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STABILITY OF GENERALIZED QCA-FUNCTIONAL EQUATION
IN P-BANACH SPACES

S. ZOLFAGHARI

Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approxzimate Homomorphisms

ABSTRACT. In this paper, we investigate the generalized Hyers-Ulam-Rassias sta-
bility for the quartic, cubic and additive functional equation

Fatky)+fe—ky) = & f(x+y) +5 f (@ —y)+ (& = DR () + 52 (—y) - 2f ()]
(k € Z—{0,£1}) in p—Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

The concept of stability of a functional equation arises when one replaces a func-
tional equation by an inequality which acts as a perturbation of the equation. The
first stability problem concerning group homomorphisms was raised by Ulam [15] in
1940 and affirmatively solved by Hyers [6]. The result of Hyers was generalized by
Aoki [1] for approximate additive function and by Rassias [12] for approximate linear
functions by allowing the difference Cauchy equation ||f(x1 + x2) — f(z1) — f(22)||
to be controlled by (|| z1 ||P + || z2 ||). Taking into consideration a lot of influence
of Ulam, Hyers and Rassias on the development of stability problems of functional
equations, the stability phenomenon that was proved by Rassias is called the gen-
eralized Ulam-Rassias stability or Hyers-Ulam-Rassias stability (see [7, 13, 9]). In
1994, a generalization of Rassias [5] theorem was obtained by Gavruta , who replaced
e(|| z1 ||P + || x2 ||P) by a general control function p(z1, z3).

Jun and Kim [3] introduced the following functional equation

fQRr+y)+ f2r —y) =2f(v +y) +2f (v —y) + 12f(x) (1.1)

and established the general solution and the generalized Hyers-Ulam—Rassias sta-
bility for functional equation (1.1). They proved that a function f between two real
vector spaces X and Y is a solution of (1.1) if and only if there exists a unique
function C': X x X x X — Y such that f(z) = C(z,z,z) for all x € X, moreover,
C' is symmetric for each fixed one variable and is additive for fixed two variables.
The function C' is given by

1
Clay,2) = 5 (fletyt )+ flo—y—2) = flety—2) = fle -y +2))
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for all z,y,z € X. Obviously, the function f(z) = bx?® satisfies functional equation
(1.1), so it is natural to call (1.1) the cubic functional equation. Every solution
of the cubic functional equation is said to be a cubic function. Lee et. al. [L0]
considered the following functional equation

fRr+y)+ f2r —y) =4f(v +y) +4f(v —y) +24f(z) — 6f(y). (1.2)

In fact, they proved that a function f between two real vector spaces X and Y is a
solution of (1.2) if and only if there exists a unique symmetric bi-quadratic function
By : X x X — Y such that f(x) = Bs(x,z) for all z. The bi-quadratic function

B, is given by

Bo(r,) = 5 (f(x +9) + Flw —y) — 2/(x) 2/ (s)

for all 7,y € X. It is easy to show that the function f(z) = cx* satisfies the functional
equation (1.2), which is called the quartic functional equation .
We consider some basic concepts concerning p-—normed spaces.

Definition 1.1. (See [2, 11]). Let X be areal linear space. A function ||.||: X — R
is a quasi-norm (valuation) if it satisfies the following conditions:

(QNy) ||z]] > 0 for all x € X and ||z|| = 0 if and only if = = 0;

(QN3) ||A. z|| = |A|.||z|| for all A € R and all z € X;

(QN3) There is a constant M > 1: ||z + y|| < M(||z|| + ||y||) for all z,y € X.
Then (X, || . ||) is called a quasi-normed space. The smallest possible M is called

the modulus of concavity of || . ||. A quasi-Banach space is a complete quasi-normed
space.
A quasi-norm || . || is called a pnorm (0 < p < 1) if

[l +yll” < {ll” + [lyl”
for all z,y € X. In this case, a quasi-Banach space is called a p-Banach space.

By the Aoki-Rolewicz Theorem [11], each quasi-norm is equivalent to some p-
norm (see also [2]). Since it is much easier to work with p-norms, henceforth we
restrict our attention mainly to p—norms.

