
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,892 |
تعداد دریافت فایل اصل مقاله | 7,656,361 |
Stability analysis and adaptive tracking control for a class of switched nonlinear systems based on a nonlinear disturbance observe | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 10، دوره 15، شماره 4، تیر 2024، صفحه 111-124 اصل مقاله (1.9 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.30737.4504 | ||
نویسندگان | ||
Masoud - Bagherzadeh؛ Zahra Rahmani* | ||
Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran | ||
تاریخ دریافت: 12 اسفند 1401، تاریخ بازنگری: 13 خرداد 1402، تاریخ پذیرش: 25 خرداد 1402 | ||
چکیده | ||
This paper is concerned with developing an adaptive method on the basis of a nonlinear disturbance observer (NDO) in order to control a switched nonlinear system in the presence of unknown functions and external disturbances, and under arbitrary switching signals. The proposed approach employs an adaptive backstepping technique, NDO, a fuzzy logic system (FLS), and the particle swarm optimization (PSO) algorithm. Based on a common Lyapunov function (CLF), the adaptive backstepping technique is used to design a nonlinear state-feedback controller. Also, NDO and FLS are stated to estimate the disturbances and the unknown nonlinear functions, respectively. In addition, to improve the performance of the closed-loop system, the PSO algorithm is used to optimize the controller parameters. Finally, simulation examples are taken into account to demonstrate the effectiveness of the proposed strategy. | ||
کلیدواژهها | ||
Switched systems؛ Tracking c ontrol؛ Adaptive backstepping technique؛ Disturbance observer | ||
مراجع | ||
[1] A. Aleksandrov, On the existence of a common Lyapunov function for a family of nonlinear positive systems, Syst. Control Lett. 147 (2021), 104832. [2] A.Y. Aleksandrov, Y. Chen, A.V. Platonov, and L. Zhang, Stability analysis for a class of switched nonlinear systems, Automatica 47 (2011), 2286–2291. [3] J. Chen, R. Sun and B. Zhu, Disturbance observer-based control for small nonlinear UAV systems with transient performance constraint, Aerospace Sci. Technol. 106028 (2020), 105. [4] P.A. Digehsara, S.N. Chegini, A. Bagheri and M.P. Roknsaraei, An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled Halton sequence, Cogent Engin. 7 (2020), no. 1, 1737383. [5] C. Dong, W. Li, and Q. Wang, H∞ control of switched systems with nonideal switchings and its application to morphing aircraft, Proc. Eng. 67 (2013), 100–109. [6] J. Hosseini, Z. Rahmani and A. Ranjbar Noe, Adaptive tracking control of switched linear systems with multiple disturbance observers, Trans. Instit. Measur. Control 43 (2021), no. 16, 3499–3518. [7] D. Lee, Nonlinear disturbance observer-based robust control for spacecraft formation flying, Aerospace Sci. Technol. 76 (2018), 82–90. [8] S. Li, J. Guo, and Z. Xiang, Global stabilization of a class of switched nonlinear systems under sampled-data control, IEEE Trans. Syst. Man Cybernet.: Syst. 49 (2018), no. 9, 1912–1919. [9] Y. Li, S. Tong and T. Li, Adaptive fuzzy backstepping control design for a class of pure-feedback switched nonlinear systems, Nonlinear Anal.: Hybrid Syst. 16 (2015), 72–80. [10] S. Li, J. Yang, W. H. Chen and X. Chen, Disturbance observer-based control: Methods and applications, CRC Press, 2014. [11] D. Liberzon, Switching in systems and control, Springer Science & Business Media, 2003. [12] R. Ma and J. Zhao, Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings, Automatica 46 (2010), no. 11, 1819–1823. [13] H. Mo and G. Farid, Nonlinear and adaptive intelligent control techniques for quadrotor UAV, Asian J. Control 21 (2019), no. 2, 989–1008. [14] S. Pezeshki, M.A. Badamchizadeh, A.R. Ghiasi