

(35a-
35d) 

and  

𝑊(0) = 0, 

(1 − 𝐿𝑖
2(𝑃 − 𝐾𝑔)) ∑ 𝐶1𝑗

(2)𝑊(𝑋𝑗)

𝑁

𝑗=1

 

+𝐿𝑖
2(𝛺2 − 𝐾𝑤)𝑊(0) = 0, 

(36a-
36d) 

𝑊(1) = 0, 

(1 − 𝐿𝑖
2(𝑃 − 𝐾𝑔)) ∑ 𝐶𝑁𝑗

(2)𝑊(𝑋𝑗)

𝑁

𝑗=1

 

+𝐿𝑖
2(𝛺2 − 𝐾𝑤)𝑊(1) = 0. 

Similarly, critical buckling loads for C-C, C-S 
and S-S beams can be obtained by using 
equation (33) and discretizing boundary 
conditions represented by equations  
(17a-17d), (18a-18d), and (19a-19d), 
respectively.  

3. Results and Discussion 

The first three frequencies and the lowest 
critical buckling loads are calculated by solving 
the corresponding eigenvalue problem and the 
buckling problem, respectively. The 
Convergence of results for both versions of 
DQM with an increasing number of grid points 
is shown in Tables 1 and 2 for 𝐿𝑖 = 0.1, 
𝑃 = 3, 𝐾𝑤 = 100, 𝐾𝑔 = 10. The value of N has 

been fixed as 17 as we get results correct to 
four decimal places. Results are shown in the 
Tables (3-6).  

Tables (3-5) present the first three 
frequencies while Table 6 shows critical 
buckling loads for C-C, C-S, and S-S nanobeams 
for different combinations of parameters. A 
comparison of frequencies in special cases is 
presented in Table (7) while a comparison of 
critical buckling loads in special cases is shown 
in Table (8). It is evident from the comparison 
tables that the results are in good agreement 
with those available in the literature. 

Table 1. Convergence of frequency parameter 𝜴 of Euler-Bernoulli nanobeam using PDQM 

𝑳𝒊 = 𝟎. 𝟏, 𝑷 = 𝟑, 𝑲𝒘 = 𝟏𝟎𝟎, 𝑲𝒈 = 𝟏𝟎 

 𝑵 

 10 13 14 15 16 17 

Mode C-C 

I 5.0562 5.0562 5.0562 5.0562 5.0562 5.0562 

II 7.4587 7.4640 7.4640 7.4640 7.4640 7.4640 

III 9.6622 9.5491 9.5481 9.5475 9.5475 9.5475 

 C-S 

I 4.4727 4.4728 4.4728 4.4728 4.4728 4.4728 

II 6.8302 6.8326 6.8325 6.8325 6.8325 6.8325 

III 9.2086 8.9567 8.9573 8.9560 8.9560 8.9560 

 S-S 

I 4.0068 4.0068 4.0068 4.0068 4.0068 4.0068 

II 6.2130 6.2169 6.2169 6.2169 6.2169 6.2169 

III 8.5510 8.3685 8.3675 8.3667 8.3667 8.3667 
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Table 2. Convergence of frequency parameter 𝜴  of Euler-Bernoulli nanobeam using HDQM 

𝑳𝒊 = 𝟎. 𝟏, 𝑷 = 𝟑, 𝑲𝒘 = 𝟏𝟎𝟎, 𝑲𝒈 = 𝟏𝟎 

 𝑵 

 10 13 14 15 16 17 

Mode C-C 
I 5.0650 5.0564 5.0566 5.0563 5.0562 5.0562 
II 7.4664 7.4651 7.4640 7.4641 7.4640 7.4640 
III 9.5614 9.5477 9.548 9.5475 9.5475 9.5475 

 C-S 
I 4.4859 4.4702 4.4737 4.4722 4.4730 4.4728 
II 6.8247 6.8355 6.8316 6.8332 6.8323 6.8325 
III 8.9794 8.9547 8.9572 8.9556 8.9563 8.9560 

 S-S 
I 3.9863 4.0068 4.0056 4.0068 4.0065 4.0068 
II 6.2266 6.2169 6.2173 6.2169 6.2169 6.2169 
III 8.3869 8.3667 8.3675 8.3667 8.3669 8.3667 

Table 3. First three values of frequency parameter 𝜴 of C-C Euler-Bernoulli nanobeam 

