
Int. J. Nonlinear Anal. Appl. 14 (2023) 10, 293–302
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2023.28086.3797

Best proximity point theorems for generalized weakly
contractive mappings in metric spaces

Yohannes Gebru Aemro∗, Fayise Adare Demu

Department of Mathematics, College of Natural Science and Computational, Wolkite University, Wolkite, Ethiopia

(Communicated by Abasalt Bodaghi)

Abstract

The aim of this paper is to establish certain new classes of proximal contraction mappings and establish some best
proximity point theorems for such kinds of mapping, thereby we extend some fixed point theorems for generalized
weakly contractive mappings in metric spaces to the case of non-self mapping.
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1 Introduction

In nonlinear functional analysis, fixed point theory and best proximity point theory play an important role in the
existence of certain differential and integral equations. As a consequence fixed point theory is very useful for various
quantitative sciences that involve such equations. The most remarkable paper in this field was reported by Banach
in 1922 [3]. In his paper Banach proved that every contraction in a complete metric space has a unique fixed point.
Following this paper many researchers have extended and generalized this remarkable fixed point theorem of Banach
by changing either the conditions of the mappings or the construction of the space. In 1977, Alber [1] generalized
Banach’s contraction principle by introducing the concept of weak contraction mappings in Hilbert spaces. The Weak
contraction principle states that every weak contraction mapping on a complete Hilbert space has a unique fixed
point. Rhoades [13] extended weak contraction principle in Hilbert spaces to metric spaces. Since then, many authors
obtained generalizations and extensions of the weak contraction principle. Khan [7] obtained fixed point theorems
in metric spaces by introducing the concept of altering distance functions. In particular, Choudhury [4] obtained a
generalization of the weak contraction principle in metric spaces by using altering distance functions.

Definition 1.1. [7] A function ψ : [0,∞) → [0,∞) is called an altering distance function if the following properties
are satisfied:

i) ψ is monotone increasing and continuous;

ii) ψ(t) = 0 if and only if t = 0.

Further, let Φ denote the class of all functions ϕ : [0,∞) → [0,∞) which satisfy the following conditions:
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i) ϕ is a lower semi-continuous function;
ii) ϕ(t) = 0 ⇐⇒ t = 0.

Definition 1.2. [6] Let (X,d) be a metric space. The mapping T : X → X is said to be a contractive mapping if

d(Tx, Ty) < d(x, y) for all x, y ∈ X with x ̸= y.

Definition 1.3. [13] Let (X, d) be a metric space and T : X → X be a mapping. T is said to be weakly contractive
if

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)), for all x, y ∈ X,

where ϕ ∈ Φ

Lemma 1.4. [2] If a sequence {xn} ⊂ X is not Cauchy, then there exist ϵ > 0 and two sub-sequences {xm(k)}
and {xn(k)} of {xn} such that m(k) is the smallest index for which m(k) > n(k) > k, d(xm(k), xn(k)) ≥ ϵ and
d(xm(k)−1, xn(k)) < ϵ. Moreover, suppose that limn→∞ d(xn, xn+1) = 0. Then we have:

(i) limn→∞ d(xm(k), xn(k)) = ϵ;

(ii) limn→∞ d(xm(k)−1, xn(k)−1) = ϵ;

(iii) limn→∞ d(xm(k), xn(k)−1) = ϵ;

(iv) limn→∞ d(xm(k)−1, xn(k)) = ϵ.

Definition 1.5. [5] A function T : X → [0,∞), where X is a metric space, is called lower semi-continuous if, for all
x ∈ X and {xn} ⊂ X with, limn→∞ xn = x, we have T (x) ≤ lim infn→∞ T (xn).

