
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,885 |
تعداد دریافت فایل اصل مقاله | 7,656,358 |
On partial fuzzy metric-preserving functions | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 5، دوره 14، شماره 10، دی 2023، صفحه 43-55 اصل مقاله (392.67 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.28609.3940 | ||
نویسندگان | ||
Elif Güner* ؛ Halis Aygün | ||
Department of Mathematics, Faculty of Arts and Science, Kocaeli University, 41380, Kocaeli, Turkey | ||
تاریخ دریافت: 12 مهر 1401، تاریخ بازنگری: 11 خرداد 1402، تاریخ پذیرش: 28 تیر 1402 | ||
چکیده | ||
The target of this paper is to present partial fuzzy metric-preserving functions and characterize the functions $f:[0,1]\to[0,1]$ with this aspect. We give a characterization for partial fuzzy metric-preserving functions considering the different t-norms. Also, we show that the topology induced by partial fuzzy metric does not preserve under these functions with an example. Then we give a characterization of those partial fuzzy metric-preserving functions which preserve completeness and contractivity under some conditions. Finally, we discussed the relation between fuzzy metric preserving and partial fuzzy preserving functions. | ||
کلیدواژهها | ||
fuzzy partial metric spaces؛ metric-preserving functions؛ contraction mapping؛ completeness | ||
مراجع | ||
[1] B. Aldemir, E. Guner, E. Aydogdu, and H. Aygun, Some fixed point theorems in partial fuzzy metric spaces, J. Inst. Sci. Technol. 10 (2020), 2889–2900. [2] M. A. Alghamdi, N. Shahzad, and O. Valero, On fixed point theory in partial metric spaces, Fixed Point Theory Appl.175 (2012). [3] E. Aydogdu, B. Aldemir, E. Guner, and H. Aygun, Some properties of partial fuzzy metric topology, Int. Conf. Intell. Fuzzy Syst., Springer, Cham, 2020, pp. 1267–1275. [4] H. Aygun, E. Guner, J.J. Minana, and O. Valero, Fuzzy partial metric spaces and fixed point theorem, Mathematics 10 (2022), no. 17, 3092. [5] J. Borsik and J. Dobos, Functions whose composition with every metric is a metric, Math. Slovaca 31 (1981), 3–12. [6] I. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Math. Notes 22 (2021), no. 1, 153–171. [7] I. Demir, Some soft topological properties and fixed soft element results in soft complex valued metric spaces, Turk. J. Math. 45 (2021), no. 2, 971–987. [8] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), no. 3, 395–399. [9] V. Gregori, J.J. Minana, and D. Miravet, Fuzzy partial metric spaces, Int. J. Gen. Syst. 48 (2019), no. 3, 260–279. [10] V. Gregori, J.J. Minana, and O. Valero, A technique for fuzzifying metric spaces via metric preserving mappings, Fuzzy Sets Syst. 330 (2018), 1–15. [11] V. Gregori, S. Morillas, and A. Sapena, On a class of completable fuzzy metric spaces, Fuzzy Sets Syst. 161 (2010), no. 16, 2193–2205. [12] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets Syst. 115 (2000), no. 3, 485–489. [13] E. Guner and H. Aygun, A new approach to fuzzy partial metric spaces, Hacettepe J. Math. Statist. 51 (2022), no. 6, 1563–1576. [14] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334. [15] S. Massanet and O. Valero, New results on metric aggregation, Proc. 16th Spanish Conf. Fuzzy Technol. Fuzzy Logic, Eur. Soc. Fuzzy Logic Technol., Valladolid, 2012, pp. 558–563. [16] S. Matthews, Partial metric topology, Ann. New York Acad. Sci. 728 (1994), no.1, 183–197. [17] J.J. Minana and O. Valero, On partial metric preserving functions and their characterization, Filomat 34 (2020), no. 7, 2315–2327. [18] S. Onbasıoglu, and B. Pazar Varol, Intuitionistic fuzzy metric-like spaces and fixed-point results, Mathematics 11 (2023), no. 8, 1902. [19] T. Pedraza, J. Rodrıguez-Lopez, and O. Valero, Aggregation of fuzzy quasi-metrics, Inf. Sci. 581 (2021), 362–389. [20] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983. [21] S. Sedghi, N. Shobkolaei, and I. Altun, Partial fuzzy metric space and some fixed point results, Commun. Math. 23 (2015), no. 2, 131–142. [22] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topology 6 (2005), no. 2, 229–240. [23] L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), no. 3, 338–353. | ||
آمار تعداد مشاهده مقاله: 16,284 تعداد دریافت فایل اصل مقاله: 201 |