
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,747 |
تعداد دریافت فایل اصل مقاله | 7,656,164 |
بررسی اثر رزین اپوکسی بر دوام و آسیب چرخههای ذوب و یخ در مخلوطهای آسفالتی با استخوانبندی سنگدانهای (SMA) حاوی الیاف سرامیک | ||
مهندسی زیر ساخت های حمل و نقل | ||
دوره 9، شماره 2 - شماره پیاپی 34، شهریور 1402، صفحه 33-50 اصل مقاله (1.87 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2023.30368.1640 | ||
نویسندگان | ||
محمدمهدی مجیدی شاد1؛ محمدمهدی خبیری* 2؛ فریدون مقدسنژاد3 | ||
1دانشکده مهندسی عمران، دانشگاه یزد | ||
2دانشگاه یزد،دانشکده مهندسی عمران | ||
3دانشکده مهدسی عمران ومحیط زیست، دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) | ||
تاریخ دریافت: 24 فروردین 1402، تاریخ بازنگری: 12 خرداد 1402، تاریخ پذیرش: 02 تیر 1402 | ||
چکیده | ||
نیاز به اجرای مخلوطهای آسفالتی با مقاومت و دوام بیشتر در راستای کاهش هزینههای نگهداری همواره مدنظر محققین بوده است. آسفالت با استخوانبندی سنگدانهای (SMA) ازجمله این آسفالتها میباشد که بواسطه درصد قیر بهینه بیشتر و ساختار دانهبندی خاصش بهرهگیری از افزودنیهای پلیمری و الیافهای مختلف را مورد توجه قرار داده است. در این پژوهش ترکیب سه درصد وزنی متفاوت (10، 15 و 20 درصد) رزین اپوکسی بهعنوان یک اصلاحکننده پلیمری ترموست به قیر و همچنین حضور الیاف سرامیک (0.4 درصد کل وزن مخلوط) جهت ارتقا عملکرد در برابر اثر مخرب چرخههای ذوب و یخ در مخلوط آسفالتی با استخوانبندی سنگدانهای مورد ارزیابی قرار گرفت. بدین منظور ابتدا خصوصیات رئولوژی و شیمیایی قیر اصلاحشده بررسی و سپس تستهای ریزش قیر آسفالت، کانتابرو و چرخه ذوب و یخ بر روی نمونهها انجام پذیرفت. تحلیل نتایج نشاندهنده تغییرات مثبت در خصوصیات رئولوژی و شیمیایی قیر متناسب با درصد افزایش رزین اپوکسی بوده به نحوی که نمونه اصلاحشده با 20 درصد رزین اپوکسی کمترین میزان تخریب ناشی از سیکلهای ذوب و یخ را تجربه نمود. همچنین مشخص گردید الیاف سرامیک نقش موثرتری نسبت به اصلاحکننده پلیمری در کاهش میزان ریزش قیر و افزایش مقاومت آسفالت با استخوانبندی سنگدانهای در برابر عریانشدگی ناشی از ضربه دارا میباشد. | ||
کلیدواژهها | ||
رزین اپوکسی؛ آسفالت با استخوانبندی سنگدانهای (SMA)؛ چرخههای ذوب و یخ؛ کانتابرو؛ الیاف سرامیک | ||
عنوان مقاله [English] | ||
Investigating the effect of epoxy resin on the durability and damage of Freeze-thaw cycles,s in Stone-matrix asphalt containing ceramic fibers | ||
نویسندگان [English] | ||
Mohammad mehdi Majidi Shad1؛ Mohammad Mehdi Khabiri2؛ Fereidoon Moghadas Nejad3 | ||
1Civil Engineering Faculty, Yazd University | ||
2Civil Engineering Departement,Yazd University | ||
3Civil Engineering Faculty, Amirkabir University of Technology (Polytechnic) | ||
چکیده [English] | ||
The aggregate particles in asphalt mixtures get connected by (bitumen + mineral filler) mastic. The goal of this paper is to study the feasibility of partial and total substitution of Limestone (LS) filler by Barite powder (BP) in Stone matrix asphalt (SMA) mixtures. To evaluate barite powder performance, resilient modulus, indirect tensile strength, freeze-thaw cycles, dynamic creep at two different temperatures, and bitumen draindown tests were used. The obtained values revealed that an increase in barite powder content from 50% to 100% improved the Stone matrix asphalt mixture moisture performance by 4.5% after going through 5 freeze-thaw cycles while on the other hand, it had an 18.5% reverse effect on the permanent deformation in higher temperatures. Also, despite barite powder's positive effect on bitumen draindown compared to the control samples; it could not thoroughly control SMA bitumen draindown. | ||
کلیدواژهها [English] | ||
Filler, Stone matrix asphalt (SMA), Barite powder, Moisture Damage, Permanent Deformation | ||
مراجع | ||
Apostolidis, P., Liu, X., Kasbergen, C., Van de Ven, M., Pipintakos, G. and Scarpas, A. 2018. “Chemo-rheological study of hardening of epoxy modified bituminous binders with the finite element method”. Transport. Res. Record, 2672(28): 190-199.
Arabani, M. and Shabani, A. 2019. “Evaluation of the ceramic fiber modified asphalt binder”. Constr. Build. Mater., 205: 377-386.
Bahmani, H., Khani Sanij, H., Roshani, R., Majidi Shad, M., Hosseini, S., Edalati, M., . . . Almasi, S. 2022. “Influence of mixing conditions of modified bitumen on moisture sensitivity of asphalt compounds”. Int. J. Eng., 35(5): 855-864.
Behnood, A. and Olek, J. 2017. “Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA)”. Constr. Build. Mater., 151: 464-478.