Najati and Moghimi [11], have obtained the generalized Hyers-Ulam-Rassias sta-
bility for a mixed type of quadratic and additive functional equation. In addition
Eshaghi Gordji and Khodaei [3], established the general solution and investigated
the Hyers-Ulam-Rassias stability for a mixed type of cubic, quadratic and additive
functional equation, with f(0) = 0,

fla+ky)+ fle—ky) =K fa+y) + P flz—y)+2(1 — k) f(z) (1.3)

in quasi-Banach spaces, where k is nonzero integer numbers with £ # +1. Obviously,
the function f(z) = ax + bz* + cz® is a solution of the functional equation (1.3).
In this paper, we investigate the generalized Hyers-Ulam stability for the quartic,
cubic and additive functional equation:

fla+ky)+ flx—ky) =k flx+y) + K fla—y)

) ) ) (1.4)
+ (k" = DK f(y) + k°f(—y) — 2f(2)]
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(k € Z — {0,£1}) in p—Banach spaces. It is easy to see that the function f(z) =
ax + bx® + cx* is a solution of the functional equation (1.4). Eshaghi et. al. [4]
investigated the general solution of the functional equation (1.4).

2. MAIN RESULT

In the rest of this paper, we will assume that X be a p—normed space and Y be
a p—Banach space. For convenience, we use the following abbreviation for a given
function f: X — Y,
Dy(x,y) :=f(x +ky) + flz — ky) = K*f(x +y) = k*f(z — y)
— (K = DK f(y) + & f(—y) — 2f(2)]

for all z,y € X.

Lemma 2.1. (See [I1]) Let 0 < p < 1 and let x1,29,...,2, be non-negative real
numbers. Then

n n
(Z C(]Z‘)p S Z l‘ip.
i=1 =1

Lemma 2.2. (See [1]) Let Vi and Vy be real vector spaces. If an odd function f :
Vi — V; satisfies (1.4), then the function g : Vi — Vs, defined by g(x) = f(2x2)—8f(z)

18 additive.

Theorem 2.3. Let { € {—1,1} be fizred, and p, : X x X — [0,00) be a function
such that

. n r oy
lim 2% (5 o) = (2.1)
for all z,y € X, and
o0 . U y
> 2l V) <o 22
-t

for all u € {z,2z,(k — D)z, (k+ 1)z, (2k — 1)z, 2k + 1)z} and all y € {x,2x,3z}.
(denoted (¢(z,y))P by ¢P(x,y)). Suppose that an odd function f : X — Y satisfies
the inequality

1Dz, y)|| < ¢alz,y) (2.3)

for all x,y € X. Furthermore, assume that f(0) = 0 in (2.3) for the case { = 1.
Then the limit

Af) = lim 2"[f(5) = 8/ (57) (2.4)

exists for allx € X and A : X —Y 1is a unique additive function satisfying

17(22) ~ 8(x) ~ AW < 5 [Fule)] (25)
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for all x € X, where

o0

1 2r 2x

" — ot Ak — 3ypop (L Py g et AT
¢a(I) ZJFZ {k2p(l€2 . 1)p [ ( 3) Qpa(2w7 21@) + Spa(zlgv 213)
="
2r «x T 2 r 3x
2 2
+ (28 0u (S ) + @A) e o) + walga ) (2.6)
k+1z =z k—1)z =z
+ ZPSOg(( 9l ) ) ﬁ) pwg(( 9l ) ) ﬁ)
2k + 1)z =« (2k—1)z =z
+ @2(77 ﬁ) + @g(T» ﬁ) |}

Proof. Let ¢ = 1. Tt follows from (2.3) and using the oddness of f that

1f(ky +2) — flky —2) = K*fz +y) — K f(z —y) + 2(k* = 1) f(2)]]

< @a(2,y)
for all x,y € X. Letting y = x in (2.7), we have

1F((k+1)a) = f((k = 1)) — k£ (22) +2(k* = 1) f(2)]| < @a(z,2) (2.8)
for all x € X. It follows from (2.8) that

1f2(k + 1)z) — f(2(k — 1)a) — k> f(42) + 2(k* = 1) f(22)]| < wa(22,22)  (2.9)

for all x € X. Replacing x and y by 2z and x in (2.7), respectively, we get

L ((k +2)x) — f((k = 2)x) = k*f(32) — K f(2) + 2(k* — 1) f(22)]|

(2.7)