Definition 1.6. [5] Let X be a metric space with metric d, let T : X → X, and let φ : X → [0,∞) be a lower semi-
continuous function. Then T is called a generalized weakly contractive mapping if it satisfies the following condition:

ψ(d(Tx, Ty) + φ(Tx) + φ(Ty)) ≤ ψ(m(x, y, d, T, φ))− ϕ(l(x, y, d, t, φ)) for all x, y ∈ X, (1.1)

where, ψ ∈ Ψ, ϕ ∈ Φ,

m(x, y, d, T, φ) =max{d(x, y) + φ(x) + φ(y), d(x, Tx) + φ(x) + φ(Tx), d(y, Ty) + φ(y) + φ(Ty),

1/2{d(x, Ty) + φ(x) + φ(Ty) + d(y, Tx) + φ(y) + φ(Tx)}}

and
l(x, y, d, T, φ) = max{d(x, y) + φ(x) + φ(y), d(y, Ty) + φ(y) + φ(Ty)}.

Cho has proved the following fixed point for generalized weakly contractive mappings in metric spaces:

Theorem 1.7. [5] Let X be complete. If T is a generalized weakly contractive mapping, then there exists a unique
z ∈ X such that z = Tz and φ(z) = 0.

2 Preliminaries

Fixed point theory is essential for solving various equations of the form Tx = x for self-mappings T defined on
subsets of metric spaces or other spaces. Given non-empty subsets A and B of a metric space and a non-self-mapping
T : A→ B, the equation Tx = x does not necessarily has a solution, which is known as a fixed point of the mapping T .
However, in such conditions, it may be considered to determine an element x for which the error d(x, Tx) is minimum,
in which case x and Tx are in close proximity to each other. It has been noted that the best proximity point theory
is relevant to this end.

A best proximity point theorem provides sufficient conditions that confirm the existence of an optimal solution
to the problem of globally minimizing the error d(x, Tx), and hence the existence of an approximate solution to the
equation Tx = x. In fact, with respect to the fact that d(x, Tx) ≥ d(A,B) for all x, a best proximity point theorem
requires the global minimum of the error d(x, Tx) to be the least possible value d(A,B). Eventually, a best proximity
point theorem offers sufficient conditions for the existence of an element x, called a best proximity point of the mapping
T, satisfying the condition d(x, Tx) = d(A,B). Moreover, it is interesting to observe that best proximity theorems
also appear as a natural generalization of fixed point theorems, i.e., a best proximity point reduces to a fixed point if
the mapping under consideration is a self-mapping. see[11, 12, 10, 8, 14]
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Definition 2.1. Let (X, d) be a metric space and A and B be nonempty subsets of the metric space X. A mapping
T : A→ B is called a k-contraction if there exists k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y) for any x, y ∈ A.

It is clear that a k-contraction coincides with the celebrated Banach contraction if one takes A = B where A is a
complete subset of X. [15] Let A and B be nonempty subsets of a metric space (X, d). We denote by A0 and B0 the
following sets:

A0 = {x ∈ A : d(x, y) = d(A,B), for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B), for some x ∈ A},

where
d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Definition 2.2. [9] Let A,B be non-empty subsets of metric space (X, d). Given a non-self mapping T : A → B,
then an element x∗ ∈ A is called a best proximity point of the mapping T if this condition satisfied:

d(x∗, Tx∗) = d(A,B).

3 Main result

In this section, we introduce a new class of mappings, which we call them ”Generalized proximal weakly contractive
mappings” and state and prove the existence and uniqueness of the best proximity point for such kinds.

Definition 3.1. Let (X, d) be a metric space and A and B be two non-empty subsets of metric space (X, d). A map
T : A→ B is said to be a generalized proximal weakly contractive mapping, if for all x, y, s, r ∈ A

d(s, Tx) = d(A,B) and d(r, Ty) = d(A,B).