   𝐿𝑖 

   0 0.1 0.2 0.3 0.4 

   𝑃 

𝐾𝑤 𝐾𝑔 Mode  -3 3 -3 3 -3 3 -3 3 -3 3 

1 0 I 4.8170 4.6427 4.7119 4.4725 4.4740 4.0547 4.2233 3.5302 4.0158 2.9427 

  II 7.9240 7.7814 7.2571 7.0188 6.2603 5.7842 5.5576 4.7433 5.1047 3.8372 

  III 11.0512 10.9396 9.3728 9.1401 7.6302 7.1119 6.6414 5.7228 6.0581 4.6072 

 10 I 5.0692 4.9229 5.0431 4.8528 4.9852 4.6988 4.9273 4.5449 4.8830 4.4251 

  II 8.1452 8.0148 7.6084 7.4037 6.8721 6.5259 6.4215 5.9490 6.1701 5.6052 

  III 11.2299 11.1237 9.7262 9.5189 8.3129 7.9246 7.6364 7.0905 7.3007 6.6405 

 30 I 5.4780 5.3657 5.5558 5.4172 5.6941 5.5092 5.8005 5.5797 5.8676 5.6238 

  II 8.5381 8.4262 8.1924 8.0304 7.7561 7.5225 7.5171 7.2384 7.3947 7.0906 

  III 11.5632 11.4663 10.3357 10.1642 9.3206 9.0525 8.9129 8.5873 8.7377 8.3804 

 50 I 5.8067 5.7145 5.9546 5.8436 6.2073 6.0667 6.3970 6.2356 6.5156 6.3415 

  II 8.8809 8.7824 8.6724 8.5368 8.4120 8.2313 8.2736 8.0684 8.2043 7.9865 

  III 11.8693 11.7800 10.8533 10.7058 10.0788 9.8693 9.7993 9.5586 9.6901 9.4338 

10 0 I 4.8370 4.6650 4.7333 4.4975 4.4989 4.0881 4.2529 3.5802 4.0501 3.0273 

  II 7.9285 7.7862 7.2630 7.0253 6.2695 5.7958 5.5707 4.7642 5.1215 3.8764 

  III 11.0528 10.9413 9.3756 9.1430 7.6353 7.1181 6.6491 5.7348 6.0682 4.6301 

 10 I 5.0864 4.9416 5.0606 4.8724 5.0033 4.7204 4.9461 4.5687 4.9022 4.4509 

  II 8.1494 8.0192 7.6135 7.4093 6.8790 6.5340 6.4299 5.9597 6.1797 5.6180 

  III 11.2315 11.1253 9.7286 9.5215 8.3168 7.9292 7.6415 7.0968 7.3065 6.6482 

 30 I 5.4917 5.3802 5.5689 5.4313 5.7062 5.5226 5.8120 5.5926 5.8787 5.6365 

  II 8.5417 8.4299 8.1965 8.0347 7.7609 7.5278 7.5224 7.2443 7.4002 7.0970 

  III 11.5646 11.4678 10.3378 10.1663 9.3234 9.0556 8.9161 8.5908 8.7410 8.3842 

 50 I 5.8182 5.7265 5.9653 5.8548 6.2167 6.0768 6.4056 6.2448 6.5237 6.3503 

  II 8.8841 8.7858 8.6758 8.5404 8.4158 8.2354 8.2776 8.0727 8.2084 7.9909 

  III 11.8707 11.7814 10.8551 10.7077 10.0810 9.8716 9.8017 9.5612 9.6926 9.4365 

1000 0 I 6.2618 6.1852 6.2150 6.1160 6.1165 5.9689 6.0243 5.8288 5.9568 5.7247 

  II 8.3843 8.2646 7.8372 7.6506 7.0957 6.7842 6.6478 6.2287 6.4003 5.9049 

  III 11.2317 11.1255 9.6624 9.4509 8.1392 7.7229 7.3664 6.7465 6.9595 6.1704 

 10 I 6.3824 6.3110 6.3694 6.2782 6.3409 6.2093 6.3131 6.1448 6.2922 6.0976 

  II 8.5725 8.4612 8.1213 7.9545 7.5384 7.2825 7.2080 6.8884 7.0342 6.6758 

  III 11.4022 11.3009 9.9869 9.7961 8.7172 8.3848 8.1443 7.7062 7.8719 7.3657 

 30 I 6.6018 6.5387 6.6467 6.5673 6.7290 6.6197 6.7943 6.6607 6.8365 6.6868 

  II 8.9138 8.8158 8.6131 8.4744 8.2434 8.0509 8.0465 7.8224 7.9472 7.7063 

  III 11.7214 11.6285 10.5549 10.3941 9.6148 9.3719 9.2465 8.9571 9.0901 8.7759 

 50 I 6.7982 6.7414 6.8920 6.8213 7.0595 6.9652 7.1907 7.0787 7.2751 7.1518 

  II 9.2178 9.1300 9.0323 8.9127 8.8034 8.6466 8.6831 8.5068 8.6233 8.4372 

  III 12.0160 11.9299 11.0436 10.9038 10.3143 10.1194 10.0545 9.8326 9.9536 9.7182 
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Table 4. First three values of frequency parameter 𝜴 of C-S Euler-Bernoulli nanobeam 