< (,Da(Q.T,Q?) (210)
for all z € X. Setting y = 2z in (2.7), gives
1F((2k + D)z) = f((2k — Dx) = K f(32) — K> f(—x) + 2(k* — 1) f ()]
(2.11)
< @a(x, 27)
for all x € X. Putting y = 3z in (2.7), we obtain
1F((3k + 1)) — f((8k — 1)x) — K f(4x) — k* f(—2x) + 2(k* — 1) f(2)]|
(2.12)
< @a(z, 37)
for all z € X. Replacing x by (k + 1)z and y by z in (2.7), we get
(2K + 1)z) — f(—2) = k*f((k + 2)2) = k* f(kx) + 2(k* = 1) f((k + 1)z)| (2.13)

< @o((k+ 1)z, x)
for all x € X. Replacing x and y by (k — 1)z and x in (2.7), respectively, one gets
/(26 = D) = f(2) = K f((k = 2)x) — & f (ko) + 2(k* — 1) f((k - D)z)||
< @a((k = 1)z, z)
for all x € X. Replacing = and y by (2k + 1)z and x in (2.7), respectively, we obtain

(2.14)

1F((3k + 1)x) — f(=(k + D)x) — & f(2(k + 1)2) — k*f(2k2)

, (2.15)
+2(F° = 1) f((2k + 1)z)|| < @al(2k + 1)z, 2)
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for all x € X. Replacing = and y by (2k — 1)z and x in (2.7), respectively, we have
1f((8k — 1)z) — f(—(k — )a) — K f(2(k — 1)z) — k* f(2kx)

+2(k* = 1) f((2k — D)a)|| < @a((2k — 1)z, 2)
for all x € X. It follows from (2.8), (2.10), (2.11), (2.13) and (2.14) that

1
1fBx) = 4f(22) +5f(z)] < 202 —1) [2(k* = Dpa(, ) + k*pa(22, ) (2.17)
+ 0o, 22) + @ (k+ Dz, x) + po((k — 1), x) |
for all x € X. And, from (2.8), (2.9), (2.11), (2.12), (2.15) and (2.16), we conclude
that
1

If(4z) — 2f(3z) — 2f (22) + 6f(2)]| < R2E—1) [Pa(, 2) + k> pa(22, 22) (2.18)

+ 2(k* — Dpa(z,22) + pa(r, 37) + 0u((2k + 1)z, 2) + 0o ((2k — 1)z, 2) |
for all x € X. Finally, by using (2.17) and (2.18), we obtain that

I4) = 105 (2) + 16 (@) < 5= [44° = D)

+ 2k:2g0a(2:1:, x)+ 2k2<pa(:c, 2x) + pq(z, 3x)

(2.16)

+ 20, ((k + D)z, x) + k%0, (22, 27) (2.19)
+ 20, ((k — D, x) + 0o ((2k + 1)z, x)
+ 0o ((2k — D)z, x) |
for all x € X, and let
Yo(z) = 1{32(1{:2;_1) [(4K* — 3)a(z, 7) + K*@a (22, 27) + 2k* ¢, (22, 1)
+ 2k% 04 (2, 22) + o (@, 32) + 204 ((k + 1)z, ) (2.20)

+2p,((k — 1)z, z) + 0o ((2k + 1)z, x)
+¢a((2k = Dz, z) |
for all x € X. Thus (2.19) means that
1/ (42) = 10f(22) + 16 f (2)]| < a(x) (2.21)

for all z € X. Let g : X — Y be a function defined by g(x) := f(22) — 8f(x) for all
x € X. From (2.21), we conclude that

l9(22) = 29(2)|| < () (2.22)

for all z € X. If we replace = in (2.22) by 5% and multiply both sides of (2.22) by
2" we see that

2% g () = 29 ()l < 2oy (223)

for all z € X and all non-negative integers n. Hence

n

n T m T - 7 T 7 T 2 T
20 g() =279 )P < D 12 g () 297 < 30 2Pn(s) (224

=m
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for all non-negative integers n and m with n > m and all z € X. Since 0 < p < 1,
so by Lemma 2.1 and (2.20), we get

1
Vi () Sm
+ (2K*)P P (x,27) + oL (z,32) + 2PQP((k + 1), 2)
+ 2P ((k — D)z, ) + P ((2k + Dz, x) + 2 ((2k — 1)z, x) |
for all z € X. Therefore it follows from (2.1), (2.2) and (2.25) that

o0

Zz@%g(%) < 0, lim 2”%( ) =0 (2.26)

n—o0
1=1

[(4k* — 3)PP (2, ) 4+ k*of (22, 22) + (2k2)PP (27, x)
(2.25)

for all x € X. It follows from (2.24) and (2.26) that the sequence {2"g(5:)} is
a Cauchy sequence for all z € X. Since Y is complete, the sequence {2” (52)}
converges for all € X. Therefore, one can define a function A : X — Y by