Then
ψ(d(s, r) + φ(s) + φ(r)) ≤ ψ(mr(x, y, s, r, d, φ))− ϕ(lr(x, y, s, r, d, φ)),

where
mr(x, y, s, r, d, φ) = max{d(x, y) + φ(x) + φ(y), d(x, s) + φ(x) + φ(s), d(y, r) + φ(y) + φ(r),

1/2[d(x, r) + φ(x) + φ(r) + d(y, s) + φ(y) + φ(s)]}

and
lr(x, y, s, r, d, φ) = max{d(x, y) + φ(x) + φ(y), d(y, r) + φ(y) + φ(r)}

and ψ ∈ Ψ, ϕ ∈ Φ and φ is a lower semi-continuous function.

Theorem 3.2. Let (A,B) be a pair of non-empty closed subsets of a complete metric space (X, d). Consider a
mapping T : A→ B satisfying the following conditions:

i) T is a generalized proximal weakly contractive mapping;

ii) A0 ̸= ∅ and T (A0) ⊆ B0;

iii) T is a continuous mapping.

Then there exist a point x∗ ∈ A such that d(x∗, Tx∗) = d(A,B). Furthermore, T has a unique best proximity
point.

Proof . We prove the existence of best proximity point. Since A0 is non-empty set, A0 contains at least one element,
say x0 ∈ A0. Since Tx0 ∈ T (A0) ⊆ B0, there exists x1 ∈ A such that d(x1, Tx0) = d(A,B). Then by the definition of
A0 we have that x1 ∈ A0. Similarly, since Tx1 ∈ T (A0) ⊂ B0, there exists x2 ∈ A0 such that d(x2, Tx1) = d(A,B).
Continuing this process in a similar fashion, we obtain the sequence {xn} ⊂ A0 such that

d(xn, Txn−1) = d(A,B), for all n ∈ N. (3.1)
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Now, suppose that there exist an n0 ∈ N with xn0
= xn0+1. From (3.1) we have

d(xn0+1, Txn0) = d(A,B).

Therefore, d(xn0 , Txn0) = d(A,B). So xn0 is a best proximity point of T . Suppose that xn ̸= xn+1 for all n ∈ N.
Claim: d(xn, xn+1) → 0. Since T is a generalized proximal weakly contractive mapping and by using (3.1) we have

d(xn+1, Txn) = d(A,B) and d(xn+2, Txn+1) = d(A,B).

Then,

ψ(d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)) ≤ψ(mr(xn, xn+1, xn+2, d, φ))− ϕ(lr(xn, xn+1, xn+2, d, φ))

=ψ(max{d(xn, xn+1) + φ(xn) + φ(xn+1), d(xn, xn+1) + φ(xn) + φ(xn+1),

d(xn+1, xn+2) + φ(xn+1) + φ(xn+2), 1/2[d(xn, xn+2) + φ(xn) + φ(xn+2)

+ d(xn+1, xn+1) + φ(xn+1) + φ(xn+1)]})− ϕ(max{d(xn, xn+1) + φ(xn)

+ φ(xn+1), d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)}). (3.2)

We have

1/2(d(xn, xn+2) + φ(xn) + φ(xn+2) + d(xn+1, xn+1)) + φ(xn+1) + φ(xn+1))

=1/2(d(xn, xn+2) + φ(xn) + φ(xn+2) + φ(xn+1) + φ(xn+1)).

By using triangular inequality,

d(xn, xn+2) ≤ d(xn, xn+1) + d(xn+1, xn+2).

Hence

1/2(d(xn, xn+2) + φ(xn) + φ(xn+2) + φ(xn+1) + φ(xn+1))

≤1/2(d(xn, xn+1) + φ(xn) + φ(xn+1) + d(xn+1, xn+2) + φ(xn+1)) + φ(xn+2))

≤max(d(xn, xn+1) + φ(xn) + φ(xn+1), d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)).

Then from (3.2) we obtain

ψ(d(xn+1, xn+2) + φ(xn+1)) + φ(xn+2))

≤ ψ(max{d(xn, xn+1) + φ(xn) + φ(xn+1), d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)})
− ϕ(max{d(xn, xn+1) + φ(xn) + φ(xn+1), d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)}).