   𝐿𝑖  

   0 0.1 0.2 0.3 0.4 

   𝑃 

𝐾𝑤 𝐾𝑔 Mode  -3 3 -3 3 -3 3 -3 3 -3 3 

1 0 I 4.0655 3.7797 3.9825 3.6454 3.7920 3.3102 3.5875 2.8782 3.4149 2.3753 

  II 7.1586 6.9764 6.5937 6.3298 5.7313 5.2570 5.1121 4.3304 4.7087 3.5081 

  III 10.2760 10.1435 8.7705 8.5286 7.1604 6.6543 6.2284 5.3495 5.6740 4.2981 

 10 I 4.4351 4.2257 4.4020 4.1661 4.3280 4.0326 4.2531 3.8955 4.1945 3.7858 

  II 7.4343 7.2727 6.9738 6.7535 6.3289 5.9920 5.9283 5.4830 5.7039 5.1771 

  III 10.4861 10.3616 9.1342 8.9213 7.8214 7.4461 7.1736 6.6556 6.8449 6.2233 

 30 I 4.9708 4.8292 4.9924 4.8377 5.0270 4.8478 5.0497 4.8500 5.0621 4.8483 

  II 7.9073 7.7745 7.5880 7.4194 7.1786 6.9553 6.9549 6.6943 6.8427 6.5603 

  III 10.8717 10.7604 9.7535 9.5801 8.7899 8.5329 8.3815 8.0736 8.1961 7.8604 

 50 I 5.3684 5.2589 5.4239 5.3054 5.5165 5.3833 5.5854 5.4409 5.6287 5.4767 

  II 8.3066 8.1930 8.0812 7.9428 7.8028 7.6313 7.6607 7.4694 7.5943 7.3922 

  III 11.2198 11.1188 10.2733 10.1256 9.5151 9.3149 9.2184 8.9913 9.0909 8.8502 

10 0 I 4.0985 3.8207 4.0176 3.6910 3.8326 3.3706 3.6352 2.9682 3.4701 2.5278 

  II 7.1648 6.9830 6.6016 6.3387 5.7432 5.2724 5.1288 4.3578 4.7301 3.5591 

  III 10.2781 10.1457 8.7738 8.5322 7.1665 6.6619 6.2377 5.3641 5.6863 4.3261 

 10 I 4.4606 4.2552 4.4281 4.1969 4.3555 4.0665 4.2820 3.9330 4.2247 3.8266 

  II 7.4398 7.2786 6.9805 6.7608 6.3378 6.0025 5.9391 5.4966 5.7160 5.1932 

  III 10.4880 10.3636 9.1371 8.9245 7.8261 7.4516 7.1797 6.6632 6.8519 6.2326 

 30 I 4.9890 4.8490 5.0104 4.8574 5.0446 4.8674 5.0671 4.8696 5.0794 4.8679 

  II 7.9118 7.7792 7.5932 7.4249 7.1847 6.9620 6.9615 6.7018 6.8497 6.5682 

  III 10.8735 10.7622 9.7559 9.5826 8.7932 8.5365 8.3853 8.0779 8.2002 7.8650 

 50 I 5.3829 5.2743 5.4380 5.3205 5.5298 5.3977 5.5983 5.4548 5.6413 5.4903 

  II 8.3105 8.1971 8.0855 7.9472 7.8076 7.6363 7.6657 7.4748 7.5994 7.3977 

  III 11.2214 11.1205 10.2754 10.1278 9.5177 9.3177 9.2213 8.9943 9.0939 8.8534 

1000 0 I 5.9722 5.8895 5.9467 5.8555 5.8927 5.7838 5.8418 5.7162 5.8043 5.6663 

  II 7.7595 7.6179 7.3316 7.1437 6.7516 6.4796 6.4040 6.0623 6.2136 5.8240 

  III 10.4988 10.3748 9.1193 8.9055 7.7608 7.3758 7.0738 6.5297 6.7169 6.0506 

 10 I 6.1014 6.0251 6.0888 6.0049 6.0614 5.9620 6.0347 5.9212 6.0145 5.8911 

  II 7.9792 7.8496 7.6159 7.4493 7.1431 6.9162 6.8751 6.6047 6.7350 6.4375 

  III 10.6963 10.5792 9.4456 9.2540 8.2980 7.9888 7.7712 7.3768 7.5178 7.0703 

 30 I 6.3339 6.2673 6.3444 6.2712 6.3614 6.2759 6.3727 6.2769 6.3789 6.2761 

  II 8.3702 8.2588 8.1045 7.9672 7.7752 7.6017 7.6014 7.4053 7.5161 7.3073 

  III 11.0611 10.9555 10.0122 9.8523 9.1366 8.9092 8.7768 8.5113 8.6163 8.3307 

 50 I 6.5402 6.4806 6.5711 6.5057 6.6239 6.5484 6.6641 6.5807 6.6897 6.6010 

  II 8.7117 8.6136 8.5178 8.4001 8.2825 8.1401 8.1644 8.0077 8.1096 7.9452 

  III 11.3926 11.2962 10.4963 10.3581 9.7926 

 
 
 

9.6096 9.5219 9.3167 9.4065 9.1903 
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Table 5. First three values of frequency parameter 𝜴 of S-S Euler-Bernoulli nanobeam 