A(z) := lim 2"g(2) (2.27)

n—oo on

for all z € X. Letting m = 0 and passing the limit n — oo in (2.24), we get

lole) = AP < 3 20E55) = 55 > 270A(5) (225)

for all x € X. Therefore (2.5) follows from (2.25) and (2.28). Now we show that A
is additive. It follows from (2.23), (2.26) and (2.27) that

T
anl

T T

— ) — 2" —
anl) g(2n

. n nils T . e
[AQ2z) = 2A(z)|| = lim [|2"g(5=) — 2 +1(2—,L)|| =2 lim [|2"g( il

for all x € X. So
A(2z) = 2A(x) (2.29)
for all z € X. On the other hand it follows from (2.1), (2.3) and (2.27) that
Y r Yy
e ) i o
<7}LHC}O2"{HDf(2n e L)l +8ID ( )H}
. n z Y —
< lim 2 {%(ﬁ> F) + 8%(2—“7 27)} =

for all z,y € X. Hence the function A satisfies (1.4). Thus by Lemma 2.2 the
function = ~» A(2x) — 8A(x) is additive. Therefore (2.29) implies that the function
A is additive.

To prove the uniqueness property of A, let A" : X — Y be another additive
function satisfying (2.5). Since

n 2 u ) . Y
nlggo 2 . Z 2 8 p 2n+1 2n+z) - nlggo Z 2 pgpa 21 21) 0
1=n+1

[Da(z,y)|l = lim 27| D, ( )|| = lim 2"IlDf(
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for all u € {x,2z, (k — 1)z, (k + 1)z, (2k — 1)z, (2k + 1)x} and all y € {x, 2z, 3z}.
Hence

lim 2”?@(23“) —0 (2.30)

n—oo

for all z € X. It follows from (2.5) and (2.30) that

/ / 1 -~
JA@) =A@ = lim 27)g() = A(GIP < o lim 270 (5) =0
forallz € X.So A=A
For ¢ = —1, we can prove the theorem by a similar technique. O

Corollary 2.4. Let €,r, s be non-negative real numbers such thatr,s > 1 orr,s < 1.
Suppose that an odd function f: X — Y satisfies the inequality

€, r =s =0;

ellx]|”, r> 0, s=0;
Dy(x, < 2.31
Dyl < 4 0 o (2.31)

el +Myll*), 7 s> 0.
for all x,y € X. Then there exists a unique additive function A : X —'Y satisfying

a, r =s =0;
€ ag ||lz||", r> 0, s=0;
— — < — s
1722) =8f() = Al = GZrz=5 ) 8 i r=0, s > 0;

1
(@ [l + 65 Nl=l™)r, 7, s> 0.

for all x € X, where

6o ={ [(4K2 = 3)P + 20T (k> 4+ 1) + k% + 3] }¥,

2r —1
1
a, ={ —|2p o]

2P (k — 1) + k220 49 4 9P 4] }%,

[(4k* — 3)P 4 (2k + 1) + (2k — 1) + 2P(k 4+ 1)

1

Ba={ m [(4]{32 —3)P + k,2p(2(s+1)p Lo 9Py 4 3P D as 2] }%

Proof. Tt follows from Theorem 2.3 by putting ¢(x,y) = €(||z||” + ||y||*) for all
x,y € X. ]

Lemma 2.5. (See [1]) Let Vi and Vs, be real vector spaces. If an odd function f :
Vi — V; satisfies (1.4), then the function h : Vi — Va defined by h(z) = f(22)—2f(z)
s cubic.

