STABILITY OF GENERALIZED QCA–FUNCTIONAL EQUATION IN P–BANACH SPACES

S. ZOLFAGHARI

Dedicated to the 70th Anniversary of S.M. Ulam's Problem for Approximate Homomorphisms

ABSTRACT. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability for the quartic, cubic and additive functional equation

$$f(x+ky)+f(x-ky) = k^2 f(x+y)+k^2 f(x-y)+(k^2-1)[k^2 f(y)+k^2 f(-y)-2f(x)]$$

($k \in \mathbb{Z} - \{0, \pm 1\}$) in p -Banach spaces.

1. Introduction and preliminaries

The concept of stability of a functional equation arises when one replaces a functional equation by an inequality which acts as a perturbation of the equation. The first stability problem concerning group homomorphisms was raised by Ulam [15] in 1940 and affirmatively solved by Hyers [6]. The result of Hyers was generalized by Aoki [1] for approximate additive function and by Rassias [12] for approximate linear functions by allowing the difference Cauchy equation $||f(x_1 + x_2) - f(x_1) - f(x_2)||$ to be controlled by $\varepsilon(||x_1||^p + ||x_2||^p)$. Taking into consideration a lot of influence of Ulam, Hyers and Rassias on the development of stability problems of functional equations, the stability phenomenon that was proved by Rassias is called the generalized Ulam-Rassias stability or Hyers-Ulam-Rassias stability (see [7, 13, 9]). In 1994, a generalization of Rassias [5] theorem was obtained by Găvruta , who replaced $\varepsilon(||x_1||^p + ||x_2||^p)$ by a general control function $\varphi(x_1, x_2)$.

Jun and Kim [8] introduced the following functional equation

$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x)$$
(1.1)

and established the general solution and the generalized Hyers–Ulam–Rassias stability for functional equation (1.1). They proved that a function f between two real vector spaces X and Y is a solution of (1.1) if and only if there exists a unique function $C: X \times X \times X \longrightarrow Y$ such that f(x) = C(x, x, x) for all $x \in X$, moreover, C is symmetric for each fixed one variable and is additive for fixed two variables. The function C is given by

$$C(x,y,z) = \frac{1}{24}(f(x+y+z) + f(x-y-z) - f(x+y-z) - f(x-y+z))$$

Date: Received: January 2010; Revised: Jun 2010.

2000 Mathematics Subject Classification. Primary 39B82; Secondary 39B52.

Key words and phrases. Stability; QCA-functional equation; p-Banach space.

for all $x, y, z \in X$. Obviously, the function $f(x) = bx^3$ satisfies functional equation (1.1), so it is natural to call (1.1) the cubic functional equation. Every solution of the cubic functional equation is said to be a cubic function. Lee et. al. [10] considered the following functional equation

$$f(2x+y) + f(2x-y) = 4f(x+y) + 4f(x-y) + 24f(x) - 6f(y).$$
 (1.2)

In fact, they proved that a function f between two real vector spaces X and Y is a solution of (1.2) if and only if there exists a unique symmetric bi-quadratic function $B_2: X \times X \longrightarrow Y$ such that $f(x) = B_2(x, x)$ for all x. The bi-quadratic function B_2 is given by

$$B_2(x,y) = \frac{1}{12}(f(x+y) + f(x-y) - 2f(x) - 2f(y))$$

for all $x, y \in X$. It is easy to show that the function $f(x) = cx^4$ satisfies the functional equation (1.2), which is called the quartic functional equation .

We consider some basic concepts concerning *p*-normed spaces.

Definition 1.1. (See [2, 14]). Let X be a real linear space. A function $\| \cdot \| : X \to \mathbb{R}$ is a quasi-norm (valuation) if it satisfies the following conditions:

 $(QN_1) \|x\| \ge 0$ for all $x \in X$ and $\|x\| = 0$ if and only if x = 0;

 $(QN_2) \|\lambda. x\| = |\lambda|.\|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in X$;

 (QN_3) There is a constant $M \ge 1$: $||x+y|| \le M(||x|| + ||y||)$ for all $x, y \in X$. Then (X, ||.||) is called a quasi-normed space. The smallest possible M is called the modulus of concavity of ||.||. A quasi-Banach space is a complete quasi-normed space.

A quasi-norm $\| \cdot \|$ is called a p-norm (0 if

$$||x + y||^p \le ||x||^p + ||y||^p$$

for all $x, y \in X$. In this case, a quasi-Banach space is called a p-Banach space.

By the Aoki-Rolewicz Theorem [14], each quasi-norm is equivalent to some p-norm (see also [2]). Since it is much easier to work with p-norms, henceforth we restrict our attention mainly to p-norms.

Najati and Moghimi [11], have obtained the generalized Hyers-Ulam-Rassias stability for a mixed type of quadratic and additive functional equation. In addition Eshaghi Gordji and Khodaei [3], established the general solution and investigated the Hyers-Ulam-Rassias stability for a mixed type of cubic, quadratic and additive functional equation, with f(0) = 0,

$$f(x+ky) + f(x-ky) = k^2 f(x+y) + k^2 f(x-y) + 2(1-k^2)f(x)$$
(1.3)

in quasi-Banach spaces, where k is nonzero integer numbers with $k \neq \pm 1$. Obviously, the function $f(x) = ax + bx^2 + cx^3$ is a solution of the functional equation (1.3). In this paper, we investigate the generalized Hyers-Ulam stability for the quartic, cubic and additive functional equation:

$$f(x+ky) + f(x-ky) = k^2 f(x+y) + k^2 f(x-y) + (k^2-1)[k^2 f(y) + k^2 f(-y) - 2f(x)]$$
(1.4)

 $(k \in \mathbb{Z} - \{0, \pm 1\})$ in p-Banach spaces. It is easy to see that the function $f(x) = ax + bx^3 + cx^4$ is a solution of the functional equation (1.4). Eshaghi et. al. [4] investigated the general solution of the functional equation (1.4).

2. Main result

In the rest of this paper, we will assume that X be a p-normed space and Y be a p-Banach space. For convenience, we use the following abbreviation for a given function $f: X \to Y$,

$$D_f(x,y) := f(x+ky) + f(x-ky) - k^2 f(x+y) - k^2 f(x-y) - (k^2-1)[k^2 f(y) + k^2 f(-y) - 2f(x)]$$

for all $x, y \in X$.

Lemma 2.1. (See [11]) Let $0 and let <math>x_1, x_2, \ldots, x_n$ be non-negative real numbers. Then

$$(\sum_{i=1}^{n} x_i)^p \le \sum_{i=1}^{n} x_i^p.$$

Lemma 2.2. (See [4]) Let V_1 and V_2 be real vector spaces. If an odd function $f: V_1 \to V_2$ satisfies (1.4), then the function $g: V_1 \to V_2$ defined by g(x) = f(2x) - 8f(x) is additive.