   𝐿𝑖  

   0 0.1 0.2 0.3 0.4 

   𝑃 

𝐾𝑤 𝐾𝑔 Mode  -3 3 -3 3 -3 3 -3 3 -3 3 

1 0 I 3.3637 2.8800 3.3047 2.7837 3.1658 2.5340 3.0110 2.1894 2.8756 1.7397 

  II 6.4002 6.1613 5.9303 5.6234 5.1867 4.6973 4.6355 3.8724 4.2700 3.1268 

  III 9.5037 9.3445 8.1657 7.9091 6.6878 6.1893 5.8167 4.9733 5.2951 3.9890 

 10 I 3.8803 3.5975 3.8423 3.5496 3.7566 3.4393 3.6674 3.3212 3.5952 3.2226 

  II 6.7474 6.5458 6.3556 6.1112 5.7831 5.4491 5.4099 4.9893 5.1930 4.7058 

  III 9.7524 9.6055 8.5461 8.3242 7.3312 6.9668 6.7148 6.2233 6.3968 5.8125 

 30 I 4.5380 4.3706 4.5145 4.3442 4.4624 4.2856 4.4102 4.2264 4.3693 4.1799 

  II 7.3144 7.1582 7.0147 6.8364 6.6092 6.3938 6.3696 6.1270 6.2407 5.9813 

  III 10.1995 10.0716 9.1829 9.0058 8.2645 8.0176 7.8563 7.5658 7.6645 7.3497 

 50 I 4.9930 4.8695 4.9753 4.8505 4.9367 4.8087 4.8983 4.7672 4.8686 4.7349 

  II 7.7737 7.6445 7.5275 7.3847 7.2069 7.0432 7.0251 6.8477 6.9300 6.7448 

  III 10.5946 10.4807 9.7094 9.5605 8.9588 8.7675 8.6452 8.4312 8.5030 8.2775 

10 0 I 3.4213 2.9699 3.3653 2.8827 3.2345 2.6622 3.0903 2.3780 2.9659 2.0643 

  II 6.4088 6.1709 5.9411 5.6360 5.2028 4.7189 4.6580 3.9106 4.2987 3.1979 

  III 9.5063 9.3472 8.1698 7.9137 6.6953 6.1988 5.8281 4.9915 5.3102 4.0240 

 10 I 3.9183 3.6449 3.8814 3.5989 3.7983 3.4934 3.7122 3.3810 3.6427 3.2879 

  II 6.7547 6.5538 6.3643 6.1210 5.7947 5.4629 5.4240 5.0073 5.2090 4.7272 

  III 9.7549 9.6080 8.5497 8.3280 7.3369 6.9734 6.7222 6.2327 6.4054 5.8240 

 30 I 4.5619 4.3973 4.5387 4.3713 4.4875 4.3139 4.4362 4.2559 4.3961 4.2104 

  II 7.3202 7.1643 7.0212 6.8435 6.6170 6.4024 6.3783 6.1367 6.2499 5.9918 

  III 10.2017 10.0738 9.1858 9.0088 8.2685 8.0220 7.8609 7.5710 7.6695 7.3554 

 50 I 5.0110 4.8889 4.9935 4.8701 4.9553 4.8288 4.9173 4.7878 4.8880 4.7560 

  II 7.7785 7.6495 7.5328 7.3903 7.2129 7.0496 7.0316 6.8547 6.9367 6.7521 

  III 10.5965 10.4827 9.7119 9.5630 8.9619 8.7708 8.6487 8.4349 8.5067 8.2814 

1000 0 I 5.7941 5.7164 5.7828 5.7047 5.7583 5.6791 5.7342 5.6541 5.7158 5.6349 

  II 7.1930 7.0283 6.8764 6.6866 6.4425 6.2086 6.1822 5.9147 6.0406 5.7519 

  III 9.7821 9.6366 8.5901 8.3717 7.4005 7.0472 6.8044 6.3352 6.5001 5.9486 

 10 I 5.9169 5.8441 5.9064 5.8332 5.8834 5.8093 5.8609 5.7859 5.8436 5.7680 

  II 7.4447 7.2968 7.1617 6.9947 6.7835 6.5853 6.5632 6.3429 6.4458 6.2123 

  III 10.0112 9.8757 8.9209 8.7270 7.8963 7.6105 7.4205 7.0704 7.1906 6.8018 

 30 I 6.1420 6.0771 6.1325 6.0673 6.1120 6.0461 6.0919 6.0254 6.0766 6.0095 

  II 7.8829 7.7591 7.6474 7.5114 7.3428 7.1885 7.1715 7.0053 7.0822 6.9093 

  III 10.4272 10.3076 9.4897 9.3298 8.6753 8.4636 8.3273 8.0863 8.1675 7.9111 

 50 I 6.3447 6.2859 6.3361 6.2771 6.3176 6.2580 6.2994 6.2393 6.2855 6.2250 

  II 8.2582 8.1510 8.0550 7.9392 7.7974 7.6694 7.6555 7.5199 7.5824 7.4427 

  III 10.7986 10.6912 9.9715 9.8343 9.2876 9.1166 9.0082 8.8202 8.8830 8.6865 
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Table 6. Critical buckling load parameter 𝑃𝑐𝑟 of Euler-Bernoulli nanobeam 

