

A new subclass of analytic functions and some results related to Booth lemniscate

Zahra Orouji

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

(Communicated by Ali Jabbari)

Abstract

In this paper, we introduce the subclass $\mathcal{KS}(\alpha)$ of univalent functions in \mathcal{A} and study some properties of this class. We apply matters of differential subordinations, to investigate some results concerning the subclasses $\mathcal{KS}(\alpha)$ and $\mathcal{BS}(\alpha)$ of \mathcal{A} , where $\alpha \in [0, 1)$.

Keywords: Starlike functions, Convex functions, Differential subordination, Booth lemniscate 2020 MSC: Primary 30C45; Secondary 30C80

1 Introduction

Let \mathcal{A} denote the class of analytic functions f on the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, normalized by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \qquad (z \in \mathbb{U}).$$

$$(1.1)$$

and let S denote the subclass of \mathcal{A} consisting of all univalent functions. For a real number γ with $0 \leq \gamma < 1$, a function $f \in \mathcal{A}$ is called starlike of order γ if

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \gamma, \qquad (z \in \mathbb{U})$$

and f is called convex of order γ if

$$\operatorname{Re}\frac{zf''(z)}{f'(z)} + 1 > \gamma, \qquad (z \in \mathbb{U}).$$

we denote by $S^*(\gamma)$ and $K(\gamma)$ the classes of starlike and convex functions of order γ , respectively. In particular we set $S^*(0) \equiv S^*$ and $K(0) \equiv K$. It is clear that a function $f \in \mathcal{A}$ belongs to the class K if and only if zf'(z) belongs to the class S^* . Suppose f be an analytic function in \mathbb{U} with $f'(0) \neq 0$, then the function f is called close-to-convex if there exists a convex function g such that:

$$\operatorname{Re}\left\{\frac{f'(z)}{g'(z)}\right\} > 0, \qquad (z \in \mathbb{U}).$$

Email address: z.orouji@urmia.ac.ir (Zahra Orouji)

We denote by C the class of all close-to-convex functions in \mathbb{U} . Refer to [2, 8, 9, 10, 11] for various published papers dealing with mentioned classes.

Suppose that $\mathcal{H} = \mathcal{H}(\mathbb{U})$ be the class of all analytic functions in \mathbb{U} and n be a positive integer number and $a \in \mathbb{C}$. We set:

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}, f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \}.$$

Suppose that $\alpha \in [0, 1)$, in this paper (as seen in Piejko and Sokol [7]), we apply a family of univalent functions in \mathbb{U} as follows:

$$F_{\alpha}(z) = \frac{z}{1 - \alpha z^2} = z + \sum_{n=1}^{\infty} \alpha^n z^{2n+1}, \qquad (z \in \mathbb{U}).$$
(1.2)

Note that for $\alpha \in [0, 1)$:

$$\operatorname{Re}\left\{\frac{zF_{\alpha}'(z)}{F_{\alpha}}\right\} = \operatorname{Re}\left\{\frac{1+\alpha z^{2}}{1-\alpha z^{2}}\right\} > 0, \qquad (z \in \mathbb{U}),$$

then $F_{\alpha}(z)$ is starlike in U. Also $F_{\alpha}(\mathbb{U}) = D(\alpha)$, where

$$D(\alpha) = \left\{ x + iy \in \mathbb{C} \mid (x^2 + y^2)^2 - \frac{x^2}{(1 - \alpha)^2} - \frac{y^2}{(1 + \alpha^2)} < 0 \right\},$$

when $\alpha \in [0,1)$ and

$$D(1) = \left\{ x + iy \in \mathbb{C} \mid x + iy \neq it, \qquad \forall t \in (-\infty, 1/2] \cup [1/2, \infty) \right\}$$

The curve

$$(x^2 + y^2)^2 - \frac{x^2}{(1-\alpha)^2} - \frac{y^2}{(1+\alpha)^2} = 0, \qquad ((x,y) \neq 0),$$

is called the Booth lemniscate of elliptic type. See [4] for more explanations. Let f and g belong to \mathcal{H} . The function f is subordinate to g, denoted by $f \prec g$, if there exists an analytic function w in \mathbb{U} with w(0) = 0 and $|w(z)| \leq |z| < 1$ such that f(z) = g(w(z)). Moreover if g is a univalent function in \mathbb{U} , then $f \prec g$ if and only if f(0) = 0 and $f(\mathbb{U}) \subset g(\mathbb{U})$. Now we recall from (Kargar et al. 2017 [4]) the following definition.