Theorem 2.3. Let $\ell \in \{-1,1\}$ be fixed, and $\varphi_a : X \times X \to [0,\infty)$ be a function such that

$$\lim_{n \to \infty} 2^{n\ell} \varphi_a(\frac{x}{2^{n\ell}}, \frac{y}{2^{n\ell}}) = 0 \tag{2.1}$$

for all $x, y \in X$, and

$$\sum_{i=\frac{1+\ell}{2}}^{\infty} 2^{ip\ell} \varphi_a^p(\frac{u}{2^{i\ell}}, \frac{y}{2^{i\ell}}) < \infty \tag{2.2}$$

for all $u \in \{x, 2x, (k-1)x, (k+1)x, (2k-1)x, (2k+1)x\}$ and all $y \in \{x, 2x, 3x\}$. (denoted $(\varphi(x,y))^p$ by $\varphi^p(x,y)$). Suppose that an odd function $f: X \to Y$ satisfies the inequality

$$||D_f(x,y)|| \le \varphi_a(x,y) \tag{2.3}$$

for all $x, y \in X$. Furthermore, assume that f(0) = 0 in (2.3) for the case $\ell = 1$. Then the limit

$$A(x) := \lim_{n \to \infty} 2^{n\ell} \left[f\left(\frac{x}{2^{n\ell-1}}\right) - 8f\left(\frac{x}{2^{n\ell}}\right) \right]$$
 (2.4)

exists for all $x \in X$ and $A: X \to Y$ is a unique additive function satisfying

$$||f(2x) - 8f(x) - A(x)|| \le \frac{1}{2} [\widetilde{\psi}_a(x)]^{\frac{1}{p}}$$
 (2.5)

for all $x \in X$, where

$$\widetilde{\psi}_{a}(x) := \sum_{i=\frac{1+\ell}{2}}^{\infty} 2^{ip\ell} \left\{ \frac{1}{k^{2p}(k^{2}-1)^{p}} \left[(4k^{2}-3)^{p} \varphi_{a}^{p}(\frac{x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + k^{2p} \varphi_{a}^{p}(\frac{2x}{2^{i\ell}}, \frac{2x}{2^{i\ell}}) \right. \right. \\
\left. + (2k^{2})^{p} \varphi_{a}^{p}(\frac{2x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + (2k^{2})^{p} \varphi_{a}^{p}(\frac{x}{2^{i\ell}}, \frac{2x}{2^{i\ell}}) + \varphi_{a}^{p}(\frac{x}{2^{i\ell}}, \frac{3x}{2^{i\ell}}) \right. \\
\left. + 2^{p} \varphi_{a}^{p}(\frac{(k+1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + 2^{p} \varphi_{a}^{p}(\frac{(k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + \varphi_{a}^{p}(\frac{(2k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right. \\
\left. + \varphi_{a}^{p}(\frac{(2k+1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + \varphi_{a}^{p}(\frac{(2k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right] \right\}.$$

Proof. Let $\ell = 1$. It follows from (2.3) and using the oddness of f that

$$||f(ky+x) - f(ky-x) - k^2 f(x+y) - k^2 f(x-y) + 2(k^2 - 1)f(x)||$$

$$\leq \varphi_a(x,y)$$
(2.7)

for all $x, y \in X$. Letting y = x in (2.7), we have

$$||f((k+1)x) - f((k-1)x) - k^2 f(2x) + 2(k^2 - 1)f(x)|| \le \varphi_a(x, x)$$
(2.8)

for all $x \in X$. It follows from (2.8) that

$$||f(2(k+1)x) - f(2(k-1)x) - k^2 f(4x) + 2(k^2 - 1)f(2x)|| \le \varphi_a(2x, 2x)$$
 (2.9)

for all $x \in X$. Replacing x and y by 2x and x in (2.7), respectively, we get

$$||f((k+2)x) - f((k-2)x) - k^2 f(3x) - k^2 f(x) + 2(k^2 - 1)f(2x)||$$

$$\leq \varphi_a(2x, x)$$
(2.10)

for all $x \in X$. Setting y = 2x in (2.7), gives

$$||f((2k+1)x) - f((2k-1)x) - k^2 f(3x) - k^2 f(-x) + 2(k^2 - 1)f(x)||$$

$$\leq \varphi_a(x, 2x)$$
(2.11)

for all $x \in X$. Putting y = 3x in (2.7), we obtain

$$||f((3k+1)x) - f((3k-1)x) - k^2 f(4x) - k^2 f(-2x) + 2(k^2 - 1)f(x)||$$

$$\leq \varphi_a(x, 3x)$$
(2.12)

for all $x \in X$. Replacing x by (k+1)x and y by x in (2.7), we get

$$||f((2k+1)x) - f(-x) - k^2 f((k+2)x) - k^2 f(kx) + 2(k^2 - 1)f((k+1)x)||$$

$$\leq \varphi_a((k+1)x, x)$$
(2.13)

for all $x \in X$. Replacing x and y by (k-1)x and x in (2.7), respectively, one gets

$$||f((2k-1)x) - f(x) - k^2 f((k-2)x) - k^2 f(kx) + 2(k^2 - 1)f((k-1)x)||$$

$$\leq \varphi_a((k-1)x, x)$$
(2.14)

for all $x \in X$. Replacing x and y by (2k+1)x and x in (2.7), respectively, we obtain

$$||f((3k+1)x) - f(-(k+1)x) - k^2 f(2(k+1)x) - k^2 f(2kx) + 2(k^2 - 1)f((2k+1)x)|| \le \varphi_a((2k+1)x, x)$$
(2.15)

for all $x \in X$. Replacing x and y by (2k-1)x and x in (2.7), respectively, we have

$$||f((3k-1)x) - f(-(k-1)x) - k^2 f(2(k-1)x) - k^2 f(2kx) + 2(k^2-1)f((2k-1)x)|| \le \varphi_a((2k-1)x, x)$$
(2.16)

for all $x \in X$. It follows from (2.8), (2.10), (2.11), (2.13) and (2.14) that

$$||f(3x) - 4f(2x) + 5f(x)|| \le \frac{1}{k^2(k^2 - 1)} \left[2(k^2 - 1)\varphi_a(x, x) + k^2\varphi_a(2x, x) + \varphi_a(x, 2x) + \varphi_a((k + 1)x, x) + \varphi_a((k - 1)x, x) \right]$$

$$(2.17)$$

for all $x \in X$. And, from (2.8), (2.9), (2.11), (2.12), (2.15) and (2.16), we conclude that

$$||f(4x) - 2f(3x) - 2f(2x) + 6f(x)|| \le \frac{1}{k^2(k^2 - 1)} \left[\varphi_a(x, x) + k^2 \varphi_a(2x, 2x) + 2(k^2 - 1)\varphi_a(x, 2x) + \varphi_a(x, 3x) + \varphi_a((2k + 1)x, x) + \varphi_a((2k - 1)x, x) \right]$$
(2.18)

for all $x \in X$. Finally, by using (2.17) and (2.18), we obtain that

$$||f(4x) - 10f(2x) + 16f(x)|| \le \frac{1}{k^2(k^2 - 1)} \left[(4k^2 - 3)\varphi_a(x, x) + 2k^2\varphi_a(2x, x) + 2k^2\varphi_a(x, 2x) + \varphi_a(x, 3x) + 2\varphi_a((k + 1)x, x) + k^2\varphi_a(2x, 2x) + 2\varphi_a((k - 1)x, x) + \varphi_a((2k + 1)x, x) + \varphi_a((2k - 1)x, x) \right]$$