(3.3)

Suppose that,
d(xn, xn+1) + φ(xn) + φ(xn+1) < d(xn+1, xn+2) + φ(xn+1) + φ(xn+2),

for some positive integer n. Then from (3.3) we get

ψ(d(xn+1, xn+2)+φ(xn+1)+φ(xn+2)) ≤ ψ(d(xn+1, xn+2)+φ(xn+1)+φ(xn+2))−ϕ(d(xn+1, xn+2)+φ(xn+1)+φ(xn+2))

that is,
ϕ(d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)) ≤ 0,

which implies that,
ϕ(d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)) = 0.

From the properties of ϕ,
d(xn+1, xn+2) + φ(xn+1) + φ(xn+2) = 0.

xn+1 = xn+2 and φ(xn+1) = φ(xn+2) = 0,

which is a contradiction. Therefore,

d(xn+1, xn+2) + φ(xn+1) + φ(xn+2) < d(xn, xn+1) + φ(xn) + φ(xn+1) for any n ∈ N. (3.4)
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So

ψ(d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)) ≤ ψ(d(xn, xn+1) + φ(xn) + φ(xn+1))

− ϕ(d(xn, xn+1) + φ(xn) + φ(xn+1)) < ψ(d(xn, xn+1) + φ(xn) + φ(xn+1)).
(3.5)

So,
ψ(d(xn+1, xn+2) + φ(xn+1) + φ(xn+2)) < ψ(d(xn, xn+1) + φ(xn) + φ(xn+1)).

It follows from (3.4) that the sequence

{d(xn, xn+1) + φ(xn) + φ(xn+1)}

is decreasing and bounded below, hence there exists r ≥ 0 such that

lim
n→∞

{d(xn, xn+1) + φ(xn) + φ(xn+1)} → r.

We claim that r = 0. Assume r > 0. Taking the limsup in both sides as n → ∞ in (3.5), by using the continuity
of ψ and the lower semi-continuity of ϕ it follow that,

ψ(r) ≤ ψ(r)− lim inf
n→∞

ϕ(d(xn, xn+1) + φ(xn) + φ(xn+1)) ≤ ψ(r)− ϕ(r).

Since r > 0, so, ϕ(r) > 0. Hence
ψ(r) ≤ ψ(r)− ϕ(r) < ψ(r),

a contradiction. Thus ϕ(r) = 0, i.e,

lim
n→∞

(d(xn, xn+1) + φ(xn) + φ(xn+1)) = 0,

which implies

lim
n→∞

d(xn, xn+1) = 0 and (3.6)

lim
n→∞

φ(xn) = 0. (3.7)

Now, we prove that the sequence {xn} is Cauchy. If {xn} is not Cauchy, then there exist ϵ > 0 and sub-
sequences {xm(k)} and {xn(k)} of {xn} such that for all positive integers k, n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ϵ and
d(xm(k), xn(k)−1) < ϵ. Since T is a generalized proximal weakly contractive mapping and from (3.1) we have

d(xm(k)+1, Txm(k)) = d(A,B) and d(xn(k)+1, Txn(k)) = d(A,B).

Then,

ψ(d(xm(k)+1, xn(k)+1) + φ(xm(k)+1) + φ(xn(k)+1))

≤ ψ(mr(xm(k), xn(k), xm(k)+1, xn(k)+1, d, φ))− ϕ(lr(xm(k), xn(k), xm(k)+1, xn(k)+1, d, φ))

= ψ(max(d(xm(k), xn(k)) + φ(xm(k)) + φ(xn(k)), d(xm(k), xm(k)+1) + φ(xm(k))

+ φ(xm(k)+1), d(xn(k), xn(k)+1) + φ(xn(k)) + φ(xn(k+1)), 1/2{d(xm(k), xn(k)+1)

+ φ(xm(k)) + φ(xn(k)+1) + d(xn(k), xm(k)+1) + φ(xn(k)) + φ(xm(k)+1)}))
− ϕ(max(d(xm(k), xn(k)) + φ(xm(k)) + φ(xn(k)),

d(xn(k), xn(k)+1) + φ(xn(k)) + φ(xn(k)+1))).

