
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,970 |
تعداد دریافت فایل اصل مقاله | 7,656,409 |
Collocation method for solving system of non-linear Abel integral equations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 10، دوره 15، شماره 7، مهر 2024، صفحه 93-100 اصل مقاله (405.13 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.26754.3407 | ||
نویسندگان | ||
Somayeh Kazemi1؛ Abolfazl Tari* 2 | ||
1Department of Mathematics, Shahed University, Tehran, Iran | ||
2Department of Mathematics, Shahed University, Tehran, Iran | ||
تاریخ دریافت: 13 دی 1400، تاریخ بازنگری: 18 فروردین 1401، تاریخ پذیرش: 23 فروردین 1401 | ||
چکیده | ||
In this paper, a special system of non-linear Abel integral equations (SNAIEs) is studied which arises in astrophysics. Here, the well-known collocation method is extended to obtain approximate solutions of the SNAIEs. The existence and uniqueness conditions of the solution are investigated. Finally, some examples are solved to illustrate the accuracy and efficiency of the proposed method. | ||
کلیدواژهها | ||
Abel integral equations؛ System؛ Collocation Method؛ Existence and uniqueness | ||
مراجع | ||
[1] K.E. Atkinson, An existence theorem for Abel integral equations, SIAM j. Math. Anal. 5 (1974), 729–736. [2] H. Azin, F. Mohammadi, D. Baleanu, A generalized Barycentric rational interpolation method for Abel equations, Int. J. Appl. Comput. Math. 6 (2020), doi: 10.1007/s40819-020-00891-6. [3] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Univ. Press, 2004. [4] H. Brunner, Volterra Integral Equations, Cambridge University Press, New York, (2017). [5] N. Ebrahimi and J. Rashidinia, Spline collocation for system of Fredholm and Volterra integro-differential equations, J. Math. Model. 3 (2015), no. 2, 219–232. [6] C. Fleurier and J. Chapelle, Inversion of Abel’s integral equation application to plasma spectroscopy, Comput. Phys. Comm. 7 (1974), 200–206. [7] J. Goncerzewicz, H. Marcinkowska, W. Okrasinski, and K. Tabisz, On percolation of water from a cylindrical reservoir into the surrounding soil, Appl. Math. 16 (1978), 249–261. [8] R. Gorenflo and S. Vessella, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, Germany, 1991. [9] M. Izadi and M. Afshar, Solving the Basset equation via Chebyshev collocation and LDG methods, J. Math. Model. 9 (2021), no. 1, 61—79. [10] J.J. Keller, Propagation of simple nonlinear waves in gas filled tubes with friction, Z. Angew. Math. Phys. 32 (1981), 170–181. [11] K. Kumar, R.K. Pandy, and Sh. Sharma, Numerical schemes for generalized Abel’s integral equations, Int. J. App. Comput. Math. 4 (2018), Article no. 68. [12] N. Mandal, A. Chakrabarti, and B.N. Mandal, Solution of a system of generalized Abel integral equations using fractional calculus, App. Math. Lett. 9 (1996) 1-4. [13] W.R. Mann and F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), 163–184. [14] S. Pandey, S. Dixit, and S.R. Verma, An efficient solution of system of generalized Abel integral equations using Bernstein polynomials wavelet bases, Math. Sci. 14 (2020), 279–291. [15] A.P. Reddy, M. Harageri, and C. Sateesha, A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method, J. Math. Model. 5 (2017), no. 1, 61–75. [16] K. Sadri, A. Amini, and C. Cheng, A new operational method to solve Abel’s and generalized Abel’s integral equations, Appl. Math. Comput. 317 (2018), 49–67. [17] C. Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equ. Oper. Theory 2 (1979), 62–68. [18] A. Setia and R.K, Pandey, Leguerre polynomials based numerical method to solve a system of generalized Abel integral equations, Procedia Eng. 38 (2012), 1675–1682. [19] C.S. Singh, H. Singh, S. Singh, and D. Kumar, An efficient computational method for solving system of nonlinear generalized Abel equations arising in astrophysics, Phys. A. 525 (2019), 1440–1448. [20] A. Tari, The differential transform method for solving the model describing biological species living together, Iran. J. Math. Sci. Inf. 7 (2012), no. 2, 55–66. [21] J. Tausch, The generalized Euler-Maclaurin formula for the numerical solution of Abel-type integral equations, J. Integral Equ. Appl. 22 (2010), 115–140. [22] G. Vainikko and A. Pedas The properties of solutions of weakly singular integral equations, J. Aust. Math. Soc. 22 (1981), 419–430. | ||
آمار تعداد مشاهده مقاله: 12,988 تعداد دریافت فایل اصل مقاله: 263 |