$$(2.19)$$

for all $x \in X$, and let

$$\psi_{a}(x) = \frac{1}{k^{2}(k^{2} - 1)} \left[(4k^{2} - 3)\varphi_{a}(x, x) + k^{2}\varphi_{a}(2x, 2x) + 2k^{2}\varphi_{a}(2x, x) + 2k^{2}\varphi_{a}(x, 2x) + \varphi_{a}(x, 3x) + 2\varphi_{a}((k + 1)x, x) + 2\varphi_{a}((k - 1)x, x) + \varphi_{a}((2k - 1)x, x) \right]$$

$$(2.20)$$

for all $x \in X$. Thus (2.19) means that

$$||f(4x) - 10f(2x) + 16f(x)|| \le \psi_a(x)$$
(2.21)

for all $x \in X$. Let $g: X \to Y$ be a function defined by g(x) := f(2x) - 8f(x) for all $x \in X$. From (2.21), we conclude that

$$||g(2x) - 2g(x)|| \le \psi_a(x) \tag{2.22}$$

for all $x \in X$. If we replace x in (2.22) by $\frac{x}{2^{n+1}}$ and multiply both sides of (2.22) by 2^n , we see that

$$||2^{n+1}g(\frac{x}{2^{n+1}}) - 2^n g(\frac{x}{2^n})|| \le 2^n \psi_a(\frac{x}{2^{n+1}})$$
(2.23)

for all $x \in X$ and all non-negative integers n. Hence

$$||2^{n+1}g(\frac{x}{2^{n+1}}) - 2^m g(\frac{x}{2^m})||^p \le \sum_{i=m}^n ||2^{i+1}g(\frac{x}{2^{i+1}}) - 2^i g(\frac{x}{2^i})||^p \le \sum_{i=m}^n 2^{ip} \psi_a^p(\frac{x}{2^{i+1}}) \quad (2.24)$$

for all non-negative integers n and m with $n \ge m$ and all $x \in X$. Since 0 , so by Lemma 2.1 and (2.20), we get

$$\psi_{a}^{p}(x) \leq \frac{1}{k^{2p}(k^{2}-1)^{p}} \left[(4k^{2}-3)^{p} \varphi_{a}^{p}(x,x) + k^{2p} \varphi_{a}^{p}(2x,2x) + (2k^{2})^{p} \varphi_{a}^{p}(2x,x) + (2k^{2})^{p} \varphi_{a}^{p}(x,2x) + \varphi_{a}^{p}(x,3x) + 2^{p} \varphi_{a}^{p}((k+1)x,x) + 2^{p} \varphi_{a}^{p}((k-1)x,x) + \varphi_{a}^{p}((2k+1)x,x) + \varphi_{a}^{p}((2k-1)x,x) \right]$$

$$(2.25)$$

for all $x \in X$. Therefore it follows from (2.1), (2.2) and (2.25) that

$$\sum_{n=1}^{\infty} 2^{np} \psi_a^p(\frac{x}{2^n}) < \infty, \qquad \lim_{n \to \infty} 2^n \psi_a(\frac{x}{2^n}) = 0$$
 (2.26)

for all $x \in X$. It follows from (2.24) and (2.26) that the sequence $\{2^n g(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{2^n g(\frac{x}{2^n})\}$ converges for all $x \in X$. Therefore, one can define a function $A: X \to Y$ by

$$A(x) := \lim_{n \to \infty} 2^n g(\frac{x}{2^n}) \tag{2.27}$$

for all $x \in X$. Letting m = 0 and passing the limit $n \to \infty$ in (2.24), we get

$$||g(x) - A(x)||^p \le \sum_{i=0}^{\infty} 2^{ip} \psi_a^p(\frac{x}{2^{i+1}}) = \frac{1}{2^p} \sum_{i=1}^{\infty} 2^{ip} \psi_a^p(\frac{x}{2^i})$$
 (2.28)

for all $x \in X$. Therefore (2.5) follows from (2.25) and (2.28). Now we show that A is additive. It follows from (2.23), (2.26) and (2.27) that

$$||A(2x) - 2A(x)|| = \lim_{n \to \infty} ||2^n g(\frac{x}{2^{n-1}}) - 2^{n+1}(\frac{x}{2^n})|| = 2\lim_{n \to \infty} ||2^{n-1} g(\frac{x}{2^{n-1}}) - 2^n g(\frac{x}{2^n})||$$

$$\leq \lim_{n \to \infty} 2^n \psi_a(\frac{x}{2^n}) = 0$$

for all $x \in X$. So

$$A(2x) = 2A(x) \tag{2.29}$$

for all $x \in X$. On the other hand it follows from (2.1), (2.3) and (2.27) that

$$||D_A(x,y)|| = \lim_{n \to \infty} 2^n ||D_g(\frac{x}{2^n}, \frac{y}{2^n})|| = \lim_{n \to \infty} 2^n ||D_f(\frac{x}{2^{n-1}}, \frac{y}{2^{n-1}}) - 8D_f(\frac{x}{2^n}, \frac{y}{2^n})||$$

$$\leq \lim_{n \to \infty} 2^n \{||D_f(\frac{x}{2^{n-1}}, \frac{y}{2^{n-1}})|| + 8||D_f(\frac{x}{2^n}, \frac{y}{2^n})||\}$$

$$\leq \lim_{n \to \infty} 2^n \{\varphi_a(\frac{x}{2^{n-1}}, \frac{y}{2^{n-1}}) + 8\varphi_a(\frac{x}{2^n}, \frac{y}{2^n})\} = 0$$

for all $x, y \in X$. Hence the function A satisfies (1.4). Thus by Lemma 2.2, the function $x \rightsquigarrow A(2x) - 8A(x)$ is additive. Therefore (2.29) implies that the function A is additive.

To prove the uniqueness property of A, let $A': X \to Y$ be another additive function satisfying (2.5). Since

$$\lim_{n \to \infty} 2^{np} \sum_{i=1}^{\infty} 2^{ip} \varphi_a^p(\frac{u}{2^{n+i}}, \frac{y}{2^{n+i}}) = \lim_{n \to \infty} \sum_{i=n+1}^{\infty} 2^{ip} \varphi_a^p(\frac{u}{2^i}, \frac{y}{2^i}) = 0$$

for all $u \in \{x, 2x, (k-1)x, (k+1)x, (2k-1)x, (2k+1)x\}$ and all $y \in \{x, 2x, 3x\}$. Hence

$$\lim_{n \to \infty} 2^{np} \widetilde{\psi}_a(\frac{x}{2^n}) = 0 \tag{2.30}$$

for all $x \in X$. It follows from (2.5) and (2.30) that

$$||A(x) - A'(x)||^p = \lim_{n \to \infty} 2^{np} ||g(\frac{x}{2^n}) - A'(\frac{x}{2^n})||^p \le \frac{1}{2^p} \lim_{n \to \infty} 2^{np} \widetilde{\psi}_a(\frac{x}{2^n}) = 0$$

for all $x \in X$. So A = A'.

For $\ell = -1$, we can prove the theorem by a similar technique.