Definition 1.1. Let $f \in \mathcal{A}$ and $\alpha \in [0, 1)$. We say $f \in \mathcal{BS}(\alpha)$ if and only if

$$\frac{zf'(z)}{f(z)} - 1 \prec F_{\alpha}(z),$$

where $F_{\alpha}(z)$ is given by (1.2).

Furthermore, we mention from [4] a main lemma as follows.

Lemma 1.2. If F_{α} is given by (1.2), then we have:

$$\frac{1}{\alpha - 1} < \operatorname{Re}\{F_{\alpha}(z)\} < \frac{1}{1 - \alpha}, \qquad (z \in \mathbb{U}),$$

where $\alpha \in [0, 1)$.

From Lemma 1.2, if $f \in \mathcal{BS}(\alpha)$ then:

$$\frac{\alpha}{\alpha - 1} < \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < \frac{2 - \alpha}{1 - \alpha}, \qquad (z \in \mathbb{U}).$$
(1.3)

Therefore in particular, $\mathcal{BS}(0) \subset \mathcal{S}^*$. Now, we are interested to produce a new subclass of \mathcal{A} as follows.

Definition 1.3. Let $f \in \mathcal{A}$, $\alpha \in [0, 1)$ and $F_{\alpha}(z)$ is given by (1.2). Then $f \in \mathcal{KS}(\alpha)$ if and only if

$$\frac{zf''(z)}{f'(z)} \prec F_{\alpha}(z). \tag{1.4}$$

Remark 1.4. From the Definition 1.1 and the Definition 1.3, $f \in \mathcal{KS}(\alpha)$ if and only if $zf' \in \mathcal{BS}(\alpha)$.

Remark 1.5. By Lemma 1.2, if $f \in \mathcal{KS}(\alpha)$ then

$$\frac{1}{\alpha - 1} < \operatorname{Re}\left\{\frac{zf''(z)}{f'(z)}\right\} < \frac{1}{1 - \alpha}, \qquad (z \in \mathbb{U}).$$
(1.5)

Therefore in particular, $\mathcal{KS}(0) \subset K$.

Corollary 1.6. Let $f \in \mathcal{A}$ and $\alpha \in [0, 1)$, then $f \in \mathcal{KS}(\alpha)$ if and only if there exists an analytic function w in \mathbb{U} , with w(0) = 0 and |w(z)| < 1, such that

$$f'(z) = \exp \int_0^z \frac{F_\alpha(w(t))}{t} dt, \qquad (z \in \mathbb{U}).$$
(1.6)

Proof. Let $f \in \mathcal{KS}(\alpha)$. So there exists an analytic function w(z) in \mathbb{U} with w(0) = 0 and |w(z)| < 1 such that:

$$\frac{zf''(z)}{f'(z)} = F_{\alpha}(w(z)), \qquad (z \in \mathbb{U}).$$

Equivalently

$$\frac{d}{dz}\log f'(z) = \frac{F_{\alpha}(w(z))}{z}, \qquad (z \in \mathbb{U}),$$

then we have

$$f'(z) = \exp \int_0^z \frac{F_{\alpha}(w(t))}{t} dt, \qquad (z \in \mathbb{U}).$$

Now, if a function f satisfies the condition (1.6), it is easy considering that $f \in \mathcal{KS}(\alpha)$. \Box As example with setting w(z) = z in (1.6), we conclude that

$$f(z) = \int_0^z \left(\frac{1+\sqrt{\alpha}t}{1-\sqrt{\alpha}t}\right)^{\frac{1}{2\sqrt{\alpha}}} dt,$$

belongs to the class $\mathcal{KS}(\alpha)$. For proving main results, we require to express some lemmas.