Theorem 2.6. Let ¢ € {—1,1} be fized, and ¢.: X x X — [0,00) be a function
such that

" om r vy
Jn 86 (g gue) =0 (2:32)
for all z,y € X and
(e e} . U y
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for all w € {x,2z,(k — 1)z, (k + Dz, (2k — )z, (2k + 1)z} and all y € {x,2x,3x}.
Suppose that an odd function f: X — Y with f(0) = 0 satisfies the inequality

1Dz, y)|| < @e(, y) (2.34)
for all z,y € X. Then the limit

. om x x
C(a) = i 87 [f(oay) — 21 () (23)
exists for all x € X and C : X — 'Y is a unique cubic function satisfying
1.~ 1
1f (22) = 2f(x) = C(@)]| < glve(2)]? (2.36)
for all x € X, where
ol 9 T T 9 2 2x
Z_H 8% {k2p ) [ (4k 3);0()0160(@7 ﬁ) +k p(pp(zw, 2zg)
2r x T 2T r 3w
2\p (22 2 2\p o2 27
+ <2k ) Pe (21g7 QM) + (Qk ) 900(2257 215) + ‘Pa(?ga QM) (237)
(k+1zx =z (k—1)z x
poe (I ) g2 2
2k+ 1Dz =« 2k—1)zx =z
+¢€(Taﬁ) SOZC)(T,W) ] }-
Proof. Let £ = 1. Similar to the proof of Theorem 2.3, we have
If(4x) = 10f(22) + 16 f (2)|| < Ye(2), (2.38)
for all z € X, where
1
Ye(x) = ) [(4k* — 3)pe(z, ) + K@ (27, 27) + 2k*p (27, 7)

+ 2k (2, 22) + ¢o(r,32) + 200((k + 1)z, ) (2.39)
+20.((k — D)z, ) + ¢ ((2k + 1)x, x)
+@((2k = D, x) ]

for all z € X. Letting h : X — Y be a function defined by h(x) := f(2x) — 2f(x).
Then, we see that

[h(22) = 8h(x)]| < ¢e(x) (2.40)

for all z € X. If we replace x in (2.40) 5% and multiply both sides of (2.40) by 8",
we get

I8 () = 8B | < 8"Ye(r) (2.41)

for all z € X and all non-negative integers n. Hence

n+1 m 1+1 z
I8 h(r) — PRI < 3 I8 A — SR P
o (2.42)

. x
< Z 81" ( 21+1)
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for all non-negative integers n and m with n > m and all z € X. Since 0 < p < 1,
so by Lemma 2.1 and (2.39), we get

1
Pe(x) < I
+ (2k%)P gl (2, 22) + @b (, 3x) + 2" ((k + 1)z, @) (2.43)
+2000((k = D, x) + @2 ((2k + 1)z, x)
+ 2 ((2k = D)z, ) |
for all z € X. Therefore it follows from (2.32), (2.33) and (2.43) that

[(4k* = 3)Pl(x, ) + kP gh (22, 22) + (2K%)7¢L (22, 7)

n—oo

3 2%{3(%) < 0, lim 2%0( =0 (2.44)
1=1

for all x € X. Therefore we conclude from (2.42) and (2.44) that the sequence
{8"h(5%)} is a Cauchy sequence for all x € X. Since Y is complete, the sequence
{8"h(5%)} converges for all z € X. So one can define the function C': X — Y by

C(z) = lim 8”h( —) (2.45)
for all z € X. Letting m = 0 and passing the limit n — oo in (2.42), we get
- 7 T 1 N ’l
Ihte) = C@IP < 3870 () = L8707 () (2.46)

for all € X. Therefore, (2.36) follows from (2.43) and (2.46). Now we show that
C'is cubic. It follows from (2.41) (2.44) and (2.45) that

1C(22) = 8C(2)|| = lim_ ||8”h( ) - 8”+1h( o) =8 lim |8 1h( 1) —8"h(5; ol
< lim S"wc( ~) =0

n—oo

for all z € X. So

C(2z) = 8C(x) (2.47)
for all z € X. On the other hand it follows from (2.32), (2.34) and (2.45) that
wmm:mwwx>wmwm%w&>w%%w
< lim 8"{||Df(2n e 1)||+2||Df( )||}
< lim 8"{%(%’ %) + 290(;(2% 2%)} =0

for all x,y € X. Hence the function C satisfies (1.4). By Lemma 2.5, the function
x ~» C(2x) — 2C(x) is cubic. Hence, (2.47) implies that function C' is cubic.