Corollary 2.4. Let ϵ, r, s be non-negative real numbers such that r, s > 1 or r, s < 1. Suppose that an odd function $f: X \to Y$ satisfies the inequality

$$||D_f(x,y)|| \le \begin{cases} \epsilon, & r = s = 0; \\ \epsilon ||x||^r, & r > 0, s = 0; \\ \epsilon ||y||^s, & r = 0, s > 0; \\ \epsilon (||x||^r + ||y||^s), & r, s > 0. \end{cases}$$
(2.31)

for all $x, y \in X$. Then there exists a unique additive function $A: X \to Y$ satisfying

$$||f(2x) - 8f(x) - A(x)|| \le \frac{\epsilon}{k^2(k^2 - 1)} \begin{cases} \delta_a, & r = s = 0; \\ \alpha_a ||x||^r, & r > 0, s = 0; \\ \beta_a ||x||^s, & r = 0, s > 0; \\ (\alpha_a^p ||x||^{rp} + \beta_a^p ||x||^{sp})^{\frac{1}{p}}, & r, s > 0. \end{cases}$$

for all $x \in X$, where

$$\delta_a = \left\{ \frac{1}{2^p - 1} \left[(4k^2 - 3)^p + 2^{p+1}(k^{2p} + 1) + k^{2p} + 3 \right] \right\}^{\frac{1}{p}},$$

$$\alpha_a = \left\{ \frac{1}{|2^p - 2^{rp}|} \left[(4k^2 - 3)^p + (2k + 1)^{rp} + (2k - 1)^{rp} + 2^p(k + 1)^{rp} + 2^p(k - 1)^{rp} + k^{2p}(2^{(r+1)p} + 2^{rp} + 2^p) + 1 \right] \right\}^{\frac{1}{p}},$$

$$\beta_a = \left\{ \frac{1}{|2^p - 2^{sp}|} \left[(4k^2 - 3)^p + k^{2p}(2^{(s+1)p} + 2^{sp} + 2^p) + 3^{sp} + 2^{p+1} + 2 \right] \right\}^{\frac{1}{p}}.$$

Proof. It follows from Theorem 2.3 by putting $\varphi(x,y) := \epsilon(\|x\|^r + \|y\|^s)$ for all $x,y \in X$.

Lemma 2.5. (See [4]) Let V_1 and V_2 be real vector spaces. If an odd function $f: V_1 \to V_2$ satisfies (1.4), then the function $h: V_1 \to V_2$ defined by h(x) = f(2x) - 2f(x) is cubic.

Theorem 2.6. Let $\ell \in \{-1,1\}$ be fixed, and $\varphi_c : X \times X \to [0,\infty)$ be a function such that

$$\lim_{n \to \infty} 8^{n\ell} \varphi_c(\frac{x}{2^{n\ell}}, \frac{y}{2^{n\ell}}) = 0 \tag{2.32}$$

for all $x, y \in X$ and

$$\sum_{i=\frac{1+\ell}{2}}^{\infty} 8^{ip\ell} \varphi_c^p(\frac{u}{2^{i\ell}}, \frac{y}{2^{i\ell}}) < \infty$$
 (2.33)

for all $u \in \{x, 2x, (k-1)x, (k+1)x, (2k-1)x, (2k+1)x\}$ and all $y \in \{x, 2x, 3x\}$. Suppose that an odd function $f: X \to Y$ with f(0) = 0 satisfies the inequality

$$||D_f(x,y)|| \le \varphi_c(x,y) \tag{2.34}$$

for all $x, y \in X$. Then the limit

$$C(x) := \lim_{n \to \infty} 8^{n\ell} \left[f\left(\frac{x}{2^{n\ell-1}}\right) - 2f\left(\frac{x}{2^{n\ell}}\right) \right]$$
 (2.35)

exists for all $x \in X$ and $C: X \to Y$ is a unique cubic function satisfying

$$||f(2x) - 2f(x) - C(x)|| \le \frac{1}{8} [\widetilde{\psi}_c(x)]^{\frac{1}{p}}$$
 (2.36)

for all $x \in X$, where

$$\widetilde{\psi}_{c}(x) := \sum_{i=\frac{1+\ell}{2}}^{\infty} 8^{ip\ell} \left\{ \frac{1}{k^{2p}(k^{2}-1)^{p}} \left[(4k^{2}-3)^{p} \varphi_{c}^{p} (\frac{x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + k^{2p} \varphi_{c}^{p} (\frac{2x}{2^{i\ell}}, \frac{2x}{2^{i\ell}}) \right. \right. \\
\left. + (2k^{2})^{p} \varphi_{c}^{p} (\frac{2x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + (2k^{2})^{p} \varphi_{c}^{p} (\frac{x}{2^{i\ell}}, \frac{2x}{2^{i\ell}}) + \varphi_{c}^{p} (\frac{x}{2^{i\ell}}, \frac{3x}{2^{i\ell}}) \right. \\
\left. + 2^{p} \varphi_{c}^{p} (\frac{(k+1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + 2^{p} \varphi_{c}^{p} (\frac{(k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right. \\
\left. + \varphi_{c}^{p} (\frac{(2k+1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + \varphi_{c}^{p} (\frac{(2k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right] \right\}. \tag{2.37}$$

Proof. Let $\ell = 1$. Similar to the proof of Theorem 2.3, we have

$$||f(4x) - 10f(2x) + 16f(x)|| \le \psi_c(x), \tag{2.38}$$

for all $x \in X$, where

$$\psi_c(x) = \frac{1}{k^2(k^2 - 1)} \left[(4k^2 - 3)\varphi_c(x, x) + k^2\varphi_c(2x, 2x) + 2k^2\varphi_c(2x, x) + 2k^2\varphi_c(x, 2x) + \varphi_c(x, 3x) + 2\varphi_c((k + 1)x, x) + 2\varphi_c((k - 1)x, x) + \varphi_c((2k + 1)x, x) + \varphi_c((2k - 1)x, x) \right]$$
(2.39)

for all $x \in X$. Letting $h: X \to Y$ be a function defined by h(x) := f(2x) - 2f(x). Then, we see that

$$||h(2x) - 8h(x)|| \le \psi_c(x) \tag{2.40}$$

for all $x \in X$. If we replace x in (2.40) $\frac{x}{2^{n+1}}$ and multiply both sides of (2.40) by 8^n , we get

$$||8^{n+1}h(\frac{x}{2^{n+1}}) - 8^n h(\frac{x}{2^n})|| \le 8^n \psi_c(\frac{x}{2^{n+1}})$$
(2.41)

for all $x \in X$ and all non-negative integers n. Hence

$$||8^{n+1}h(\frac{x}{2^{n+1}}) - 8^m h(\frac{x}{2^m})||^p \le \sum_{i=m}^n ||8^{i+1}h(\frac{x}{2^{i+1}}) - 8^i h(\frac{x}{2^i})||^p$$

$$\le \sum_{i=m}^n 8^{ip} \psi_c^{\ p}(\frac{x}{2^{i+1}})$$
(2.42)

for all non-negative integers n and m with $n \ge m$ and all $x \in X$. Since 0 , so by Lemma 2.1 and (2.39), we get