(3.8)

Taking limsup as k → ∞ in (3.8), by using the continuity of ψ and the lower semi-continuity of ϕ and applying
Lemma (1.4), (3.6) and (3.7) it follow that,

ψ(ϵ) ≤ ψ(ϵ)− lim inf
n→∞

ϕ(d(xm(k), xn(k)) + φ(xm(k)) + φ(xn(k))) ≤ ψ(ϵ)− ϕ(ϵ),
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which implies that ϕ(ϵ) = 0. From the properties of ϕ, ϵ = 0. This contradict the fact that ϵ > 0. So {xn} is a Cauchy
sequence. Since {xn} ⊂ A and A is a closed subset of the complete metric space (X, d), there exists x∗ ∈ A such that
limk→∞ xn = x∗ and since φ is lower semi-continuous,

φ(x∗) ≤ lim inf
n→∞

φ(xn) ≤ lim
n→∞

φ(xn) = 0,

this implies that, φ(x∗) = 0. Since T is continuous, we have limn→∞ Txn = Tx∗ and d(xn+1, Txn) → d(x∗, Tx∗). So
d(x∗, Tx∗) = d(A,B). Hence x∗ is a best proximity point of T . We prove that the best proximity point of T is unique.
Let p and q be two best proximity points of T and p ̸= q. Therefore,

d(p, Tp) = d(A,B) and d(q, T q) = d(A,B).

Since T is a generalized proximal weakly contractive mapping, we have

ψ(d(p, q) + φ(p) + φ(q)) ≤ψ(mr(p, q, p, q, d, φ))− ϕ(lr(p, q, p, q, d, φ))

=ψ(max{d(p, q) + φ(p) + φ(q), d(p, p) + φ(p) + φ(p), d(q, q) + φ(q) + φ(q),

1/2[d(p, q) + φ(p) + φ(q) + d(q, p) + φ(q) + φ(p)]})
− ϕ(max{d(p, q) + φ(p) + φ(q), d(q, q) + φ(q) + φ(q)})

=ψ(max{d(p, q) + φ(p) + φ(q), d(p, q) + φ(p) + φ(q)})
− ϕ(max{d(p, q) + φ(p) + φ(q)d(q, q) + φ(q) + φ(q)})

=ψ(d(p, q) + φ(p) + φ(q))− ϕ(d(p, q) + φ(p) + φ(q)).

That is, ψ(d(p, q)) ≤ ψ(d(p, q)) − ϕ(d(p, q)). This means that ϕ(d(p, q)) = 0 and so d(p, q) = 0. Which is a
contradiction to p ̸= q. Hence the best proximity point is unique. □

Corollary 3.3. Let (A,B) be a pair of non-empty closed subsets of a complete metric space (X, d). Consider a
mapping T : A→ B satisfying the following conditions:

(i) For all x, y, s, r ∈ A
d(s, Tx) = d(A,B), d(r, Ty) = d(A,B),

then,

ψ(d(s, r) + φ(s) + φ(r)) ≤ ψ(1/2[d(x, r) + φ(x) + φ(r) + d(y, s) + φ(y) + φ(s)])− ϕ(lr(x, y, s, r, d, φ)),

where
lr(x, y.s, r, d, φ) = max{d(x, y) + φ(x) + φ(y), d(y, r) + φ(y) + φ(r)}

ψ ∈ Ψ and ϕ ∈ Φ and φ is a lower semi-continuous function.

(ii) A0 ̸= ∅ and T (A0) ⊆ B0;

(iii) T is a continuous mapping.

Then there exists a unique x∗ ∈ A such that d(x∗, Tx∗) = d(A,B).