To prove the uniqueness of C, let ¢ : X — Y be another additive function
satisfying (2.36). Since

u

n ] Y " U Y
Jggo 8™ Z 8 p 2n+1 2n+z) - hj{.lo Z 8 pgpc 2@ N ) =0
1=n+1
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for all u € {x,2z, (k — 1)z, (k + 1)z, (2k — 1)z, (2k + 1)x} and all y € {x, 2z, 3z}.
Hence

lim 8””@/}0( ~)=0 (2.48)

n—oo

for all x € X. It follows from (2.36) and (2.48) that

, ) n T ;T 1 . wp T TN
IC() = C (@)l = lim 87|[n(5) = C (I < g lim 8"e(50) =0

forallz € X. So C' =",
For ¢ = —1, we can prove the theorem by a similar technique. 0

Corollary 2.7. Let €,r, s be non-negative real numbers such thatr,s > 3 orr,s < 3.
Suppose that an odd function f : X — Y satisfies the inequality (2.31) for all
x,y € X. Then there exists a unique cubic function C : X — 'Y satisfying

¢, r =s =0;
€ a. |lz||", r> 0, s=0;
— — < —n— s
||f<2l‘) 2f(ZL') C(ZL’)H = kg(k,g _ 1) 0. ||g(;|| r=0, s > 0;

(a® ||| + 87 |lz||*®)7, 1, s> 0.

for all x € X, where

o= { g (R =37 + 27 4 1) + 7+ 3] o,

1
a. ={ —\SP o]

+ 2p(k _ 1)rp + k2p(2(r+l)p 4+ 2P 4 21?) + 1] }%’

[(4k* = 3)P + (2k + 1)"" + (2k — 1)"" + 2P(k + 1)"P

1

w [(4]§2 — 3)17 + k2p(2(8+1)17 + 5P + 2p> + 35p n 2p+1 n 2] }%

ﬁc:{

Theorem 2.8. Let ¢ € {—1,1} be fized, and ¢ : X x X — [0,00) be a function such
that

E ), Ty 1+4. .0 , x Yy
"o(—, = — )& p(—, —)} = 2.49
for all z,y € X and
RIS L]
Z { (2w72w)+( 2 )817@ (216’218)}<OO (250)

=11t 1+Z

for all u € {z,2z,(k — Dz, (k+ Dz, (2k — Dz, (2k + )z} and all y € {x,2x,3x}.
Suppose that an odd function f : X — Y satisfies the inequality | Ds(z,y)|| < o(z,y)
for all x,y € X. Then there exist a unique cubic function C': X — Y and a unique
additive function A : X — Y such that

I1£@) = C) ~ A@)] € 35 WG] +[5()

D=

) (2.51)
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for all x € X, where

> 1 r 2r 2x

o - il 2 2
Ya() : = ZHer {m [ (487 = 3)"" (5 5) T A7 (5 )
="z

+ (2k%)P ”(% )+ (2R (o Z—wa”(%’%) (2.52)

21@’ 22@ 2@@’ 215
k+1zx =z k—1z x
E+1) ) +2p¢p(%7ﬁ)
2k — 1z =«
@hole )1y

+ QPSOP( L ) 9l
ol

2k+1)z =
+ @p(T, ﬁ) + " (

> 1 T X 2r 2z

bele) 1= 3 8" Ly | (4K = 31" (5 ) + K9 (5 30

= 1+E

2¢ x T 2x r 3x
2\p P 2\p p( 2 27 p(= T
(Qk ) (2 A 21€) <2k ) (2147 21@) + ¥ (22g7 2%) (253)
(k+1zx =z (k—1)z =z
27'€ y ﬁ) + 2p(pp< 22( ) ﬁ)
2k+ 1)z =z 2k—1x =z
+ SOP(T7 ﬁ) + @p(Ta ﬁ) ]}
Proof. Let £ = 1. By Theorem 2.3 and 2.6, there exist an additive function Ay :
X — Y and a cubic function CO X =Y such that

+ QP('OP(

1.~

1f(22) = 8f(x) = Ao(z)]| < 5[%(%)] o I2e) = 2f(2) = Co()]| < g[wc(&?)]

B =
3 =

for all x € X. Therefore, it follows from the last inequality that

7@) + 5 Ao(e) — cCol@l < 35 ATl + [B(e))?)

for all z € X. So we obtain (2.51) by letting A(z) = —¢Ao(z) and C(z) = +Cy(x)
for all x € X. To prove the uniqueness property of A and C, let A;,C; : X — Y
be another additive and cubic functions satisfying (2.51). Let A" = A — A; and
C'=C~—Ci. So