$$\psi_c^p(x) \le \frac{1}{k^{2p}(k^2 - 1)^p} \left[(4k^2 - 3)^p \varphi_c^p(x, x) + k^{2p} \varphi_c^p(2x, 2x) + (2k^2)^p \varphi_c^p(2x, x) + (2k^2)^p \varphi_c^p(x, 2x) + \varphi_c^p(x, 3x) + 2^p \varphi_c^p((k + 1)x, x) + 2^p \varphi_c^p((k - 1)x, x) + \varphi_c^p((2k + 1)x, x) + \varphi_c^p((2k - 1)x, x) \right]$$

$$(2.43)$$

for all $x \in X$. Therefore it follows from (2.32), (2.33) and (2.43) that

$$\sum_{r=1}^{\infty} 2^{ip} \psi_c^p(\frac{x}{2^n}) < \infty, \qquad \lim_{n \to \infty} 2^n \psi_c(\frac{x}{2^n}) = 0$$
 (2.44)

for all $x \in X$. Therefore we conclude from (2.42) and (2.44) that the sequence $\{8^n h(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{8^n h(\frac{x}{2^n})\}$ converges for all $x \in X$. So one can define the function $C: X \to Y$ by

$$C(x) = \lim_{n \to \infty} 8^n h(\frac{x}{2^n}) \tag{2.45}$$

for all $x \in X$. Letting m = 0 and passing the limit $n \to \infty$ in (2.42), we get

$$||h(x) - C(x)||^p \le \sum_{i=0}^{\infty} 8^{ip} \psi_c^{\ p}(\frac{x}{2^{i+1}}) = \frac{1}{8^p} \sum_{i=1}^{\infty} 8^{ip} \psi_c^{\ p}(\frac{x}{2^i})$$
 (2.46)

for all $x \in X$. Therefore, (2.36) follows from (2.43) and (2.46). Now we show that C is cubic. It follows from (2.41), (2.44) and (2.45) that

$$||C(2x) - 8C(x)|| = \lim_{n \to \infty} ||8^n h(\frac{x}{2^{n-1}}) - 8^{n+1} h(\frac{x}{2^n})|| = 8 \lim_{n \to \infty} ||8^{n-1} h(\frac{x}{2^{n-1}}) - 8^n h(\frac{x}{2^n})||$$

$$\leq \lim_{n \to \infty} 8^n \psi_c(\frac{x}{2^n}) = 0$$

for all $x \in X$. So

$$C(2x) = 8C(x) \tag{2.47}$$

for all $x \in X$. On the other hand it follows from (2.32), (2.34) and (2.45) that

$$||D_C(x,y)|| = \lim_{n \to \infty} 8^n ||D_h(\frac{x}{2^n}, \frac{y}{2^n})|| = \lim_{n \to \infty} 8^n ||D_f(\frac{x}{2^{n-1}}, \frac{y}{2^{n-1}}) - 2D_f(\frac{x}{2^n}, \frac{y}{2^n})||$$

$$\leq \lim_{n \to \infty} 8^n \{||D_f(\frac{x}{2^{n-1}}, \frac{y}{2^{n-1}})|| + 2||D_f(\frac{x}{2^n}, \frac{y}{2^n})||\}$$

$$\leq \lim_{n \to \infty} 8^n \{\varphi_c(\frac{x}{2^{n-1}}, \frac{y}{2^{n-1}}) + 2\varphi_c(\frac{x}{2^n}, \frac{y}{2^n})\} = 0$$

for all $x, y \in X$. Hence the function C satisfies (1.4). By Lemma 2.5, the function $x \rightsquigarrow C(2x) - 2C(x)$ is cubic. Hence, (2.47) implies that function C is cubic.

To prove the uniqueness of C, let $C': X \to Y$ be another additive function satisfying (2.36). Since

$$\lim_{n \to \infty} 8^{np} \sum_{i=1}^{\infty} 8^{ip} \varphi_c^{\ p}(\frac{u}{2^{n+i}}, \frac{y}{2^{n+i}}) = \lim_{n \to \infty} \sum_{i=n+1}^{\infty} 8^{ip} \varphi_c^{\ p}(\frac{u}{2^i}, \frac{y}{2^i}) = 0$$

for all $u \in \{x, 2x, (k-1)x, (k+1)x, (2k-1)x, (2k+1)x\}$ and all $y \in \{x, 2x, 3x\}$. Hence

$$\lim_{n \to \infty} 8^{np} \widetilde{\psi}_c(\frac{x}{2^n}) = 0 \tag{2.48}$$

for all $x \in X$. It follows from (2.36) and (2.48) that

$$||C(x) - C'(x)|| = \lim_{n \to \infty} 8^{np} ||h(\frac{x}{2^n}) - C'(\frac{x}{2^n})||^p \le \frac{1}{8^p} \lim_{n \to \infty} 8^{np} \widetilde{\psi}_c(\frac{x}{2^n}) = 0$$

for all $x \in X$. So C = C'.

For $\ell = -1$, we can prove the theorem by a similar technique.

Corollary 2.7. Let ϵ, r, s be non-negative real numbers such that r, s > 3 or r, s < 3. Suppose that an odd function $f: X \to Y$ satisfies the inequality (2.31) for all $x, y \in X$. Then there exists a unique cubic function $C: X \to Y$ satisfying

$$||f(2x) - 2f(x) - C(x)|| \le \frac{\epsilon}{k^2(k^2 - 1)} \begin{cases} \delta_c, & r = s = 0; \\ \alpha_c ||x||^r, & r > 0, s = 0; \\ \beta_c ||x||^s, & r = 0, s > 0; \\ (\alpha_c^p ||x||^{rp} + \beta_c^p ||x||^{sp})^{\frac{1}{p}}, & r, s > 0. \end{cases}$$

for all $x \in X$, where

$$\delta_c = \left\{ \frac{1}{8^p - 1} \left[(4k^2 - 3)^p + 2^{p+1}(k^{2p} + 1) + k^{2p} + 3 \right] \right\}^{\frac{1}{p}},$$

$$\alpha_c = \left\{ \frac{1}{|8^p - 2^{rp}|} \left[(4k^2 - 3)^p + (2k+1)^{rp} + (2k-1)^{rp} + 2^p(k+1)^{rp} + 2^p(k-1)^{rp} + k^{2p}(2^{(r+1)p} + 2^{rp} + 2^p) + 1 \right] \right\}^{\frac{1}{p}},$$

$$\beta_c = \left\{ \frac{1}{|8^p - 2^{sp}|} \left[(4k^2 - 3)^p + k^{2p} (2^{(s+1)p} + 2^{sp} + 2^p) + 3^{sp} + 2^{p+1} + 2 \right] \right\}^{\frac{1}{p}}.$$