Proof . First, notice that

1/2[d(x, r) + φ(x) + φ(r) + d(y, s) + φ(y) + φ(s)] ≤max{d(x, y) + φ(x) + φ(y), d(x, s) + φ(x) + φ(s), d(y, r) + φ(y)

+ φ(r), 1/2[d(x, r) + φ(x) + φ(r) + d(y, s) + φ(y) + φ(s)]}
=mr(x, y, s, r, d, φ).

Since ψ is non-decreasing for all x, y, s, r ∈ A, we have

ψ(d(s, r) + φ(s) + φ(r)) ≤ ψ(1/2[d(x, r) + φ(x) + φ(r) + d(y, s) + φ(y) + φ(s)])

−ϕ(lr(x, y, s, r, d, φ)) ≤ ψ(mr(x, y, s, r, d, φ))− ϕ(lr(x, y, s, r, d, φ)).

The desired result is obtained by applying Theorem 3.2. □
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Remark 3.4. Let A = B. Then Theorem (3.2 ) reduces to corollary (3.5).

Corollary 3.5. Let A be a nonempty closed subsets of a complete metric space (X, d). Consider a mapping T : A→ A
satisfying the following condition:

i) Let for all x, y ∈ A,

ψ(d(Tx, Ty) + φ(Tx) + φ(Ty)) ≤ ψ(mr(x, y, Tx, Ty, d, φ))− ϕ(lr(x, y, Tx, Ty, d, φ)),

where

mr(x, y, Tx, Ty, d, φ) = max{d(x, y) + φ(x) + φ(y), d(x, Tx) + φ(x) + φ(Tx), d(y, Ty) + φ(y) + φ(Ty),

1/2[d(x, Ty) + φ(x) + φ(Ty) + d(y, Tx) + φ(y) + φ(Tx)]}

and
lr(x, y, Tx, Ty, d, φ) = max{d(x, y) + φ(x) + φ(y), d(y, Ty) + φ(y) + φ(Ty)}

and ψ ∈ Ψ, ϕ ∈ Φ and φ is a lower semi-continuous function.

Then there exists a unique x∗ ∈ A such that Tx∗ = x∗ and φ(x∗) = 0.

Proof . Using Theorem (1.7) when A = B, the desired result follows. □

Example 3.6. Let X = R2 and d : X ×X → [0,∞) be define by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|, for all (x1, x2), (y1, y2) ∈ X.

Then (X, d) is a complete metric space. Suppose the closed subsets:

A = {(x, 0) : 0 ≤ x ≤ 1},

B = {(x, 1) : 0 ≤ x ≤ 1}.

Let T : A→ B be the mapping defined by T (x, 0) =
(

x2

2(1+x) , 1
)
, ψ(t) =

3t

2
, for all t ≥ 0 and

φ(t) =

 t/2, 0 ≤ t ≤ 1;
t/2+1/2, 1 < t ≤ 2;
t, t > 2.

Then φ is lower semi-continuous and

t/2 ≤ φ(t) ≤ t for all t ≥ 0.

Assume that a function ϕ : [0,∞) → [0,∞) is define by

ϕ(t) =
3t

4 + 2t
.

d(A,B) = inf{d((x, 0), (x, 1)) : (x, 0) ∈ A, (x, 1) ∈ B} = inf{|x− x|+ |0− 1|} = 1.

We know that
A0 = A,B0 = B and T (A0) ⊆ B0.

Now, we check that T is a generalized proximal weakly contraction. In fact, for (x, 0), (y, 0), (s, 0), (r, 0) ∈ A, we
have

d((s, 0), T (x, 0)) = d(A,B) implies that d((s, 0), (
x2

2(1 + x)
, 1)) = 1.
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So s = x2

2(1+x) and d((r, 0), T (y, 0)) = d(A,B) implies

d((r, 0), (
y2

2(1 + y)
, 1)) which implies that r =

y2

2(1 + y)
.