  𝐿𝑖  

  0 0.1 0.2 0.3 0.4 

𝐾𝑤 𝐾𝑔 C-C 

1 0 39.5544 28.3659 15.3518 10.3878 5.4280 

 30 69.5544 58.3659 45.3518 40.3878 35.4280 

 50 89.5544 78.3659 65.3518 60.3878 55.4280 

10 0 40.2376 28.9201 15.7558 10.4530 6.0810 

 30 70.2376 58.9201 45.7558 40.4530 36.0810 

 50 90.2376 78.9201 65.7558 60.4530 56.0810 

1000 0 101.1910 61.2950 28.6333 13.6863 7.8113 

 30 131.1910 91.2950 58.6333 43.6863 37.8113 

 50 151.1910 111.2950 78.6333 63.6863 57.8113 

  C-S 

1 0 20.2733 16.8759 11.2375 7.2283 4.8300 

 30 50.2733 46.8759 41.2375 37.2283 34.8300 

 50 70.2733 66.8759 61.2375 57.2283 54.8300 

10 0 21.0149 17.5676 11.8463 7.7780 6.1985 

 30 51.0149 47.5676 41.8463 37.7780 36.1985 

 50 71.0149 67.5676 61.8463 57.7780 56.1985 

1000 0 74.4955 55.8308 25.0525 12.7116 7.3664 

 30 104.4950 85.8308 55.0525 42.7116 37.3664 

 50 124.4950 105.8310 75.0525 62.7116 57.3664 

  S-S 

1 0 9.9709 9.0843 7.1774 5.3282 3.9280 

 30 39.9709 39.0843 37.1774 35.3282 33.9280 

 50 59.9709 59.0843 57.1774 55.3282 53.9280 

10 0 10.8828 9.9963 8.0893 6.2400 4.8399 

 30 40.8828 39.9962 38.0893 36.2400 34.8399 

 50 60.8828 59.9962 58.0893 56.2400 54.8399 

1000 0 64.8087 53.6346 25.8330 12.3344 6.9380 

 30 94.8087 83.6346 55.8330 42.3344 36.9380 

 50 114.8087 103.6346 75.8330 62.3344 56.9380 
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Table 7. Comparison of frequency parameter 𝜴 of Euler-Bernoulli nanobeam 

Boundary 
condition 

Reference  𝑲𝒘 𝑲𝒈 𝑳𝒊 
Mode 
I 

Mode 
II 

Mode 
III 

C-C Demir [61] 0 0 0 4.73004 7.8532 11.0856 

 Ebrahimi and Salari [34]    4.7299 7.8525 10.9934 

 Present    4.7300 7.8532 10.9956 

 Demir [61] 0 0 0.05 4.69433 7.64178 10.4625 

 Present    4.6943 7.6418 10.4042 

 Demir [61] 0 0 0.2 4.27661  6.03520  7.28636 

 Present    4.2766 6.0352 7.3840 

 Demir [61] 10000 0 0.2 10.08260 10.31634 10.64047 

 Present    10.0826 10.3163 10.6723 

 
Rahbar-Ranji and 
Shahbaztabar [62] 

2.5 2.5*𝜋2 0 5.3200 8.3815 11.4280 

 Present    5.3224 8.3821 11.4282 

 
Rahbar-Ranji and 
Shahbaztabar [62] 

10000 2.5*𝜋2 0 10.1943 11.0546 12.8252 

 Present    10.1943 11.0546 12.8251 

C-S Wang, Zhang, and He [10] 0 0 0 3.9266 7.0686 10.2102 

 Ebrahimi and Salari [34]    3.9265 7.0679 10.2081 

 Present    3.9266 7.0686 10.2102 

 Wang, Zhang, and He [10] 0 0 0.3 3.2828 4.7668 5.8371 

 Present    3.28284 4.7668 5.8371 

 Wang, Zhang, and He [10] 0 0 0.5 2.7899 3.8325 4.6105 

 Present    2.7899 3.8325 4.6105 

S-S Demir [61] 0 0 0 3.14159 6.28319 9.42394 

 Present    3.1416 6.2832 9.4248 

 Demir [61] 0 0 0.05 3.12251 6.13706 8.96310 

 Present    3.1225 6.1371 8.9639 

 Demir [61] 0 0 0.2 2.89083 4.95805 6.45140 

 Present    2.8908 4.9581 6.4520 

 Demir [61] 10000 0 0.2 10.01741 10.14776 10.40748 

 Present    10.0174 10.1478 10.4076 

 
Rahbar-Ranji and 
Shahbaztabar [62] 

10000 2.5*𝜋2 0 10.0842 10.5806 11.9042 

 Present    10.0842 10.5806 11.9042 
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Table 8. Comparison of the lowest non-dimensional critical buckling load  
parameter 𝑷𝒄𝒓 for Euler-Bernoulli nanobeam without foundation 