Theorem 2.8. Let $\ell \in \{-1,1\}$ be fixed, and $\varphi: X \times X \to [0,\infty)$ be a function such that

$$\lim_{n \to \infty} \left\{ \left(\frac{1-\ell}{2} \right) 2^{n\ell} \varphi\left(\frac{x}{2^{n\ell}}, \frac{y}{2^{n\ell}} \right) + \left(\frac{1+\ell}{2} \right) 8^{n\ell} \varphi\left(\frac{x}{2^{n\ell}}, \frac{y}{2^{n\ell}} \right) \right\} = 0 \tag{2.49}$$

for all $x, y \in X$ and

$$\sum_{i=\frac{1+\ell}{2}}^{\infty} \left\{ \left(\frac{1-\ell}{2} \right) 2^{ip\ell} \varphi^p \left(\frac{u}{2^{i\ell}}, \frac{y}{2^{i\ell}} \right) + \left(\frac{1+\ell}{2} \right) 8^{ip\ell} \varphi^p \left(\frac{u}{2^{i\ell}}, \frac{y}{2^{i\ell}} \right) \right\} < \infty \tag{2.50}$$

for all $u \in \{x, 2x, (k-1)x, (k+1)x, (2k-1)x, (2k+1)x\}$ and all $y \in \{x, 2x, 3x\}$. Suppose that an odd function $f: X \to Y$ satisfies the inequality $||D_f(x,y)|| \le \varphi(x,y)$ for all $x, y \in X$. Then there exist a unique cubic function $C: X \to Y$ and a unique additive function $A: X \to Y$ such that

$$||f(x) - C(x) - A(x)|| \le \frac{1}{48} \left(4[\widetilde{\psi}_a(x)]^{\frac{1}{p}} + [\widetilde{\psi}_c(x)]^{\frac{1}{p}} \right)$$
 (2.51)

for all $x \in X$, where

$$\widetilde{\psi}_{a}(x) := \sum_{i=\frac{1+\ell}{2}}^{\infty} 2^{ip\ell} \left\{ \frac{1}{k^{2p}(k^{2}-1)^{p}} \left[(4k^{2}-3)^{p} \varphi^{p}(\frac{x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + k^{2p} \varphi^{p}(\frac{2x}{2^{i\ell}}, \frac{2x}{2^{i\ell}}) \right. \right.$$

$$\left. + (2k^{2})^{p} \varphi^{p}(\frac{2x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + (2k^{2})^{p} \varphi^{p}(\frac{x}{2^{i\ell}}, \frac{2x}{2^{i\ell}}) + \varphi^{p}(\frac{x}{2^{i\ell}}, \frac{3x}{2^{i\ell}}) \right.$$

$$\left. + 2^{p} \varphi^{p}(\frac{(k+1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + 2^{p} \varphi^{p}(\frac{(k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right.$$

$$\left. + \varphi^{p}(\frac{(2k+1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + \varphi^{p}(\frac{(2k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right] \right\},$$

$$\widetilde{\mathcal{L}}_{a}(x) = \sum_{k=0}^{\infty} \exp\left\{ \int_{0}^{\infty} \frac{1}{2^{i\ell}} \left(\frac{(2k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}} \right) \right.$$

$$\left. + \frac{2^{p} \varphi^{p}(\frac{2x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + \varphi^{p}(\frac{2x-2x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right] \right\},$$

$$\widetilde{\psi}_{c}(x) := \sum_{i=\frac{1+\ell}{2}}^{\infty} 8^{ip\ell} \left\{ \frac{1}{k^{2p}(k^{2}-1)^{p}} \left[(4k^{2}-3)^{p} \varphi^{p}(\frac{x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + k^{2p} \varphi^{p}(\frac{2x}{2^{i\ell}}, \frac{2x}{2^{i\ell}}) \right. \right. \\ \left. + (2k^{2})^{p} \varphi^{p}(\frac{2x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + (2k^{2})^{p} \varphi^{p}(\frac{x}{2^{i\ell}}, \frac{2x}{2^{i\ell}}) + \varphi^{p}(\frac{x}{2^{i\ell}}, \frac{3x}{2^{i\ell}}) \right. \\ \left. + 2^{p} \varphi^{p}(\frac{(k+1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + 2^{p} \varphi^{p}(\frac{(k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right. \\ \left. + \varphi^{p}(\frac{(2k+1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) + \varphi^{p}(\frac{(2k-1)x}{2^{i\ell}}, \frac{x}{2^{i\ell}}) \right] \right\}.$$

Proof. Let $\ell=1$. By Theorem 2.3 and 2.6, there exist an additive function $A_0:X\to Y$ and a cubic function $C_0:X\to Y$ such that

$$||f(2x) - 8f(x) - A_0(x)|| \le \frac{1}{2} [\widetilde{\psi}_a(x)]^{\frac{1}{p}}, \qquad ||f(2x) - 2f(x) - C_0(x)|| \le \frac{1}{8} [\widetilde{\psi}_c(x)]^{\frac{1}{p}}$$

for all $x \in X$. Therefore, it follows from the last inequality that

$$||f(x) + \frac{1}{6}A_0(x) - \frac{1}{6}C_0(x)|| \le \frac{1}{48} \left(4[\widetilde{\psi}_a(x)]^{\frac{1}{p}} + [\widetilde{\psi}_c(x)]^{\frac{1}{p}}\right)$$

for all $x \in X$. So we obtain (2.51) by letting $A(x) = -\frac{1}{6}A_0(x)$ and $C(x) = \frac{1}{6}C_0(x)$ for all $x \in X$. To prove the uniqueness property of A and C, let $A_1, C_1 : X \to Y$ be another additive and cubic functions satisfying (2.51). Let $A' = A - A_1$ and $C' = C - C_1$. So

$$||A'(x) + C'(x)|| \le \{||f(x) - A(x) - C(x)|| + ||f(x) - A_1(x) - C_1(x)||\}$$

$$\le \frac{1}{24} \left(4[\widetilde{\psi}_a(x)]^{\frac{1}{p}} + [\widetilde{\psi}_c(x)]^{\frac{1}{p}}\right)$$
(2.54)

for all $x \in x$. Since

$$\lim_{n \to \infty} 2^{np} \widetilde{\psi}_a(\frac{x}{2^n}) = \lim_{n \to \infty} 8^{np} \widetilde{\psi}_c(\frac{x}{2^n}) = 0$$

for all $x \in X$, so if we replace x in (2.54) $\frac{x}{2^n}$ and multiply both sides of (2.54) by 8^n , we get

$$\lim_{n \to \infty} 8^n ||A'(\frac{x}{2^n}) + C'(\frac{x}{2^n})|| = 0$$

for all $x \in X$. Therefore C' = 0. So it follows from (2.54) that

$$||A'(x)|| \le \frac{5}{24} [\widetilde{\psi}_a(x)]^{\frac{1}{p}}$$

for all $x \in X$. Therefore A' = 0.

For
$$\ell = -1$$
, we can prove the theorem by a similar technique.

Corollary 2.9. Let ϵ, r, s be non-negative real numbers such that r, s > 3 or 1 < r, s < 3 or r, s < 1. Suppose that an odd function $f: X \to Y$ satisfies the inequality (2.31) for all $x, y \in X$. Then there exists a unique additive function $A: X \to Y$ and a unique cubic function $C: X \to Y$ such that

$$||f(x) - A(x) - C(x)|| \le \frac{\epsilon}{6k^2(k^2 - 1)} \begin{cases} \delta_a + \delta_c, & r = s = 0; \\ (\alpha_a + \alpha_c) ||x||^r, & r > 0, s = 0; \\ (\beta_a + \beta_c) ||x||^s, & r = 0, s > 0; \\ \gamma_a(x) + \gamma_c(x), & r, s > 0. \end{cases}$$

for all $x \in X$, where $\delta_a, \delta_c, \alpha_a, \alpha_c, \beta_a$ and β_c are defined as in Corollaries 2.4 and 2.7 and

$$\gamma_a(x) = \{\alpha_a^p \|x\|^{rp} + \beta_a^p \|x\|^{sp}\}^{\frac{1}{p}}, \qquad \gamma_c(x) = \{\alpha_c^p \|x\|^{rp} + \beta_c^p \|x\|^{sp}\}^{\frac{1}{p}}$$

for all $x \in X$.