We shows that

ψ(d((s, 0), (r, 0)) + φ((s, 0)) + φ((r, 0))) ≤ ψ(mr((x, 0), (y, 0)(s, 0), (r, 0), d, φ))− ϕ(lr(x, 0), (y, 0), (s, 0), (r, 0), d, φ)).

Suppose that x ≥ y (the same argument works for y ≥ x). Then we have,

mr((x, 0), (y, 0), (s, 0), (r, 0), d, φ) =max{d((x, 0), (y, 0)) + φ(x, 0) + φ(y, 0), d((x, 0), (s, 0)) + φ(x, 0) + φ((s, 0)),

d((y, 0), (r, 0)) + φ(y, 0) + φ((r, 0)), 1/2{d((x, 0), (r, 0)) + φ(x, 0) + φ((r, 0))

+ d((y, 0), (s, 0)) + φ(y, 0) + φ((s, 0))}},

1/2{d((x, 0), (r, 0)) + φ(x, 0) + φ((r, 0)) + d((y, 0), (s, 0)) + φ(y, 0) + φ((s, 0))}}

≥1/2{d((x, 0), (r, 0)) + (x, 0)

2
+

(r, 0)

2
+ d((y, 0), (s, 0)) +

(s, 0)

2
+

(s, 0)

2
}

≥1/2{1/2{d((x, 0), (r, 0)) + (x, 0) + (r, 0) + d((y, 0), (s, 0)) + (y, 0) + (s, 0)}}

=1/2

{
d((x, 0), (

y2

2(1 + y)
, 0)) + (x, 0) + (

y2

2(1 + y)
, 0) + d((y, 0), (

x2

2(1 + x)
, 0)) + (y, 0) + (

x2

2(1 + x)
, 0)

}
=1/4

{
(|x− y2

2(1 + y)
|+ |0− 0|) + (x, 0) + (

y2

2(1 + y)
, 0) + (|y − x2

2(1 + x)
|+ |0− 0|) + (y, 0) + (

x2

2(1 + x)
, 0)

}

=

 1/2((x, 0) + (
x2

2(1 + x)
, 0)), y ≤ ( x2

2(1+x) , 0);

1/2((x, 0) + (y, 0)), otherwise.

>(
x

2
, 0).

Thus we have,

mr((x, 0), (y, 0), (s, 0), (r, 0), d, φ) =max{d((x, 0), (y, 0)) + φ(x, 0) + φ(y, 0), d((x, 0), (s, 0)) + φ(x, 0) + φ(s, 0),

d((y, 0), (r, 0)) + φ(y, 0) + φ(r, 0), 1/2{d((x, 0), (r, 0)) + φ(x, 0) + φ(r, 0)+

d((y, 0), (s, 0)) + φ(y, 0) + φ(s, 0)}}
≥max{d((x, 0), (y, 0)) + (x, 0)/2 + (y, 0)/2, d((x, 0), (s, 0)) + (x, 0) + (s, 0)/2,

d((y, 0), (r, 0)) + (y, 0) + (y, 0)/2, 1/2{d((x, 0), (r, 0)) + (x, 0)/2 + (y, 0)/2

+ d((y, 0), (s, 0)) + (y, 0)/2 + (s, 0)}}
≥1/2{max{d((x, 0), (y, 0)) + (x, 0) + (y, 0), d((x, 0), (s, 0)) + (x, 0) + (s, 0),

d((y, 0), (r, 0)) + (y, 0) + (r, 0)), 1/2{d((x, 0), (r, 0)) + (x, 0) + (r, 0)

+ d((y, 0), (s, 0)) + (y, 0) + (s, 0))}}}

=1/2

{
max

{
(|x− y|+ |0− 0) + (x, 0) + (y, 0), (|x− x2

2(1 + x))
|+ |0− 0|) + (x, 0)

+
x2

2(1 + x)
, 0), (|y − y2

2(1 + y)
)|+ |0− 0|) + (y, 0) + (

y2

2(1 + y)
, 0), (

x

2
, 0)

}}
=1/2

{
max

{
2(x, 0), 2(x, 0), 2(y, 0), (

x

2
, 0)

}}
= (x, 0).

