
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,815 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
مقایسه پیشبینی نوسانات شاخص سهام بورس تهران در رویکرد گارچ-میداس و رگرسیون کوانتایل | ||
مدلسازی اقتصادسنجی | ||
مقاله 6، دوره 8، شماره 2 - شماره پیاپی 30، شهریور 1402، صفحه 163-194 اصل مقاله (8.94 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jem.2023.30386.1830 | ||
نویسندگان | ||
محمدرضا منجذب* 1؛ فریماه جعفری2؛ یاسین قاسمی2 | ||
1دانشیار اقتصاد، دانشکده اقتصاد، دانشگاه خوارزمی | ||
2کارشناسی ارشد مهندسی صنایع سیستمهای کلان اقتصادی اجتماعی، دانشکده اقتصاد، دانشگاه خوارزمی | ||
تاریخ دریافت: 26 فروردین 1402، تاریخ بازنگری: 31 تیر 1402، تاریخ پذیرش: 02 مرداد 1402 | ||
چکیده | ||
در این پژوهش مدل گارچ-میداس با این هدف به کار گرفته میشود که کاستی مدلهای گارچ، یعنی اتکا به تقارن در زمینههای تواتر دادهها را جبران کند. از همین روی، مزیت و افزوده این مدل به مدلهای گارچ و دیگر مدلهای سری زمانی، ترکیب دادههایی است که تواتر متفاوت دارند. بدین منظور، بازدهی سهام بر اساس ترکیبی از دادههای روزانه با هفتگی، مدلسازی میشود. اما مدل کوانتایل نیز از جمله مدلهای جدیدی است که در عوض تواتر متفاوت، بر کل توزیع تمرکز دارد و رگرسیون را بر اساس توزیع کل دادهها انجام میدهد و مبتنی بر خصوصیت توزیع نرمال نیست. مسئله تحقیق حاضر از همین تفاوت میان مدل گارچ-میداس و کوانتایل، شکل گرفت و سازماندهی تحقیق بر اساس آن انجام شد. یافتههای تحقیق نشان داد که مدل گارچ-میداس نسبت به مدل کوانتایل، برازش بهتری دارد و از قابلیت مدلسازی و پیشبینی بهتری برای نوسان در بازدهی سهام، برخوردار است. | ||
کلیدواژهها | ||
نوسان بازدهی؛ بازدهی سهام؛ مدل گارچ-میداس؛ مدل کوانتایل؛ پیشبینی نوسان | ||
عنوان مقاله [English] | ||
Comparison of predicting volatility of Tehran stock index in GARCH-MIDAS approach and quantile regression | ||
نویسندگان [English] | ||
Mohammadreza Monjazeb1؛ Farimah Jafari2؛ Yasin Ghasemi2 | ||
1Associate Prof, Faculty of economics, University of Kharazmi | ||
2MSc. Industrial Engineering of Macroeconomic social systems, University of Kharazmi | ||
چکیده [English] | ||
This research is carried out to the GARCH-MIDAS model which is used with the aim of compensating for the shortcoming of conventional GARCH models; i.e., relying on symmetry in data frequency. Therefore, the advantage of GARCH-MIDAS model to GARCH models and of course other time series models is the combination of data that have different frequencies. For this purpose, stock returns are modeled based on a combination of daily and weekly volatility. Besides, the Quantile model is also one of the new models that focuses on the entire distribution instead of different frequencies, thereby does regression based on the distribution of the entire data and is not based on the characteristic of the normal distribution. The problem of the current research was formed from this difference between Garch-Midas and Quantile model, and the organization of the research was formed based on it. After describing the problem and assumptions in the first chapter, a review of the theoretical and empirical literature of the research was carried out, and in the third and fourth chapters, the research model, its description and regression were estimated. The findings of the research showed that the Garch-Midas model has a better fit than the quantile model and has a better modeling and forecast capability for the fluctuation in stock returns. | ||
کلیدواژهها [English] | ||
: yield fluctuation, Stock returns, Garch-Midas model, Quantile model, Fluctuation prediction | ||
مراجع | ||
باباجانی، جعفر، تقوی فرد، سیدمحمدتقی، و غزالی، امین (1397)، ارائه چارچوبی جهت سنجش و پیش بینی ریسک سیستمی با رویکرد ارزش در معرض خطر شرطی. دانش مالی تحلیل اوراق بهادار (مطالعات مالی)، 11(39 ): 15-36.
