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Abstract

In this paper, we introduce the subclass KS(α) of univalent functions in A and study some properties of this class. We
apply matters of differential subordinations, to investigate some results concerning the subclasses KS(α) and BS(α)
of A, where α ∈ [0, 1).
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1 Introduction

Let A denote the class of analytic functions f on the open unit disc U = {z ∈ C : |z| < 1}, normalized by

f(z) = z +
∞∑

n=2

anz
n, (z ∈ U). (1.1)

and let S denote the subclass of A consisting of all univalent functions. For a real number γ with 0 ⩽ γ < 1, a function
f ∈ A is called starlike of order γ if

Re
zf ′(z)

f(z)
> γ, (z ∈ U),

and f is called convex of order γ if

Re
zf ′′(z)

f ′(z)
+ 1 > γ, (z ∈ U).

we denote by S∗(γ) and K(γ) the classes of starlike and convex functions of order γ, respectively. In particular we set
S∗(0) ≡ S∗ and K(0) ≡ K. It is clear that a function f ∈ A belongs to the class K if and only if zf ′(z) belongs to
the class S∗. Suppose f be an analytic function in U with f ′(0) ̸= 0, then the function f is called close-to-convex if
there exists a convex function g such that:

Re
{f ′(z)

g′(z)

}
> 0, (z ∈ U).
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We denote by C the class of all close-to-convex functions in U. Refer to [2, 8, 9, 10, 11] for various published papers
dealing with mentioned classes.

Suppose that H = H(U) be the class of all analytic functions in U and n be a positive integer number and a ∈ C.
We set:

H[a, n] = {f ∈ H, f(z) = a + anz
n + an+1z

n+1 + . . .}.

Suppose that α ∈ [0, 1), in this paper (as seen in Piejko and Sokol [7]), we apply a family of univalent functions in
U as follows:

Fα(z) =
z

1 − αz2
= z +

∞∑
n=1

αnz2n+1, (z ∈ U). (1.2)

Note that for α ∈ [0, 1):

Re
{zF ′

α(z)

Fα

}
= Re

{1 + αz2

1 − αz2

}
> 0, (z ∈ U),

then Fα(z) is starlike in U. Also Fα(U) = D(α), where

D(α) =
{
x + iy ∈ C | (x2 + y2)2 − x2

(1 − α)2
− y2

(1 + α2)
< 0

}
,

when α ∈ [0, 1) and

D(1) =
{
x + iy ∈ C | x + iy ̸= it, ∀t ∈ (−∞, 1/2] ∪ [1/2,∞)

}
.

The curve

(x2 + y2)2 − x2

(1 − α)2
− y2

(1 + α)2
= 0,

(
(x, y) ̸= 0

)
,

is called the Booth lemniscate of elliptic type. See [4] for more explanations. Let f and g belong to H. The function f is
subordinate to g, denoted by f ≺ g, if there exists an analytic function w in U with w(0) = 0 and |w(z)| ⩽ |z| < 1 such
that f(z) = g(w(z)). Moreover if g is a univalent function in U, then f ≺ g if and only if f(0) = 0 and f(U) ⊂ g(U).
Now we recall from (Kargar et al. 2017 [4]) the following definition.

Definition 1.1. Let f ∈ A and α ∈ [0, 1). We say f ∈ BS(α) if and only if

zf ′(z)

f(z)
− 1 ≺ Fα(z),

where Fα(z) is given by (1.2).

Furthermore, we mention from [4] a main lemma as follows.

Lemma 1.2. If Fα is given by (1.2), then we have:

1

α− 1
< Re{Fα(z)} <

1

1 − α
, (z ∈ U),

where α ∈ [0, 1).

From Lemma 1.2, if f ∈ BS(α) then:

α

α− 1
< Re

{zf ′(z)

f(z)

}
<

2 − α

1 − α
, (z ∈ U). (1.3)

Therefore in particular, BS(0) ⊂ S∗. Now, we are interested to produce a new subclass of A as follows.
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Definition 1.3. Let f ∈ A, α ∈ [0, 1) and Fα(z) is given by (1.2). Then f ∈ KS(α) if and only if

zf ′′(z)

f ′(z)
≺ Fα(z). (1.4)

Remark 1.4. From the Definition 1.1 and the Definition 1.3, f ∈ KS(α) if and only if zf ′ ∈ BS(α).

Remark 1.5. By Lemma 1.2, if f ∈ KS(α) then

1

α− 1
< Re

{zf ′′(z)

f ′(z)

}
<

1

1 − α
, (z ∈ U). (1.5)

Therefore in particular, KS(0) ⊂ K.