14 (z) + C' (@) < {If(x) = Alz) = C(@)]| + | f(z) = As(2) = Ca(2)1}
1
<

~ 1 ~ 1 (2.54)
_4 (4[¢a(x)]p + [¢c(x)]p)

for all x € x. Since
lim 2”"1[@( ~) = lim 8"7’{56(£) =0

for all z € X, so if we replace x in (2 54) 5% and multiply both sides of (2.54) by 8",
we get

lim 874 (22) +C'(32) =0

n—oo

for all # € X. Therefore C" = 0. So it follows from (2.54) that

|4/ @) < oyl
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for all z € X. Therefore A" = 0.
For ¢ = —1, we can prove the theorem by a similar technique. OJ

Corollary 2.9. Let €,7,s be non-negative real numbers such that r,s > 3 or 1 <
r,s <3 orr,s < 1. Suppose that an odd function f : X — Y satisfies the inequality
(2.31) for all x,y € X. Then there ezists a unique additive function A : X — Y and
a unique cubic function C': X — 'Y such that

0a + O, r =s =0;
€ (o + ae) ||z||", > 0, s=0;
— A o < - - ) ) ’
I/(z) = A@) = CON = Gamz=1 | 5+ 8) lall*, r=0, s > 0:
Vo) + ve(x), T, 8> 0.
for all x € X, where 64, ¢, 0, e, B, and B. are defined as in Corollaries 2.4 and 2.7
and

Vo) = {ag [« + 67 |||}, Yelw) = {a [l + B¢ [lx]*}»
for all x € X.

Lemma 2.10. (See [1]) Let Vi and Va be real vector spaces. If an even function
f Vi — V4 satisfies (1.4), then [ is quartic.

Theorem 2.11. Let ¢ € {—1,1} be fized, and p : X x X — [0,00) be a function
such that

. n X )
lim k(-7 27) = 0 (2.55)
forall x,y € X and
~ ° €T
e(x) == Z kAt poP (0, W> < 00 (2.56)
—

for all x € X. Suppose that an even function f : X — Y with f(0) =0 satisfies the
imequality

1Dy (9]l < ¢(x,y) (2.57)
for all x,y € X. Then the limit
o amtg T
Q) == lim KM f(5) (2.58)

exists for allx € X and Q) : X — Y is a unique quartic function satisfying

1 -
17 () = Q@) = 57 [¥e(@)]

3 =

(2.59)

for all x € X.

Proof. For ¢ = 1, setting x = 0 in (2.57) and then use f(0) = 0 and evenness of f,
we obtain that

12 (ky) = 2k* f(y)]| < ¢(0,y) (2.60)
for all y € X. Replacing y by « in (2.60) and divide both sides of (2.60) by 2, we
get

|£(ka) K@) < 5(0,) (261)
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for all z € X. Let ¢.(z) = 3¢(0,) for all z € X, then by (2.61), we get

1f (k) — K f ()] < tpe(2) (2.62)

for all x € X. If we replace x in (2.62) by % and multiply both sides of (2.62) by
k4", then we have

KO0 () = K PG < R el) (263)

for all x € X and all non-negative integers n. Hence

K00 f o) = K ) \IP<Z||’f““)f<kz+1> il
(2.64)

. xr
< Z kAPap P ( )

for all non-negative integers n and m with n > m and all x € X. Since ¥.f(x) =
%¢"(0,z) for all z € X, therefore by (2.56) we have

3 k“wep(%) < (2.65)
1=1

for all x € X. Therefore we conclude from (2.64) and (2.65) that the sequence
{k*"f(:%)} is a Cauchy sequence for all € X. Since Y is complete, the sequence
{k*"f(:%)} converges for all z € X. So one can define the function Q : X — Y by
(2.58) for all z € X. Letting m = 0 and passing the limit n — oo in (2.64), we get

[e.9] 1 o0
1) = QP < K™Y () = gy DK™ (1) (266)
1=0 =1

for all x € X. Therefore (2.59) follows from (2.56) and (2.66). Now we show that @
is quartic. It follows from (2.55), (2.57) and (2.58) that
: n T n y
1Dl )l = im KD, (2 L)) < tim k(2 Ly <

for all z,y € X. Therefore the function @) : X — Y satisfies (1.4). Since f is an
even function, then (2.58) implies that the function @ : X — Y is even. By Lemma
2.10, the function = ~~ Q(z) is quartic.