دهقانی، علی و خیل کردی، فاطمه و عبدالباقی عطاآبادی، عبدالمجید (1399)، سنجش اثرگذاری عوامل اقتصادی درون شرکتی در شرایط نوسانات نفتی بر جریان نقدینگی در بورس تهران. اقتصاد مالی، 14(52):197-222
راسخی، سعید و خانعلی پور، امیر و خسروانی، فاطمه (1393)، ارزیابی خانواده مدل های GARCH در پیش بینی نوسانات بازار سهام (مطالعه موردی: بازار بورس اوراق بهادار تهران). کنفرانس بین المللی حسابداری، اقتصاد و مدیریت مالی، تهران
زین الدینی، شبنم، کریمی، محمدشریف و خانزادی، آزاد (1399)، بررسی اثر تکانه های قیمت نفت برعملکرد بازار سهام ایران. اقتصاد مالی (اقتصاد مالی و توسعه)، 14(50 ): 145-169.
منجذب، محمدرضا و نصرتی، رضا (1397)، مدلهای اقتصادسنجی پیشرفته، همراه با ایویوز و استاتا. نشر مهربان، چاپ اول، تهران.
نطیفی نایینی، مینو، فتاحی، شهرام و صمدی، سعید (1391)، مدلسازی و پیشبینی نوسانات بازار سهام با استفاده از مدل انتقالی گارچ مارکف. تحقیقات مدلسازی اقتصادی شماره9
Anggraeni W., Mahananto F., Ratna Handayani F., Kuntoro Boga, A. & Sumaryantoe (2019), Hybrid of ARIMA and Quantile Regression (ARIMA-QR) model for forecasting paddy price in Indonesia, Journal of Engineering and Applied Sciences, 14 (20): 7609-7619.
Bahloul, S. & Ben Amour, N. (2021), Impact of global and local factors on the MENA stock markets, International Journal of Emerging Markets, Vol. ahead-of-print No. ahead-of-print.
Chiang, T. C. & Li, J. (2012), Stock returns and risk: Evidence from quantile regression analysis, Journal of Risk and Financial Management, 5(1), 1-130.
Li, D., Zhang, L., & Li, L. (2023), Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model, International Review of Financial Analysis, 102708.
Engle, R. F., & Susmel, R. (1993), Common volatility in international equity markets, Journal of Business & Economic Statistics, 11(2), 167-176.
Engle, R. F. (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, 50, 987–1007.
Engle, R. F., Ghysels, E. & Sohn, B. (2013), Stock market volatility and macroeconomic fundamentals, Review of Economics and Statistics, 95(3): 776–797.
Ersin, O. & Bildirichi. M. (2023), Financial Volatility Modeling with the GARCH-MIDAS-LSTM Approach: The Effects of Economic Expectations, Geopolitical Risks and Industrial Production during COVID-19, Mathematics 2023, 11(8): 1785.
Gokmenoglu, K., Eren, B. M. & Hesami, S. (2021), Exchange rates and stock markets in emerging economies: new evidence using the Quantile-on-Quantile approach, Quantitative Finance and Economics, 5(1): 94-110.
Ghysels, E., Santa-Clara, P. & Valkanov, R. (2006), Predicting volatility: getting the most out of return data sampled at different frequencies, Journal of Econometrics, 131(1–2): 59–95.
Kumar P, H., & Patil S, B. (2016), Volatility Forecasting–A Performance Measure of Garch Techniques With Different Distribution Models, International Journal of Soft Computing, Mathematics and Control (IJSCMC), 5(2/3).
Jakobsen, J. S. (2018), Modeling Financial Market Volatility: A Component Model Perspective, PhD Thesis, Department of Economics and Business Economics, Aarhus University, Denmark.
Joo, Y. C. & Park, S.Y. (2021), The impact of oil price volatility on stock markets: Evidence from oil-importing countries, Energy Economics, 101.
Khan, N., Saleem, A. & Ozkan, O. (2023). Do geopolitical oil price risk influence stock market returns and volatility of Pakistan: Evidence from novel non-parametric quantile causality approach, Resources Policy, 81, 103355.
Prastuti, S. & Salehah, N. (2018), Hybrid ARIMAX quantile regression method for forecasting short term electricity consumption in east java, Journal of Physics, 1008(1).
Segnon, M., Gupta, R. & Wilfling, B. (2023), Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks, International Journal of Forecasting.
Smith Jr, C. W. (1989), Market Volatility: Causes and Consequences. Cornell Law Review, 74 (5).
Tsay, R. S. (2010), Analysis of financial time series. New York: John Wiley & Sons Publication.
Wang, L., Feng, M., Jing, L. and Yang, L. (2020), Forecasting stock market volatility: new evidence from the GARCH-MIDAS model, International Journal of Forecasting, 36(2): 684-694 | ||
آمار تعداد مشاهده مقاله: 762 تعداد دریافت فایل اصل مقاله: 760 |