Lemma 1.7 (See [6]). Let h be convex in \mathbb{U} with $h(0) = a, \gamma \neq 0$ and $\operatorname{Re} \gamma \ge 0$. If $p \in \mathcal{H}[a, n]$ and

$$p(z) + \frac{zp'(z)}{\gamma} \prec h(z),$$

then

$$p(z) \prec q(z) \prec h(z),$$

where

$$q(z) = \frac{\gamma}{nz^{\frac{\gamma}{n}}} \int_0^z h(t) t^{(\frac{\gamma}{n})-1} dt.$$

The function q is convex and is the best (a, n)-dominant.

$$\frac{zp'(z)}{p(z)} \prec h(z),$$

then

$$p(z) \prec q(z) = a \exp\left[n^{-1} \int_0^z h(t) t^{-1} dt\right],$$

and q is the best (a, n)-dominant.

Lemma 1.9 (See [6]). Let h be convex, with h(0) = 1 and $\operatorname{Re} h(z) > 0$. If $p \in \mathcal{H}[1, n]$ satisfies

$$p^2(z) + 2p(z) \cdot zp'(z) \prec h(z),$$

then

$$p(z) \prec q(z) = \sqrt{Q(z)}$$

where

$$Q(z) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t) t^{(\frac{1}{n})-1} dt,$$

and the function q is the best (1, n)-dominant.

Lemma 1.10 (Miller and Mocanu [6]). Let Q denote the set of functions q that are analytic and injective on $\overline{\mathbb{U}} \setminus E(q)$ where

$$E(q) := \big\{ \xi \in \partial \mathbb{U} : \lim_{z \to \xi} q(z) = \infty \big\},\$$

and $q'(\xi) \neq 0$ for $\xi \in \partial \mathbb{U} \setminus E(q)$. Let $q \in Q$ with q(0) = a, and let

$$p(z) = a + a_n z^n + \dots$$

be analytic in \mathbb{U} with $p(z) \neq a$ and $n \geq 1$. If $p \neq q$, then there exist $m \geq n \geq 1$ and points $z_0 \in \mathbb{U}, \xi_0 \in \partial \mathbb{U} \setminus E(q)$ so that $p(|z| < |z_0|) \subset q(\mathbb{U}), p(z_0) = q(\xi_0)$ and $z_0 p'(z_0) = m\xi_0 q'(\xi_0)$, and

$$\operatorname{Re}\left\{\frac{z_0 p''(z_0)}{p'(z_0)} + 1\right\} \ge m \operatorname{Re}\left\{\frac{z_0 q''(z_0)}{q'(z_0)} + 1\right\}.$$

Also, we require generalization of the Nunokawas lemma as following.

Lemma 1.11 (See [7]). Let p be an analytic function in U with $p(z) \neq 0$ and

$$p(z) = 1 + \sum_{n=m \ge 1}^{\infty} c_n z^n, \qquad (c_m \ne 0).$$

If there exists $z_0 \in \mathbb{U}$ such that

$$|\arg\{p(z)\}| < \frac{\pi\beta}{2}$$
 for $|z| < |z_0|$,

and

$$|\arg\{p(z_0)\}| = \frac{\pi\beta}{2}$$

for some $\beta > 0$, then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = i\ell\beta,$$

where

$$\ell \ge \frac{m}{2} \left(a + \frac{1}{a} \right) \ge m \quad \text{when} \quad \arg\{p(z_0)\} = \frac{\pi \beta}{2}$$

and

$$\ell \leqslant -rac{m}{2} ig(a + rac{1}{a} ig) \leqslant -m \quad ext{when} \quad rg\{p(z_0)\} = -rac{\pi eta}{2},$$

where

$$\left\{p(z_0)\right\}^{\frac{1}{\beta}} = \pm ia \quad \text{with} \quad a > 0.$$