Corollary 1.6. Let f ∈ A and α ∈ [0, 1), then f ∈ KS(α) if and only if there exists an analytic function w in U, with
w(0) = 0 and |w(z)| < 1, such that

f ′(z) = exp

∫ z

0

Fα

(
w(t)

)
t

dt, (z ∈ U). (1.6)

Proof . Let f ∈ KS(α). So there exists an analytic function w(z) in U with w(0) = 0 and |w(z)| < 1 such that:

zf ′′(z)

f ′(z)
= Fα

(
w(z)

)
, (z ∈ U).

Equivalently

d

dz
log f ′(z) =

Fα

(
w(z)

)
z

, (z ∈ U),

then we have

f ′(z) = exp

∫ z

0

Fα

(
w(t)

)
t

dt, (z ∈ U).

Now, if a function f satisfies the condition (1.6), it is easy considering that f ∈ KS(α). □

As example with setting w(z) = z in (1.6), we conclude that

f(z) =

∫ z

0

(1 +
√
αt

1 −
√
αt

) 1
2
√

α
dt,

belongs to the class KS(α). For proving main results, we require to express some lemmas.

Lemma 1.7 (See [6]). Let h be convex in U with h(0) = a, γ ̸= 0 and Re γ ⩾ 0. If p ∈ H[a, n] and

p(z) +
zp′(z)

γ
≺ h(z),

then

p(z) ≺ q(z) ≺ h(z),

where

q(z) =
γ

nz
γ
n

∫ z

0

h(t)t(
γ
n )−1dt.

The function q is convex and is the best (a, n)–dominant.
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Lemma 1.8 (Miller and Mocanu [6]). Let h be starlike in U, with h(0) = 0 and a ̸= 0. If p ∈ H[a, n] satisfies

zp′(z)

p(z)
≺ h(z),

then

p(z) ≺ q(z) = a exp
[
n−1

∫ z

0

h(t)t−1dt
]
,

and q is the best (a, n)–dominant.

Lemma 1.9 (See [6]). Let h be convex, with h(0) = 1 and Reh(z) > 0. If p ∈ H[1, n] satisfies

p2(z) + 2p(z) · zp′(z) ≺ h(z),

then

p(z) ≺ q(z) =
√
Q(z)

where

Q(z) =
1

nz
1
n

∫ z

0

h(t)t(
1
n )−1dt,

and the function q is the best (1, n)–dominant.

Lemma 1.10 (Miller and Mocanu [6]). Let Q denote the set of functions q that are analytic and injective on
U\E(q) where

E(q) :=
{
ξ ∈ ∂U : lim

z→ξ
q(z) = ∞

}
,

and q′(ξ) ̸= 0 for ξ ∈ ∂U\E(q). Let q ∈ Q with q(0) = a, and let

p(z) = a + anz
n + . . .

be analytic in U with p(z) ̸≡ a and n ⩾ 1. If p ̸≺ q, then there exist m ⩾ n ⩾ 1 and points z0 ∈ U, ξ0 ∈ ∂U\E(q) so
that p

(
|z| < |z0|

)
⊂ q(U), p(z0) = q(ξ0) and z0p

′(z0) = mξ0q
′(ξ0), and

Re
{z0p

′′(z0)

p′(z0)
+ 1

}
⩾ mRe

{z0q
′′(z0)

q′(z0)
+ 1

}
.

Also, we require generalization of the Nunokawas lemma as following.

Lemma 1.11 (See [7]). Let p be an analytic function in U with p(z) ̸= 0 and

p(z) = 1 +

∞∑
n=m⩾1

cnz
n, (cm ̸= 0).

If there exists z0 ∈ U such that

| arg{p(z)}| < πβ

2
for |z| < |z0|,

and

| arg{p(z0)}| =
πβ

2

for some β > 0, then we have

z0p
′(z0)

p(z0)
= iℓβ,



A new subclass of analytic functions and some results related to Booth lemniscate 21

where

ℓ ⩾
m

2

(
a +

1

a

)
⩾ m when arg{p(z0)} =

πβ

2

and

ℓ ⩽ −m

2

(
a +

1

a

)
⩽ −m when arg{p(z0)} = −πβ

2
,

where {
p(z0)

} 1
β = ±ia with a > 0.

Lemma 1.12 (See [6]). Let Ω ⊂ C and p ∈ H[a, n] with Re a > 0. If a function Ψ : C3 × U → C satisfies the
condition

Ψ
(
ρi, σ, µ, ν; z

)
/∈ Ω, (z ∈ U),

for all ρ, σ, µ, ν ∈ R, σ ⩽ −n
2
|a−iρ|2
Re a , σ + µ ⩽ 0, then

Ψ
(
p(z), zp′(z), z2p′′(z); z

)
∈ Ω =⇒ Re p(z) > 0.