Lemma 2.10. (See [4]) Let V_1 and V_2 be real vector spaces. If an even function $f: V_1 \to V_2$ satisfies (1.4), then f is quartic.

Theorem 2.11. Let $\ell \in \{-1,1\}$ be fixed, and $\varphi : X \times X \to [0,\infty)$ be a function such that

$$\lim_{n \to \infty} k^{4n\ell} \varphi(\frac{x}{k^{n\ell}}, \frac{y}{k^{n\ell}}) = 0 \tag{2.55}$$

for all $x, y \in X$ and

$$\tilde{\psi}_e(x) := \sum_{i=\frac{1+\ell}{2}}^{\infty} k^{4ip\ell} \varphi^p(0, \frac{x}{k^{i\ell}}) < \infty$$
(2.56)

for all $x \in X$. Suppose that an even function $f: X \to Y$ with f(0) = 0 satisfies the inequality

$$||D_f(x,y)|| \le \varphi(x,y) \tag{2.57}$$

for all $x, y \in X$. Then the limit

$$Q(x) := \lim_{n \to \infty} k^{4n\ell} f(\frac{x}{k^{n\ell}}) \tag{2.58}$$

exists for all $x \in X$ and $Q: X \to Y$ is a unique quartic function satisfying

$$||f(x) - Q(x)|| \le \frac{1}{2k^4} [\tilde{\psi}_e(x)]^{\frac{1}{p}}$$
 (2.59)

for all $x \in X$.

Proof. For $\ell = 1$, setting x = 0 in (2.57) and then use f(0) = 0 and evenness of f, we obtain that

$$||2f(ky) - 2k^4 f(y)|| \le \varphi(0, y) \tag{2.60}$$

for all $y \in X$. Replacing y by x in (2.60) and divide both sides of (2.60) by 2, we get

$$||f(kx) - k^4 f(x)|| \le \frac{1}{2} \varphi(0, x)$$
 (2.61)

for all $x \in X$. Let $\psi_e(x) = \frac{1}{2}\varphi(0,x)$ for all $x \in X$, then by (2.61), we get

$$||f(kx) - k^4 f(x)|| \le \psi_e(x)$$
 (2.62)

for all $x \in X$. If we replace x in (2.62) by $\frac{x}{k^{n+1}}$ and multiply both sides of (2.62) by k^{4n} , then we have

$$||k^{4(n+1)}f(\frac{x}{k^{n+1}}) - k^{4n}f(\frac{x}{k^n})|| \le k^{4n}\psi_e(\frac{x}{k^{n+1}})$$
(2.63)

for all $x \in X$ and all non-negative integers n. Hence

$$||k^{4(n+1)}f(\frac{x}{k^{n+1}}) - k^{4m}f(\frac{x}{k^m})||^p \le \sum_{i=m}^n ||k^{4(i+1)}f(\frac{x}{k^{i+1}}) - k^{4i}f(\frac{x}{k^i})||^p$$

$$\le \sum_{i=m}^n k^{4ip}\psi_e^p(\frac{x}{k^{i+1}})$$
(2.64)

for all non-negative integers n and m with $n \ge m$ and all $x \in X$. Since $\psi_e^p(x) = \frac{1}{2p}\varphi^p(0,x)$ for all $x \in X$, therefore by (2.56) we have

$$\sum_{i=1}^{\infty} k^{4ip} \psi_e^{\ p}(\frac{x}{k^i}) < \infty \tag{2.65}$$

for all $x \in X$. Therefore we conclude from (2.64) and (2.65) that the sequence $\{k^{4n}f(\frac{x}{k^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{k^{4n}f(\frac{x}{k^n})\}$ converges for all $x \in X$. So one can define the function $Q: X \to Y$ by (2.58) for all $x \in X$. Letting m = 0 and passing the limit $n \to \infty$ in (2.64), we get

$$||f(x) - Q(x)||^p \le \sum_{i=0}^{\infty} k^{4ip} \psi_e^{\ p} \left(\frac{x}{k^{i+1}}\right) = \frac{1}{k^{4p}} \sum_{i=1}^{\infty} k^{4ip} \psi_e^{\ p} \left(\frac{x}{k^i}\right)$$
(2.66)

for all $x \in X$. Therefore (2.59) follows from (2.56) and (2.66). Now we show that Q is quartic. It follows from (2.55), (2.57) and (2.58) that

$$||D_Q(x,y)|| = \lim_{n \to \infty} k^{4n} ||D_f(\frac{x}{k^n}, \frac{y}{k^n})|| \le \lim_{n \to \infty} k^{4n} \varphi(\frac{x}{k^n}, \frac{y}{k^n}) = 0$$

for all $x, y \in X$. Therefore the function $Q: X \to Y$ satisfies (1.4). Since f is an even function, then (2.58) implies that the function $Q: X \to Y$ is even. By Lemma 2.10, the function $x \leadsto Q(x)$ is quartic.

To prove the uniqueness of Q, let $Q': X \to Y$ be another quartic function satisfying (2.59). Since

$$\lim_{n \to \infty} k^{4np} \sum_{i=1}^{\infty} k^{4ip} \varphi^p(0, \frac{x}{k^{i+n}}) = \lim_{n \to \infty} \sum_{i=n+1}^{\infty} k^{4ip} \varphi^p(0, \frac{x}{k^i}) = 0$$

for all $x \in X$, then $\lim_{n\to\infty} k^{4np} \tilde{\psi}_e(\frac{x}{k^n}) = 0$ for all $x \in X$. Therefore it follows from (2.59) and the last equation that

$$||Q(x) - Q'(x)||^p = \lim_{n \to \infty} k^{4np} ||f(\frac{x}{k^n}) - Q'(\frac{x}{k^n})||^p \le \frac{1}{(2k^4)^p} \lim_{n \to \infty} k^{4np} \tilde{\psi}_e(\frac{x}{k^n}) = 0$$

for all $x \in X$. Hence Q = Q'. For $\ell = -1$, we can prove the theorem by a similar technique.

Corollary 2.12. Let ϵ, r, s be non-negative real numbers such that r, s > 2 or $0 \le r, s < 2$. Suppose that an even function $f: X \to Y$ with f(0) = 0 satisfies the inequality

$$||D_f(x,y)|| \le \epsilon(||x||^r + ||y||^s) \tag{2.67}$$

for all $x, y \in X$. Then there exists a unique quartic function $Q: X \to Y$ satisfies

$$||f(x) - Q(x)|| \le \frac{\epsilon}{2} \left(\frac{1}{|k^{4p} - k^{sp}|} ||x||^{sp}\right)^{\frac{1}{p}}$$

for all $x \in X$.

Now, we are ready to prove the main theorem concerning the stability problem for the equation (1.4).