Lemma 1.12 (See [6]). Let $\Omega \subset \mathbb{C}$ and $p \in \mathcal{H}[a, n]$ with $\operatorname{Re} a > 0$. If a function $\Psi : \mathbb{C}^3 \times \mathbb{U} \to \mathbb{C}$ satisfies the condition

$$\Psi(\rho i, \sigma, \mu, \nu; z) \notin \Omega, \qquad (z \in \mathbb{U}),$$

for all $\rho, \, \sigma, \, \mu, \, \nu \in \mathbb{R}, \, \sigma \leqslant -\frac{n}{2} \frac{|a-i\rho|^2}{\operatorname{Re} a}, \, \sigma + \mu \leqslant 0$, then

$$\Psi(p(z), zp'(z), z^2p''(z); z) \in \Omega \Longrightarrow \operatorname{Re} p(z) > 0.$$

2 Main results

In the beginning, we prove one of main results in this section.

Lemma 2.1. Let $f \in \mathcal{KS}(\alpha)$. If $0 < \alpha < 1$, then

$$f'(z) \prec q(z) = \left(\frac{1+\sqrt{\alpha}z}{1-\sqrt{\alpha}z}\right)^{\frac{1}{2\sqrt{\alpha}}},\tag{2.1}$$

and q is the best (1,1)-dominant and if $\alpha = 0$, then

$$f'(z) \prec \exp(z),\tag{2.2}$$

and $\exp(z)$ is the best (1,1)-dominant. Furthermore for $\alpha \in (0,1)$, we have

$$|\arg\{f'(z)\}| < \frac{1}{2\sqrt{\alpha}} \arctan\left\{\frac{2\sqrt{\alpha}}{1-\alpha}\right\}.$$
(2.3)

Proof. Let p(z) = f'(z). Therefore $p \in \mathcal{H}[1, 1]$ and

$$\frac{zp'(z)}{p(z)} = \frac{zf''(z)}{f'(z)} \prec F_{\alpha}(z)$$

Because of the starlikeness of F_{α} , by supposing n = a = 1 in Lemma 1.8, we conclude that

$$f'(z) \prec q(z) = \exp\left[\int_0^z \frac{F_{\alpha}(t)}{t} dt\right] = \left(\frac{1+\sqrt{\alpha}z}{1-\sqrt{\alpha}z}\right)^{\frac{1}{2\sqrt{\alpha}}},$$

and q(z) is the best (1,1)-dominant. Also in the case $\alpha = 0$, for considering the relation (2.2), we perform the procedure of the case $\alpha \in (0,1)$ with $F_{\alpha}(z) = z$. If $\alpha \in (0,1)$ and $w(z) = \frac{1+\sqrt{\alpha}z}{1-\sqrt{\alpha}z}$ $(z \in \mathbb{U})$, we can easily conclude that w maps the open disk \mathbb{U} onto the disk with the center $C = \frac{1+\alpha}{1-\alpha}$ and the radius $R = \frac{2\sqrt{\alpha}}{1-\alpha}$. Equivalently we have

$$\left|w(z) - \frac{1+\alpha}{1-\alpha}\right| < \frac{2\sqrt{\alpha}}{1-\alpha}, \qquad (z \in \mathbb{U}).$$

thus with a simple calculation, we follow

$$0 < \frac{1 - \sqrt{\alpha}}{1 + \sqrt{\alpha}} < \operatorname{Re} w < \frac{1 + \sqrt{\alpha}}{1 - \sqrt{\alpha}}$$

and therefore

$$\left|\arg\left(\frac{1+\sqrt{\alpha}z}{1-\sqrt{\alpha}z}\right)^{\frac{1}{2\sqrt{\alpha}}}\right| < \frac{1}{2\sqrt{\alpha}}\arctan\frac{2\sqrt{\alpha}}{1-\alpha},\tag{2.4}$$

and the result is obtained. \Box

Theorem 2.2. For $0 \leq \alpha < 1$, $\mathcal{KS}(\alpha) \subset S$.

