
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,756 |
تعداد دریافت فایل اصل مقاله | 7,656,168 |
Product type operators on vector valued derivative Besov spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 2، دوره 15، شماره 6، شهریور 2024، صفحه 19-30 اصل مقاله (465 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.29610.4206 | ||
نویسندگان | ||
Sepideh Nasresfahani1؛ Ebrahim Abbasi* 2؛ Daryoush Molaei3 | ||
1Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, Iran | ||
2Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran | ||
3Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran | ||
تاریخ دریافت: 24 دی 1401، تاریخ بازنگری: 15 خرداد 1402، تاریخ پذیرش: 25 خرداد 1402 | ||
چکیده | ||
In this paper, we characterize the boundedness and compactness of product type operators, including Stevi'c-Sharma operator $T_{\nu_1,\nu2,\varphi}$, from weak vector valued derivative Besov space $w\mathcal{E}^p_\beta(X)$ into weak vector-valued Besov space $w\mathcal{B}^p_\beta(X)$. As an application, we obtain the boundedness and compactness characterizations of the weighted composition operator on the weak vector valued derivative Besov space. | ||
کلیدواژهها | ||
Derivative Besov spaces؛ weighted composition operator؛ boundedness؛ compactness | ||
مراجع | ||
[1] S. Acharyya and T. Ferguson, Sums of weighted differentiation composition operators, Complex Anal. Oper. Theory 13 (2019), 1465–1479. [2] O. Blasco, Composition operators from weak to strong vector-valued Hardy spaces, Complex Anal. Oper. Theory 14 (2020), 11 pp. [3] J. Bonet, P. Domanski, and M. Lindstrom, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), 233–248. [4] C. Cowen and B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. Boca Raton: CRC Pres, 1995. [5] Z. Cuckovic and R. Zhao, Weighted composition operators between different weighted Bergman spaces and different Hardy spaces, III. J. Math. 51 (2007), 479-498. [6] X. Guo and M. Wang, Difference of composition operators on spaces of vector-valued holomorphic functions, J. Math. Anal. Appl. 505 (2022), 24 pp. [7] P. Halmos, Measure Theory, Springer-Verlag, New York, 1974. [8] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, New York, Springer, 2000. [9] R. Hibschweiler and N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J. Math. 35 (2005), 843–855. [10] J. Laitila, Weakly compact composition operators on vector-valued BMOA, J. Math. Anal. Appl. 308 (2005), 730–745. [11] J. Laitila, H. Tylli and M. Wang, Composition operators from weak to strong spaces of vector-valued analytic functions, J. Operator Theory 62 (2009), 281–295. [12] S. Li and S. Stevic, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282–1295. [13] S. Li and S. Stevic, Products of integral-type operators and composition operators between Bloch-type spaces, J. Math. Anal. Appl. 349 (2009), 596–610. [14] P. Liu, E. Saksman and H. Tylli, Small composition operators on analytic vector-valued function spaces, Pacific J. Math. 184 (1998), 295–309. [15] S. Ohno, Products of composition and differentiation between Hardy spaces, Bull. Aust. Math. Soc. 73 (2006), 235–243. [16] J. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993. [17] S. Stevic, A. Sharma and A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput. 217 (2011), 8115–8125. [18] S. Wang, M. Wang and X. Guo, Products of composition, multiplication and iterated differentiation operators between Banach spaces of holomorphic functions, Taiwanese J. Math. 24 (2020), 355–376. [19] S. Wang, M. Wang and X. Guo, Differences of Stevic-Sharma operators, Banach J. Math. Anal. 14 (2020), 1019–1054. [20] Y. Liu and Y. Yu, Composition followed by differentiation between H∞ and Zygmund spaces, Complex Anal. Oper. Theory 6 (2012), 121–137. [21] Y. Liu and Y. Yu, On a Stevic-Sharma operator from Hardy spaces to the logarithmic Bloch spaces, J. Inequal. Appl. 22 (2015), 19 pp. [22] F. Zhang and Y. Liu, On the compactness of the Stevic-Sharma operator on the logarithmic Bloch spaces, Math. Inequal. Appl. 19 (2016), 625–642. [23] F. Zhang and Y. Liu, On a Stevic-Sharma operator from Hardy spaces to Zygmund-type spaces on the unit disk, Complex Anal. Oper. Theory 12 (2018), 81–100. [24] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990. | ||
آمار تعداد مشاهده مقاله: 18,434 تعداد دریافت فایل اصل مقاله: 197 |