Boundary 
condition 

Reference 𝑳𝒊 𝑷𝒄𝒓 

C-C Ghannadpour, Mohammadi, and Fazilati [63] 0 39.4784 

 Pradhan and Phadikar [30]  39.4784 

 Nejad, Hadi and Rastgoo [35]  39.4784 

 Zhu, Wang and Dai [38]  39.47842 

 Present  39.4784 

 Ghannadpour, Mohammadi, and Fazilati [63] 0.2 15.3068 

 Nejad, Hadi and Rastgoo [35]  15.3068 

 Present  15.3069 

C-S Ghannadpour, Mohammadi, and Fazilati [63] 0 20.1907 

 Pradhan and Phadikar [30]  20.1907 

 Nejad, Hadi and Rastgoo [35]  20.1907 

 Zhu, Wang and Dai [38]  20.19073 

 Present  20.1907 

 Ghannadpour, Mohammadi, and Fazilati [63] 0.2 11.1697 

 Nejad, Hadi and Rastgoo [35]  11.1697 

 Present  11.1697 

S-S Sari, Al-Kouz and Atieh [64] 0 9.8696 

 Reddy [29]  9.8696 

 Ebrahimi and Salari [34]   9.8696044 

 Eltaher, Emam and Mahmoud [33]  9.86973 

 Wang and Cai [3]  9.8696 

 Nejad, Hadi and Rastgoo [35]  9.8696 

 Zhu, Wang and Dai [38]  9.86960 

 Present  9.8696 

 Sari, Al-Kouz and Atieh [64] 0.1 8.9830 

 Reddy [29]  8.9830 

 Eltaher, Emam and Mahmoud [33]  8.98312 

 Present  8.9830 

 Sari, Al-Kouz and Atieh [64] √2/10 8.2426 

 Reddy [29]  8.2426 

 Eltaher, Emam and Mahmoud [33]  8.24267 

 Present  8.2426 

 Sari, Al-Kouz and Atieh [64] 0.2 7.0762 

 Reddy [29]  7.0761 

 Eltaher, Emam and Mahmoud [33]  7.07614 

 Nejad, Hadi and Rastgoo [35]  7.076 

 Present  7.0761 

 Sari, Al-Kouz and Atieh [64] √5/10 6.6085 

 Reddy [29]  6.6085 

 Present  6.6084 

 

The first three frequencies and critical 
buckling loads are also presented through graphs 
via Figs. (2-9). The effect of nonlocal parameter  
𝐿𝑖  along with the shear foundation parameter on 

frequency 𝛺 is shown in Figs. (2-3) for 
𝑃 = 3, 𝐾𝑤 = 10  for C-C and C-S beams, 
respectively.  
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Fig. 2. (a)First mode (b) second mode (c) third mode of C-C 