Proof. Suppose $f \in \mathcal{KS}(\alpha)$. Through the relation (2.3), it is clear that for $\alpha \in [\frac{1}{4}, 1)$:

$$|\arg\{f'(z)\}| < \frac{\pi}{2}.$$
 (2.5)

Thus Re f'(z) > 0 and by Noshiro–Warshawski theorem [1] f is univalent in U. Moreover from (1.5) for $\alpha \in [0, \frac{1}{3}]$ we have

$$\operatorname{Re}\left\{\frac{zf''(z)}{f'(z)}+1\right\} > \frac{\alpha}{\alpha-1} \ge -\frac{1}{2}, \qquad (z \in \mathbb{U}),$$

$$(2.6)$$

and by Kaplan [3], we conclude that f is close-to-convex. Then f is univalent in \mathbb{U} . \Box

Theorem 2.3. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{KS}(\alpha)$,

a) If $\alpha \in (0, \frac{1}{4}]$, then

$$\frac{f(z)}{z} \prec q(z) = \frac{1}{z} \int_0^z \left(\frac{1+\sqrt{\alpha}t}{1-\sqrt{\alpha}t}\right)^{\frac{1}{2\sqrt{\alpha}}} dt,$$
(2.7)

and q(z) is convex and the best (1,1)-dominant. Also if $\alpha = 0$, then

$$\frac{f(z)}{z} \prec \frac{1}{z}(e^z - 1),$$
 (2.8)

and $\frac{1}{z}(e^z - 1)$ is convex and the best (1, 1)-dominant. b) If $\alpha \in [\frac{1}{4}, 1)$, then

$$\frac{f(z)}{z} \prec \left(\frac{1+z}{1-z}\right)^{\frac{1}{2\sqrt{\alpha}}}.$$
(2.9)

Therefore for $\alpha \in [\frac{1}{4}, 1)$, we have $\operatorname{Re}\left\{\frac{f(z)}{z}\right\} > 0$. c) If $\alpha \in [\frac{1}{4}, 1)$, then

$$\sqrt{\frac{f(z)}{z}} \prec \sqrt{\frac{2}{z}\ln(1+z) - 1}.$$
 (2.10)

Therefore Re $\left\{\sqrt{\frac{f(z)}{z}}\right\} > \sqrt{2\ln 2 - 1}.$

Proof.

a) Let
$$p(z) = \frac{f(z)}{z}$$
, then $p \in \mathcal{H}[1,1]$ and $p(0) = 1$. Since $f'(z) = p(z) + zp'(z)$, by using the relation (2.1) we obtain

$$p(z) + zp'(z) \prec \left(\frac{1 + \sqrt{\alpha z}}{1 - \sqrt{\alpha z}}\right)^{\frac{1}{2\sqrt{\alpha}}}$$

Suppose $h(z) = \left(\frac{1+\sqrt{\alpha}z}{1-\sqrt{\alpha}z}\right)^{\frac{1}{2\sqrt{\alpha}}}$. By [5] it is showed that for $\alpha \in (0, \frac{1}{4}]$, the function h(z) is convex and h(0) = 1, then by taking $\gamma = 1$ and n = 1 in Lemma 1.7, the relation (2.6) is obtained. Moreover $q(z) = \frac{1}{z} \int_0^z \left(\frac{1+\sqrt{\alpha}z}{1-\sqrt{\alpha}z}\right)^{\frac{1}{2\sqrt{\alpha}}} dt$ is convex and the best (1,1)-dominant. For the case $\alpha = 0$ similar to the past case, by applying the relation (2.2) and Lemma 1.7, the relation (2.7) is obtained.

b) Let $p(z) = \frac{f(z)}{z}$ be the form:

$$p(z) = 1 + a_2 z + a_3 z^2 + \ldots = 1 + \sum_{n=1}^{\infty} a_{n+1} z^n, \qquad (z \in \mathbb{U})$$