2 Main results

In the beginning, we prove one of main results in this section.

Lemma 2.1. Let f ∈ KS(α). If 0 < α < 1, then

f ′(z) ≺ q(z) =
(1 +

√
αz

1 −
√
αz

) 1
2
√

α
, (2.1)

and q is the best (1, 1)–dominant and if α = 0, then

f ′(z) ≺ exp(z), (2.2)

and exp(z) is the best (1, 1)–dominant. Furthermore for α ∈ (0, 1), we have

| arg{f ′(z)}| < 1

2
√
α

arctan
{ 2

√
α

1 − α

}
. (2.3)

Proof . Let p(z) = f ′(z). Therefore p ∈ H[1, 1] and

zp′(z)

p(z)
=

zf ′′(z)

f ′(z)
≺ Fα(z).

Because of the starlikeness of Fα, by supposing n = a = 1 in Lemma 1.8, we conclude that

f ′(z) ≺ q(z) = exp
[ ∫ z

0

Fα(t)

t
dt
]

=
(1 +

√
αz

1 −
√
αz

) 1
2
√

α
,

and q(z) is the best (1, 1)–dominant. Also in the case α = 0, for considering the relation (2.2), we perform the

procedure of the case α ∈ (0, 1) with Fα(z) = z. If α ∈ (0, 1) and w(z) = 1+
√
αz

1−
√
αz

(z ∈ U), we can easily conclude that

w maps the open disk U onto the disk with the center C = 1+α
1−α and the radius R = 2

√
α

1−α . Equivalently we have∣∣∣∣w(z) − 1 + α

1 − α

∣∣∣∣ < 2
√
α

1 − α
, (z ∈ U),
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thus with a simple calculation, we follow

0 <
1 −

√
α

1 +
√
α

< Rew <
1 +

√
α

1 −
√
α

and therefore ∣∣∣∣arg
(1 +

√
αz

1 −
√
αz

) 1
2
√

α

∣∣∣∣ < 1

2
√
α

arctan
2
√
α

1 − α
, (2.4)

and the result is obtained. □

Theorem 2.2. For 0 ⩽ α < 1, KS(α) ⊂ S.

Proof . Suppose f ∈ KS(α). Through the relation (2.3), it is clear that for α ∈ [ 14 , 1) :

| arg{f ′(z)}| < π

2
. (2.5)

Thus Re f ′(z) > 0 and by Noshiro–Warshawski theorem [1] f is univalent in U. Moreover from (1.5) for α ∈ [0, 1
3 ]

we have

Re
{zf ′′(z)

f ′(z)
+ 1

}
>

α

α− 1
⩾ −1

2
, (z ∈ U), (2.6)

and by Kaplan [3], we conclude that f is close-to-convex. Then f is univalent in U. □

Theorem 2.3. Let f(z) = z +
∑∞

n=2anz
n ∈ KS(α),

a) If α ∈ (0, 1
4 ], then

f(z)

z
≺ q(z) =

1

z

∫ z

0

(1 +
√
αt

1 −
√
αt

) 1
2
√

α
dt, (2.7)

and q(z) is convex and the best (1, 1)–dominant. Also if α = 0, then

f(z)

z
≺ 1

z
(ez − 1), (2.8)

and 1
z (ez − 1) is convex and the best (1, 1)–dominant.

b) If α ∈ [ 14 , 1), then

f(z)

z
≺

(1 + z

1 − z

) 1
2
√

α
. (2.9)

Therefore for α ∈ [ 14 , 1), we have Re
{ f(z)

z

}
> 0.

c) If α ∈ [ 14 , 1), then √
f(z)

z
≺

√
2

z
ln(1 + z) − 1. (2.10)

Therefore Re
{√ f(z)

z

}
>

√
2 ln 2 − 1.

Proof .

a) Let p(z) = f(z)
z , then p ∈ H[1, 1] and p(0) = 1. Since f ′(z) = p(z) + zp′(z), by using the relation (2.1) we obtain

p(z) + zp′(z) ≺
(1 +

√
αz

1 −
√
αz

) 1
2
√

α
.

Suppose h(z) =
( 1+

√
αz

1−
√
αz

) 1
2
√

α . By [5] it is showed that for α ∈ (0, 1
4 ], the function h(z) is convex and h(0) = 1,

then by taking γ = 1 and n = 1 in Lemma 1.7, the relation (2.6) is obtained. Moreover q(z) = 1
z

∫ z

0

( 1+
√
αz

1−
√
αz

) 1
2
√

α dt

is convex and the best (1, 1)–dominant. For the case α = 0 similar to the past case, by applying the relation
(2.2) and Lemma 1.7, the relation (2.7) is obtained.
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b) Let p(z) = f(z)
z be the form:

p(z) = 1 + a2z + a3z
2 + . . . = 1 +

∞∑
n=1

an+1z
n, (z ∈ U).