nanobeam for 𝑃 = 3, 𝐾𝑤 = 10 𝑎𝑛𝑑 𝐾𝑔 = 19(♢); 𝐾𝑔 = 20(□);  

𝐾𝑔 = 20.5(△);  𝐾𝑔 = 21(⨯); 𝐾𝑔 = 22(∗); 𝐾𝑔 = 23(○) 

 
Fig. 3. (a)First mode (b) second mode (c) third mode of C-S 

nanobeam for 𝑃 = 3, 𝐾𝑤 = 10 𝑎𝑛𝑑 𝐾𝑔 = 26 (♢); 

𝐾𝑔 = 27 (□);  𝐾𝑔 = 28 (△); 𝐾𝑔 = 29 (⨯) 

Figure 4 shows the variation of frequency 
with respect to nonlocal parameters for different 
combinations of Winkler and shear foundation 
parameters.  

 
Fig. 4. (a)First mode (b) second mode (c) third mode of S-S 

nanobeam for 𝑃 = 3, 𝑎𝑛𝑑 𝐾𝑤 = 1, 𝐾𝑔 = 10 (♢); 

𝐾𝑤 = 1, 𝐾𝑔 = 50 (□);  𝐾𝑤 = 1000,  𝐾𝑔 = 10 (∆); 
 𝐾𝑤 = 1000, 𝐾𝑔 = 50 (×) 

The effect of the nonlocal parameter along 
with the Winkler foundation parameter on 
frequency is shown in Figs. (5-6) for C-C and C-S 
beams for fixed values of load parameter and 
shear foundation parameter. 

 
Fig. 5.  First three modes of  C-C  nanobeam for 

𝑃 = 3,   𝐾𝑔 = 15  𝑎𝑛𝑑  𝐾𝑤 = 1(□);  𝐾𝑤 = 1000(△); 

First mode _____ ; second mode - . - . - ; third mode - . . - . . 

 
Fig. 6.  First three modes of  C-S  nanobeam for 

𝑃 = 3, 𝐾𝑔 = 25  𝑎𝑛𝑑  𝐾𝑤 = 1(□);  𝐾𝑤 = 1000(△); 

First mode _____ ; second mode - . - . - ; third mode - . . - . . 

Figure 7 shows the effect of the nonlocal 
parameter along with the shear foundation 
parameter on critical buckling loads for two 
different values of the Winkler foundation 
parameter for C-C, C-S, and S-S beams. 
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Fig. 7.  Critical buckling load  (a) C-C   (b) C-S   (c) S-S  

nanobeam for  𝐾𝑤 = 1: _____ ; 𝐾𝑤 = 1000: ---- ; 𝐾𝑔 = 0(♢); 

𝐾𝑔 = 10(□); 𝐾𝑔 = 30(△); 𝐾𝑔 = 50(⨯) 

Figure 8 depicts a three-dimensional 
variation of critical buckling load for different 
values of the Winkler foundation parameter and 
nonlocal parameter keeping the shear foundation 
parameter constant for C-C, C-S, and S-S beams.  