We want to show $p(z) \prec \left(\frac{1+z}{1-z}\right)^{\beta} = q(z)$, where $\beta = \frac{1}{2\sqrt{\alpha}}$. Suppose $p \not\prec q$. From Lemma 1.10, there exist points $z_0 \in \mathbb{U}$ and $\xi_0 \in \partial \mathbb{U} \setminus E(q)$ such that

$$|\arg\{p(z_0)\}| = \frac{\pi\beta}{2}$$

and

$$|\arg\{p(z)\}| < \frac{\pi\beta}{2}, \qquad (|z| < |z_0|)$$

Then by Lemma 1.11, we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = i\ell\beta,$$
(2.11)

where

$$\ell \ge \frac{1}{2}\left(a + \frac{1}{a}\right) \ge 1$$
 when $\arg\{p(z_0)\} = \frac{\pi\beta}{2}$, (2.12)

and

$$\ell \leqslant -\frac{1}{2}\left(a + \frac{1}{a}\right) \leqslant -1 \quad \text{when} \quad \arg\{p(z_0)\} = -\frac{\pi\beta}{2},\tag{2.13}$$

where

$$\{p(z_0)\}^{\frac{1}{\beta}} = \pm ia, \qquad (a > 0).$$

Note that from Lemma 2.1,

$$|\arg\{f'(z)\}| < \frac{\pi}{4\sqrt{\alpha}}, \qquad (z \in \mathbb{U}).$$
(2.14)

Now, suppose $\arg\{p(z_0)\} = \frac{\pi\beta}{2}$. Since

$$f'(z_0) = p(z_0) + z_0 p'(z_0) = p(z_0) \Big[1 + \frac{z_0 p'(z_0)}{p(z_0)} \Big],$$

from (2.10) and (2.11) we deduce that

$$\arg\{f'(z_0)\} = \arg\{p(z_0)\} + \arg\{1 + i\ell\beta\} = \frac{\pi\beta}{2} + \arctan\{\ell\beta\}$$
$$\geqslant \frac{\pi}{4\sqrt{\alpha}} + \arctan\{\frac{1}{2\sqrt{\alpha}}\} > \frac{\pi}{4\sqrt{\alpha}},$$

which is contradictory with the relation (2.14). If $\arg\{p(z_0)\} = -\frac{\pi\beta}{2}$, then from (2.10) and (2.13) we deduce that

$$\arg\{f'(z_0)\} = \arg\{p(z_0)\} + \arg\{1 + i\ell\beta\} = -\frac{\pi\beta}{2} + \arctan\{\ell\beta\}$$
$$\leqslant -\frac{\pi}{4\sqrt{\alpha}} + \arctan\{-\frac{1}{2\sqrt{\alpha}}\} < -\frac{\pi}{4\sqrt{\alpha}},$$

which leads to contradiction with the relation (2.14). Therefore $\frac{f(z)}{z} \prec \left(\frac{1+z}{1-z}\right)^{\frac{1}{2\sqrt{\alpha}}}$.

c) Let $p(z) = \sqrt{\frac{f(z)}{z}}$. With considering the branch of square root we have $p \in \mathcal{H}[1,1]$ and

$$p^{2}(z) + 2zp'(z)p(z) = f'(z), \qquad (z \in \mathbb{U}).$$
 (2.15)