We want to show p(z) ≺
(
1+z
1−z

)β
= q(z), where β = 1

2
√
α

. Suppose p ̸≺ q. From Lemma 1.10, there exist points

z0 ∈ U and ξ0 ∈ ∂U\E(q) such that

| arg{p(z0)}| =
πβ

2

and

| arg{p(z)}| < πβ

2
, (|z| < |z0|).

Then by Lemma 1.11, we have

z0p
′(z0)

p(z0)
= iℓβ, (2.11)

where

ℓ ⩾
1

2

(
a +

1

a

)
⩾ 1 when arg{p(z0)} =

πβ

2
, (2.12)

and

ℓ ⩽ −1

2

(
a +

1

a

)
⩽ −1 when arg{p(z0)} = −πβ

2
, (2.13)

where {
p(z0)

} 1
β = ±ia, (a > 0).

Note that from Lemma 2.1,

| arg{f ′(z)}| < π

4
√
α
, (z ∈ U). (2.14)

Now, suppose arg{p(z0)} = πβ
2 . Since

f ′(z0) = p(z0) + z0p
′(z0) = p(z0)

[
1 +

z0p
′(z0)

p(z0)

]
,

from (2.10) and (2.11) we deduce that

arg{f ′(z0)} = arg{p(z0)} + arg{1 + iℓβ} =
πβ

2
+ arctan{ℓβ}

⩾
π

4
√
α

+ arctan
{ 1

2
√
α

}
>

π

4
√
α
,

which is contradictory with the relation (2.14). If arg{p(z0)} = −πβ
2 , then from (2.10) and (2.13) we deduce

that

arg{f ′(z0)} = arg{p(z0)} + arg{1 + iℓβ} = −πβ

2
+ arctan{ℓβ}

⩽ − π

4
√
α

+ arctan
{
− 1

2
√
α

}
< − π

4
√
α
,

which leads to contradiction with the relation (2.14). Therefore f(z)
z ≺

(
1+z
1−z

) 1
2
√

α .
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c) Let p(z) =
√

f(z)
z . With considering the branch of square root we have p ∈ H[1, 1] and

p2(z) + 2zp′(z)p(z) = f ′(z), (z ∈ U). (2.15)

Since f ∈ KS(α), by the relation (2.3) for α ∈ [ 14 , 1) we have Re{f ′(z)} > 0. Put h(z) = 1−z
1+z . Thus from the

relation (2.15) we can conclude that

p2(z) + 2zp′(z)p(z) ≺ 1 − z

1 + z
,

then by Lemma 1.9, √
f(z)

z
≺ q(z) =

√
Q(z),

where

Q(z) =
1

z

∫ z

0

h(t)dt =
1

z

∫ z

0

1 − t

1 + t
dt

=
2

z
ln(1 + z) − 1,

and the function q is the best (1, 1)–dominant. Moreover, we have

Q(z) + zQ′(z) = h(z) ≺ h(z)

and Q ∈ H[1, 1]. Therefore from Lemma 1.7, we follow that Q ≺ h and then Re{Q(z)} > 0. Since h is convex,
it is clear that Q is convex (see [6], Theorem 2.6h, part(ii)). On the Other hand, since the function Q has real
coefficients, we deduce that

min
|z|⩽1

Re{q(z)} =
√

Q(1) =
√

2 ln 2 − 1, (2.16)

then Re
{√ f(z)

z

}
>

√
2 ln 2 − 1.

□

Theorem 2.4. Let f ∈ BS(α). If α ∈ (0, 1), then

f(z)

z
≺

(1 +
√
αz

1 −
√
αz

) 1
2
√

α
= q(z), (2.17)

and q is the best (1, 1)–dominant. Also if α = 0, then

f(z)

z
≺ exp z, (2.18)

and exp(z) is the best (1, 1)–dominant.

Proof . Let p(z) = f(z)
z and α ∈ (0, 1). Since f ∈ BS(α) we obtain

zp′(z)

p(z)
=

zf ′(z)

f(z)
− 1 ≺ Fα(z).

We know that Fα(z) is starlike and Fα(0) = 0. Thus by Lemma 1.8,

f(z)

z
≺ q(z) = exp

[ ∫ z

0

Fα(t)

t
dt

]
=

(1 +
√
αz

1 −
√
αz

) 1
2
√

α
,

and the function q is the best (1, 1)–dominant. For proving the relation (2.18), we perform the former process with
Fα(z) = z. □
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