and S. Ghaemi, H∞ tracking control for a class of asynchronous switched nonlinear systems with uncertain input delay, J. Franklin Inst. 356 (2019), 5927–5943. [15] S. Pezeshki, M.A. Badamchizadeh, A.R. Ghiasi, and S. Ghaemi, Stability analysis and robust stabilisation for a class of switched nonlinear systems with input delay, Int. J. Control 93 (2020), no. 10, 2457–2468. [16] S. Pezeshki, A.R. Ghiasi, M.A. Badamchizadeh and K. Sabahi, Adaptive robust control of the autonomous underwater vehicle, J. Control Autom. Electric. Syst. 27 (2016), 250–262. [17] M. Rajchakit, P. Niamsup, and G. Rajchakit, A switching rule for exponential stability of switched recurrent neural networks with interval time-varying delay, Adv. Differ. Equ. 1 (2013), no. 44, 1–10. [18] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, Stability criteria for switched and hybrid systems, SIAM Rev. 49 (2007), no. 4, 545–592. [19] S. Tong and Y. Li, Adaptive fuzzy output feedback control for switched nonlinear systems with unmodeled dynamics, IEEE Trans. Cybernet. 47 (2016), no. 2, 295–305. [20] S. Tong, S. Sui, and Y. Li, Observed-based adaptive fuzzy tracking control for switched nonlinear systems with dead-zone, IEEE Trans. Cybernet. 45 (2015), no. 12, 2816–2826. [21] N. Wang and M.J. Er, Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties, IEEE Trans. Control Syst. Technol. 24 (2016), no. 5, 1845–1852. [22] L.X. Wang and J. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Trans. Neural Networks 3 (1992), no. 5, 807–814. [23] W. Xiang and J. Xiao, Finite-time stability and stabilization for switched linear systems, Int. J. Syst. Sci. 44 (2013), no. 2, 384–400. [24] Z. Yang, B. Meng, and H. Sun, A new kind of nonlinear disturbance observer for nonlinear systems with applications to cruise control of air-breathing hypersonic vehicles, Int. J. Control 90 (2017), no. 9, 1935–1950. [25] M.B. Yazdi and M. Jahed-Motlagh, Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization, Chem. Eng. J. 155 (2009), no. 3, 838–843. [26] S.J. Yoo, Adaptive tracking control for uncertain switched nonlinear systems in nonstrict-feedback form, J. Franklin Inst. 353 (2016), no. 6, 1409–1422. [27] Z. Yu, Y. Dong, S. Li, and F. Li, Adaptive tracking control for switched strict-feedback nonlinear systems with time-varying delays and asymmetric saturation actuators, Neurocomputing 238 (2017), 245–254. [28] H. Yue, J. Shi, L. Du, and X. Li, Adaptive fuzzy tracking control for a class of perturbed nonlinearly parameterized systems using minimal learning parameters algorithm, Iran. J. Fuzzy Syst. 15 (2018), no. 3, 99–116. [29] J. Zhang, Z. Han, F. Zhu, and X. Zhao, Absolute exponential stability and stabilization of switched nonlinear systems, Syst. Control Lett. 66 (2014), 51–57. [30] L. Zhang, L. Nie, B. Cai, S. Yuan, and D. Wang, Switched linear parameter-varying modeling and tracking control for flexible hypersonic vehicle, Aerospace Sci. Technol. 95 (2019), 105445. [31] J.F. Zhang, X.D. Zhao and J. Huang, Absolute exponential stability of switched nonlinear time-delay systems, J. Franklin Inst. 353 (2016), no. 6, 1249–1267. [32] D. Zhang, Z. Zhou and X. Jia, Network-based PI control for output tracking of continuous-time systems with time-varying sampling and network-induced delays, J. Franklin Inst. 355 (2018), no. 12, 4794–4808. [33] X. Zhao, L. Zhang, P. Shi, and M. Liu, Stability of switched positive linear systems with average dwell time switching, Automatica 48 (2012), no. 6, 1132–1137. [34] X. Zhao, X. Zheng, B. Niu and L. Liu, Adaptive tracking control for a class of uncertain switched nonlinear systems, Automatica 52 (2015), 185–191. | ||
آمار تعداد مشاهده مقاله: 20,560 تعداد دریافت فایل اصل مقاله: 153 |