Since $f \in \mathcal{KS}(\alpha)$, by the relation (2.3) for $\alpha \in [\frac{1}{4}, 1)$ we have $\operatorname{Re}\{f'(z)\} > 0$. Put $h(z) = \frac{1-z}{1+z}$. Thus from the relation (2.15) we can conclude that

$$p^{2}(z) + 2zp'(z)p(z) \prec \frac{1-z}{1+z},$$

then by Lemma 1.9,

$$\sqrt{\frac{f(z)}{z}} \prec q(z) = \sqrt{Q(z)},$$

where

$$Q(z) = \frac{1}{z} \int_0^z h(t) dt = \frac{1}{z} \int_0^z \frac{1-t}{1+t} dt$$
$$= \frac{2}{z} \ln(1+z) - 1,$$

and the function q is the best (1, 1)-dominant. Moreover, we have

$$Q(z) + zQ'(z) = h(z) \prec h(z)$$

and $Q \in \mathcal{H}[1,1]$. Therefore from Lemma 1.7, we follow that $Q \prec h$ and then $\operatorname{Re}\{Q(z)\} > 0$. Since h is convex, it is clear that Q is convex (see [6], Theorem 2.6h, part(ii)). On the Other hand, since the function Q has real coefficients, we deduce that

$$\min_{|z| \le 1} \operatorname{Re}\{q(z)\} = \sqrt{Q(1)} = \sqrt{2\ln 2 - 1},$$
(2.16)

then
$$\operatorname{Re}\left\{\sqrt{\frac{f(z)}{z}}\right\} > \sqrt{2\ln 2 - 1}.$$

Theorem 2.4. Let $f \in \mathcal{BS}(\alpha)$. If $\alpha \in (0, 1)$, then

$$\frac{f(z)}{z} \prec \left(\frac{1+\sqrt{\alpha}z}{1-\sqrt{\alpha}z}\right)^{\frac{1}{2\sqrt{\alpha}}} = q(z), \tag{2.17}$$

and q is the best (1, 1)-dominant. Also if $\alpha = 0$, then

$$\frac{f(z)}{z} \prec \exp z,\tag{2.18}$$

and $\exp(z)$ is the best (1, 1)-dominant.

Proof. Let $p(z) = \frac{f(z)}{z}$ and $\alpha \in (0, 1)$. Since $f \in \mathcal{BS}(\alpha)$ we obtain

$$\frac{zp'(z)}{p(z)} = \frac{zf'(z)}{f(z)} - 1 \prec F_{\alpha}(z).$$

We know that $F_{\alpha}(z)$ is starlike and $F_{\alpha}(0) = 0$. Thus by Lemma 1.8,

$$\frac{f(z)}{z} \prec q(z) = \exp\left[\int_0^z \frac{F_\alpha(t)}{t} dt\right] = \left(\frac{1+\sqrt{\alpha}z}{1-\sqrt{\alpha}z}\right)^{\frac{1}{2\sqrt{\alpha}}},$$

and the function q is the best (1, 1)-dominant. For proving the relation (2.18), we perform the former process with $F_{\alpha}(z) = z$. \Box

References

- P.L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- [2] I. Hotta and M. Nunokawa, On strongly starlike and convex functions of order α and type β, Mathematica 53 (2011), no. 76, 51–56.
- [3] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), no. 2, 169–185.
- [4] R. Kargar, A. Ebadian, and J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (2019), no. 1, 143–154.
- R. Kargar, A. Ebadian, and L. Trojnar-Spelina, Further results for starlike functions related with Booth lemniscate, Iran. J. Sci. Technol. Trans. A: Sci. 43 (2019), no. 3, 1235–1238.
- [6] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker Inc., New York, 2000.
- [7] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Seri. A, Math. Sci. 69 (1993), no. 7, 234–237.
- [8] M. Nunokawa, S.P. Goyal, and R. Kumar, Sufficient conditions for starlikeness, J. Class. Anal. 1 (2012), no. 1, 85–90.
- [9] Z. Orouji and R. Aghalary, The norm estimates of Pre- Schwarzian derivatives of spirallike functions and uniformly convex α- spirallike functions, Sahand Commun. Math. Anal. 12 (2018), no. 1, 89–96.
- [10] K. Piejko and J. Sokol, Hadamard product of analytic functions and some special regions and curves, J. Ineq. Appl. 2013 (2013), :420.
- [11] Y.J. Sim and D.K. Thomas, On the difference of coefficients of starlike and convex functions, Mathematics 8 (2020), no. 9, 1521.