To prove the uniqueness of Q, let Q" : X — Y be another quartic function
satisfying (2.59). Since

lim k4”p2k:4”’ r( kin) = lim Y K"7e2(0, E) =0
= 1=n+1

for all x € X, then lim,,_ k4"pwe(k%) = 0 for all x € X. Therefore it follows from
(2.59) and the last equation that

r, X

|Q@) = Q@I = lim K7 f(2) - QGHIP <

(2;4) lim. k;4"pz/;€( ~) =0

for all z € X. Hence Q = @'. For ¢ = —1, we can prove the theorem by a similar
technique. 0
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Corollary 2.12. Let €,r, s be non-negative real numbers such that r,s > 2 or 0 <
r,s < 2. Suppose that an even function f : X — Y with f(0) = 0 satisfies the
inequality

1Dz, y)|| < e(llz]]” + llyll*) (2.67)
for all x,y € X. Then there exists a unique quartic function () : X — Y satisfies

€ 1 spy 2
1f(z) = Q)] < §(m [1]1*%)

for all x € X.

Now, we are ready to prove the main theorem concerning the stability problem
for the equation (1.4).

Theorem 2.13. Let ¢ : X x X — [0,00) be a function which satisfies (2.55) for all
x,y € X and (2.56) for all x € X, and satisfies (2.49) for all x,y € X and (2.50)
for allw € {z,2z,(k — 1)z, (k + Dz, (2k — )z, (2k + 1)z} and all y € {z,2x,3x}.
Suppose that a function f : X — Y satisfies the inequality (2.57) for all x,y € X.
Furthermore, assume that f(0) = 0 in (2.57) for the case f is even. Then there exist
a unique cubic function C' : X — Y, a unique quartic function Q : X — Y and a
unique additive function A : X — 'Y such that

17(@) ~ Ce) ~ Q) - AW < 7 {1Tele) + Bl ~2)]})
+ o AU @) + Gl + [Bele) + T~

for all z € X, where 1o(x), Va(x) and e(x) are defined as in equations (2.52),
(2.53) and (2.56).
Proof. Assume that ¢ : X x X — [0, 0o) satisfies (2.55) for all z,y € X and (2.56) for

allz € X. Let fo(z) = (f(x)+f(—x)) forallz € X, then f.(0) =0, fo(—x) = fe(x),
and

(2.68)

1Dy (z,y)ll < &(z,y)
for all z,y € X, where ¢(z,y) := 1(p(z,y) + ©(—z,—y)). So

. i~ T Y
Tim B, W) =
for all z,y € X. Since

L, y) + o~ —y))

Play) < 5

for all x,y € X, then

37
dapl ~p -
Z k sz <00

= 1tL 1+Z

for all € X. Hence, from Theorem 2.11, there exist a unique quartic function
@ : X — Y such that

I17:0) = QI < 515 Welo)]? (2.69)
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for all z € X, where

Delz) = 3 kw0, =)

_14¢
="

for all z € X. It is clear that
< 1 ~ ~
ve(z) < o [We(2) + e(—2)]
for all x € X. Therefore it follows from (2.69) that

1£.() = QI < 5 Wel) + Gl (2.70)

for all z € X.

Also, let fo(z) = 3(f(x) — f(—x)) for all z € X, by using the above method and
Theorem 2.8, it follows that there exist a unique cubic function C': X — Y and a
unique additive function A : X — Y such that

I£o(2) — C(&) = A < g5 ATale) + Tul—0)]} +[Ble) + Tul—2)}F)  (271)

for all z € X. Hence (2.68) follows from (2.70) and (2.71). Now, if p : X x X —
[0, 00) satisfies (2.49) for all z,y € X and (2.50) for all u € {z,2x,(k — 1)z, (k +
Dz, (2k — 1)z, (2k + 1)z} and all y € {z,22,3z}, we can prove the theorem by a
similar technique. O

Corollary 2.14. Let e,r,s be non-negative real numbers such that r,s > 3 or 2 <
r,s<3orl<rs<2orrs<1. Suppose that a function f: X — Y satisfies the
inequality (2.67) for all x,y € X. Furthermore, assume that f(0) = 0 for the case
f is even. Then there exist a unique cubic function C' : X — Y, a unique quartic
function QQ : X — 'Y and a unique additive function A : X — 'Y such that

|1£(@) = C(w) = Q(x) = AW £ gz (al@) + Aula)
€ 1 spy 2
*_ﬁ(ﬁﬁfiiﬁﬁ”xn )

for all x € X, where \o(x) and \.(z) are defined as in Corollary 2.9.
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