Then

ψ(mr((x, 0), (y, 0), (s, 0), (r, 0), d, φ)) =
3 ∗ (x, 0)

2
=

3(x, 0)

2
,
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lr{(x, 0), (y, 0), (s, 0), (r, 0), d, φ} =max{d((x, 0), (y, 0)) + φ(x, 0) + φ(y, 0), d((y, 0), (r, 0)) + φ(y, 0) + φ(r, 0)}
≤max{d((x, 0), (y, 0)) + (x, 0) + (y, 0), d((y, 0), (r, 0)) + (y, 0) + (r, 0))}

=max

{
(|x− y|+ |0− 0|) + (x, 0) + (y, 0), (|y − y2

2(1 + x)
)|+ |0− 0|), (y, 0)

+(
y2

2(1 + x)
, 0)

}
=max{2(x, 0), 2(y, 0)} = 2(x, 0).

Then

ϕ{lr(x, 0), (y, 0), (s, 0), (r, 0), d, φ)} =
3 ∗ 2(x, 0)

4 + 2 ∗ 2(x, 0)
=

6(x, 0)

4 + 4(x, 0)

=
3(x, 0)

2(1 + (x, 0))
,

ψ(d((s, 0), (r, 0)) + φ(s, 0) + φ(r0)) ≤ψ(d((s, 0), (r, 0)) + (s, 0) + (r, 0))

=ψ(d((
x2

2(1 + x)
, 0), (

y2

2(1 + y)
, 0)) + (

x2

2(1 + x)
, 0) + (

y2

2(1 + y, 0)
, 0))

=ψ((|( x2

2(1 + x)
)− (

y2

2(1 + y)
)|+ |0− 0|) + (

x2

2(1 + x)
, 0) + (

y2

2(1 + y, 0)
, 0))

=ψ(2(
x2

2(1 + x)
, 0)) = ψ(

x2

(1 + x)
, 0) = (

3x2

2(1 + x)
, 0).

Thus

ψ(d((s, 0), (r, 0)) + φ(s, 0) + φ(y, 0)) ≤ (
3x2

2(1 + x)
, 0).

Hence

ψ(mr((x, 0), (y, 0), (s, 0), (r, 0), d, φ))− ϕ(lr(x, 0), (y, 0), (s, 0), (r, 0), d, φ)) =
3(x, 0)

2
− 3(x, 0)

2(1 + (x, 0))

=
6(x, 0) + (6(x, 0)2)− 6(x, 0)

4(1 + (x, 0))
=

3(x, 0)2

2(1 + x)

≥ψ(d((s, 0), (r, 0)) + φ(s, 0)) + φ(r, 0)),

which is implies that

ψ(d((s, 0), (r, 0)) + φ(s, 0) + φ(r, 0)) ≤ ψ(mr((x, 0), (y, 0), (s, 0), (r, 0), d, φ))− ϕ(lr(x, 0), (y, 0), (s, 0), (r, 0), d, φ)).

Therefore T is a generalized proximal weakly contractive mapping. Hence, all the hypotheses of Theorem 4.0.1 are
satisfied. Thus T has a unique best proximity point, then there exist (x∗, 0) ∈ A such that

d((x∗, 0), T (x∗, 0)) = d(A,B) = 1.

This implies that

d((x∗, 0), T (x∗, 0)) = d((x∗, 0), (
(x∗)2

2(1 + x∗)
, 1)) = 1,

which implies that

|x∗ − (x∗)2

2(1 + x∗)
|+ |0− 1| = 1.

From this we get

x∗ − (x∗)2

2(1 + x∗)
= 0
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and
x∗ = 0 and x∗ = −2.

But −2 /∈ [0, 1]. The point
(x∗, 0) ∈ A is (0, 0) ∈ A.

Therefore (x∗, 0) = (0, 0) is the best proximity point of T .
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