Blazejowski, K. 2016. “Stone matrix asphalt: Theory and practice”. CRC Press.
Cheng, Y., Wang, W., Gong, Y., Wang, S., Yang, S. and Sun, X. 2018. “Comparative study on the damage characteristics of asphalt mixtures reinforced with an eco-friendly basalt fiber under freeze-thaw cycles”. Mater., 11(12): 2488.
Cong, L., Ren, M., Shi, J., Yang, F. and Guo, G. 2020. “Experimental investigation on performance deterioration of asphalt mixture under freeze–thaw cycles”. Int. J. Transport. Sci. Tech., 9(3): 218-228.
Cox, B. C., Smith, B. T., Howard, I. L. and James, R. S. 2017. “State of knowledge for Cantabro testing of dense graded asphalt”. J. Mater. Civ. Eng., 29(10): 04017174.
Dong, Z. and Li, L. P. 2015. “Study on dynamic mechanical properties and microstructure of epoxy asphalt”. In: 2015 International Conference on Applied Science and Engineering Innovation (pp. 516-523), Atlantis Press.
Fuhaid, A. A., Lu, Q. and Luo, S. 2018. “Laboratory evaluation of biobased epoxy asphalt binder for asphalt pavement”. J. Mater. Civ. Eng., 30(7): 06018007.
Herrington, P. R. 2009. “Epoxy-modified porous asphalt”. New Zealand Transport Agency.
Karimi, M. M., Dehaghi, E. A. and Behnood, A. 2021. “A fracture-based approach to characterize long-term performance of asphalt mixes under moisture and freeze-thaw conditions”. Eng. Fracture Mech., 241: 107418.
Luo, S., Lu, Q., Qian, Z., Wang, H. and Huang, Y. 2017. “Laboratory investigation and numerical simulation of the rutting performance of double-layer surfacing structure for steel bridge decks”. Constr. Build. Mater., 144: 178-187.
Majidi Shad, M. M., Khabiri, M. M., Arabani, M. and Bahmani, H. 2022. “3D finite element model for recycled asphalt mixtures with high percentages of reclaimed asphalt pavement rutting simulation”. Int. J. Eng., 35(7): 1428-1439.
Naseri Yalghouzaghaj, M., Sarkar, A., Hamedi, G. H. and Hayati, P. 2020. “Effect of ceramic fibers on the thermal cracking of hot-mix asphalt”. J. Mater. Civ. Eng., 32(11): 04020325.
Qian, Z. and Lu, Q. 2015. “Design and laboratory evaluation of small particle porous epoxy asphalt surface mixture for roadway pavements”. Constr. Build. Mater., 77: 110-116.
Özgan, E. and Serin, S. 2013. “Investigation of certain engineering characteristics of asphalt concrete exposed to freeze–thaw cycles”. Cold Reg. Sci. Tech., 85: 131-136.
Sol-Sánchez, M., Moreno-Navarro, F., García-Travé, G. and Rubio-Gámez, M. C. 2015. “Laboratory study of the long-term climatic deterioration of asphalt mixtures”. Constr. Build. Mater., 88: 32-40.
Wang, X., Wu, R. and Zhang, L. 2019. “Development and performance evaluation of epoxy asphalt concrete modified with glass fibre”. Road Mater. Pavement Design, 20(3): 715-726.
Wang, X., Ma, B., Chen, S., Wei, K. and Kang, X. 2021. “Properties of epoxy-resin binders and feasibility of their application in pavement mixtures”. Constr. Build. Mater., 295: 123531.
Wu, J. P., Herrington, P. R. and Alabaster, D. 2019. “Long-term durability of epoxy-modified open-graded porous asphalt wearing course”. Int. J. Pavement Eng., 20(8): 920-927.
Xiang, Q. and Xiao, F. 2020. “Applications of epoxy materials in pavement engineering”. Constr. Build. Mater., 235: 117529.
Xu, W., Zhuang, G., Chen, Z. and Wei, J. 2020. “Experimental study on the micromorphology and strength formation mechanism of epoxy asphalt during the curing reaction”. Appl. Sci., 10(7): 2610.
Yan, K., Ge, D., You, L. and Wang, X. 2015. “Laboratory investigation of the characteristics of SMA mixtures under freeze–thaw cycles”. Cold Reg. Sci. Tech., 119: 68-74.
Yarahmadi, A. M., Shafabakhsh, G. and Asakereh, A. 2022. “Laboratory investigation of the effect of nano CaCO3 on rutting and fatigue of stone mastic asphalt mixtures”. Constr. Build. Mater., 317: 126127.
Yu, J., Cong, P., & Wu, S. (2009). Laboratory investigation of the properties of asphalt modified with epoxy resin. Journal of Applied Polymer Science, 113(6), 3557-3563.
Yin, H., Zhang, Y., Sun, Y., Xu, W., Yu, D., Xie, H. and Cheng, R. 2015. “Performance of hot mix epoxy asphalt binder and its concrete”. Mater. Struct., 48: 3825-3835.
Zhu, C. 2013. “Japan TAF epoxy asphalt concrete design and steel bridge deck pavement construction technology”. Appl. Mech. Mater., 330: 905-910.
Zhu, J., Birgisson, B. and Kringos, N. 2014. “Polymer modification of bitumen: Advances and challenges”. Eur. Polym. J., 54: 18-38.
Zhang, Z., Sun, J., Huang, Z., Wang, F., Jia, M., Lv, W. and Ye, J. 2021. “A laboratory study of epoxy/polyurethane modified asphalt binders and mixtures suitable for flexible bridge deck pavement”. Constr. Build. Mater., 274: 122084. | ||
آمار تعداد مشاهده مقاله: 266 تعداد دریافت فایل اصل مقاله: 223 |