Theorem 2.13. Let $\varphi: X \times X \to [0, \infty)$ be a function which satisfies (2.55) for all $x, y \in X$ and (2.56) for all $x \in X$, and satisfies (2.49) for all $x, y \in X$ and (2.50) for all $u \in \{x, 2x, (k-1)x, (k+1)x, (2k-1)x, (2k+1)x\}$ and all $y \in \{x, 2x, 3x\}$. Suppose that a function $f: X \to Y$ satisfies the inequality (2.57) for all $x, y \in X$. Furthermore, assume that f(0) = 0 in (2.57) for the case f is even. Then there exist a unique cubic function $C: X \to Y$, a unique quartic function $Q: X \to Y$ and a unique additive function $A: X \to Y$ such that

$$||f(x) - C(x) - Q(x) - A(x)|| \le \frac{1}{4k^4} \{ [\widetilde{\psi}_e(x) + \widetilde{\psi}_e(-x)]^{\frac{1}{p}} \}$$

$$+ \frac{1}{96} \{ 4 [\widetilde{\psi}_a(x) + \widetilde{\psi}_a(-x)]^{\frac{1}{p}} + [\widetilde{\psi}_c(x) + \widetilde{\psi}_c(-x)]^{\frac{1}{p}} \}$$
(2.68)

for all $x \in X$, where $\widetilde{\psi}_e(x)$, $\widetilde{\psi}_a(x)$ and $\widetilde{\psi}_c(x)$ are defined as in equations (2.52), (2.53) and (2.56).

Proof. Assume that $\varphi: X \times X \to [0, \infty)$ satisfies (2.55) for all $x, y \in X$ and (2.56) for all $x \in X$. Let $f_e(x) = \frac{1}{2}(f(x) + f(-x))$ for all $x \in X$, then $f_e(0) = 0$, $f_e(-x) = f_e(x)$, and

$$||D_{f_e}(x,y)|| \le \tilde{\varphi}(x,y)$$

for all $x, y \in X$, where $\tilde{\varphi}(x, y) := \frac{1}{2}(\varphi(x, y) + \varphi(-x, -y))$. So

$$\lim_{n\to\infty}k^{4n\ell}\tilde{\varphi}(\frac{x}{k^{n\ell}},\frac{y}{k^{n\ell}})=0$$

for all $x, y \in X$. Since

$$\tilde{\varphi}^p(x,y) \le \frac{1}{2^p} (\varphi^p(x,y) + \varphi^p(-x,-y))$$

for all $x, y \in X$, then

$$\sum_{i=\frac{1+\ell}{2}}^{\infty} k^{4ip\ell} \tilde{\varphi}^p(0, \frac{x}{k^{i\ell}}) < \infty$$

for all $x \in X$. Hence, from Theorem 2.11, there exist a unique quartic function $Q: X \to Y$ such that

$$||f_e(x) - Q(x)|| \le \frac{1}{2k^4} \left[\tilde{\widetilde{\psi}}_e(x)\right]^{\frac{1}{p}}$$
 (2.69)

for all $x \in X$, where

$$\widetilde{\widetilde{\psi}}_e(x) := \sum_{i=\frac{1+\ell}{2}}^{\infty} k^{4ip\ell} \widetilde{\varphi}^p(0, \frac{x}{k^{i\ell}})$$

for all $x \in X$. It is clear that

$$\tilde{\widetilde{\psi}}_e(x) \le \frac{1}{2p} \left[\widetilde{\psi}_e(x) + \widetilde{\psi}_e(-x) \right]$$

for all $x \in X$. Therefore it follows from (2.69) that

$$||f_e(x) - Q(x)|| \le \frac{1}{4k^4} \left[\widetilde{\psi}_e(x) + \widetilde{\psi}_e(-x) \right]^{\frac{1}{p}}$$
 (2.70)

for all $x \in X$.

Also, let $f_o(x) = \frac{1}{2}(f(x) - f(-x))$ for all $x \in X$, by using the above method and Theorem 2.8, it follows that there exist a unique cubic function $C: X \to Y$ and a unique additive function $A: X \to Y$ such that

$$||f_o(x) - C(x) - A(x)|| \le \frac{1}{96} \left(4[\widetilde{\psi}_a(x) + \widetilde{\psi}_a(-x)]^{\frac{1}{p}} + [\widetilde{\psi}_c(x) + \widetilde{\psi}_c(-x)]^{\frac{1}{p}} \right) \tag{2.71}$$

for all $x \in X$. Hence (2.68) follows from (2.70) and (2.71). Now, if $\varphi : X \times X \to [0, \infty)$ satisfies (2.49) for all $x, y \in X$ and (2.50) for all $u \in \{x, 2x, (k-1)x, (k+1)x, (2k-1)x, (2k+1)x\}$ and all $y \in \{x, 2x, 3x\}$, we can prove the theorem by a similar technique.

Corollary 2.14. Let ϵ, r, s be non-negative real numbers such that r, s > 3 or 2 < r, s < 3 or 1 < r, s < 2 or r, s < 1. Suppose that a function $f: X \to Y$ satisfies the inequality (2.67) for all $x, y \in X$. Furthermore, assume that f(0) = 0 for the case f is even. Then there exist a unique cubic function $C: X \to Y$, a unique quartic function $Q: X \to Y$ and a unique additive function $A: X \to Y$ such that

$$||f(x) - C(x) - Q(x) - A(x)|| \le \frac{\epsilon}{6k^2(k^2 - 1)} (\lambda_a(x) + \lambda_c(x)) + \frac{\epsilon}{2} \left(\frac{1}{|k^{4p} - k^{sp}|} ||x||^{sp} \right)^{\frac{1}{p}}$$

for all $x \in X$, where $\lambda_a(x)$ and $\lambda_c(x)$ are defined as in Corollary 2.9.

References

- 1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950) 64–66.
- Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ. vol. 48, Amer. Math. Soc., Providence, RI, 2000.
- M. Eshaghi Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.-TMA 71 (2009) 5629-5643.
- 4. M. Eshaghi Gordji, H. Khodaei and M. Ghanifard, Generalized stability of quartic, cubic and additive functional equation in Menger probabilistic normed spaces, (To appear).

- 5. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
- D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941) 222–224.
- 7. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhuser, Basel, 1998.
- 8. K. W. Jun, H. M. Kim, The generalized Hyers–Ulam–Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002) 867–878.
- 9. H. Khodaei, Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010) 22–41.
- S.H. Lee, S.M. Im and I.S. Hawng, Quartic functional equation, J. Math. Anal. Appl. 307 (2005) 387–394.
- 11. A. Najati, M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive function in quasi-Banach spaces, J. Math. Anal. Appl 337 (2008) 399-415.
- 12. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
- 13. Th.M. Rassias, New characterization of inner product spaces, Bull. Sci. Math. 108 (1984) 95–99.
- 14. S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ./Reidel, Warszawa/Dordrecht, 1984.
- S.M. Ulam, Problems in Modern Mathematics, Chapter VI, science Editions., Wiley, New York, 1964.

DEPARTMENT OF MATHEMATICS, URMIA UNIVERSITY, URMIA, IRAN.

E-mail address: somaye.zolfaghari@gmail.com