 
Fig. 8. Critical buckling load  (a) C-C   (b) C-S   (c) S-S  

nanobeam for 𝐾𝑔 = 10 

Figure 9 presents a three-dimensional 
variation of critical buckling load for different 
values of shear foundation parameter and 
nonlocal parameter keeping the Winkler 
foundation parameter constant for C-C, C-S, and 
S-S beams. 

 
Fig. 9. Critical buckling load  (a) C-C   (b) C-S   (c) S-S  

nanobeam for 𝐾𝑤 = 1000 

4. Conclusions 

Free transverse vibration and buckling of an 
Euler-Bernoulli nanobeam resting on the 
Pasternak foundation have been studied on the 
basis of Eringen’s nonlocal elasticity theory. The 
PDQM and the HDQM are used to obtain the first 
three values of the frequency parameter and the 
lowest critical buckling load. A computer 
program in C++ is developed to calculate the 
results. In this analysis, C-C, C-S, and S-S 
boundary conditions have been considered. The 
study shows that nonlocal parameters, boundary 
conditions, axial force parameters, and elastic 
foundation moduli have considerable impacts on 
the results. So, it is concluded from the present 
study that 

(i) Frequencies decrease with an increase in 
nonlocal parameters except for frequency 
in the fundamental mode for C-C and C-S 
boundary conditions. The important 
observation is that for certain values of the 
Pasternak foundation parameter, the 
frequency in fundamental mode first 
increases and then decreases for C-C and 
C-S boundary conditions. The variation of 
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frequency with nonlocal parameter 𝐿𝑖  is 
not monotonic in the first mode. In the 
second and third modes, frequency 
continuously decreases with an increase in 
the value of 𝐿𝑖 .  

(ii) The maximum frequency is observed for C-
C boundary conditions followed by C-S and 
S-S boundary conditions, respectively. 

(iii) The Winkler and the Pasternak foundation 
parameters have significant effects on the 
free vibration and stability behaviour of 
nanobeams. The critical buckling load 
increases with an increase in foundation 
moduli and decreases with an increase in 
the nonlocal parameter 𝐿𝑖 .  

(iv) The greatest buckling load is observed for 
C-C boundary conditions followed by C-S 
and S-S boundary conditions, respectively.  

(v) The results obtained by the PDQM and the 
HDQM are identical. 

Nomenclature  

𝐴 Cross-section area of the beam 
𝐶 Clamped edge 

𝐶𝑖𝑗
(𝑚) Weighting coefficients of mth 

order 
𝐷 Flexural rigidity  
𝐸 Young’s modulus of the plate 

material 
𝐼 Second moment of area 
𝐾(⌈𝑥 − 𝑥′⌉, 𝛼) Nonlocal modulus  
𝐾𝑤 , 𝐾𝑔   Foundation parameters 

𝑘𝑤 , 𝑘𝑔 Winkler and shear foundation 
stiffnesses 

𝐿 Length of the beam 
𝑀 Bending moment 
𝑁 Number of grid points 
p Compressive load  
𝑃𝑐𝑟   Critical buckling load 
𝑆 Simply supported edge 
𝑡 Time  
𝑇 Kinetic energy of the beam 
𝑈 Strain energy of the beam 
𝑤 Transverse deflection 
𝑊 Non-dimensional transverse 

deflection 
𝑊𝑓 Potential energy due to 

Pasternak foundation 
𝑊𝑝 Work done by the compressive 

load 
𝑒0𝑎

𝐿
 Nonlocal parameter 

𝜔 Circular frequency 
𝜌 Density of beam material 
𝜎𝑥𝑥  Normal stress 
𝜀𝑥𝑥 Normal strain 
𝛺 Frequency parameter 
𝛻2 The Laplace operator 

Algorithm of C++ 

Step 1: Generation of grid points 

Step 2: Generation of weighting coefficients  

Step 3: Discretization of governing equation at 
grid points  

Step 4: Implementation of boundary conditions 

Step 5: Implementation of bisection method to 
obtain frequencies and critical buckling 
loads. 
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