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Abstract

This paper proves a fixed point theorem for F -contraction mappings in partial symmetric spaces. In doing so, we
extended and generalized the results in the literature by employing a rational-type contraction condition. We also
provided an illustrative example to support the results. Finally, we demonstrate the results by the applications to
Volterra integral equation inclusion and chemical reactor integral equations.
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1 Introduction

In 1994, Matthew [22] introduced non-zero self-distance, which is extensively applied in computer networking, data
structure, and Computer programming languages. By using the concept of non-self distance, Matthew [22] generalizes
the axioms of metric to partial metric and also explained the metric and topological properties for the new space. Some
of these properties are complete spaces, the Cauchy sequence and the contraction fixed point theorem, generalizing
the Banach contraction principle.

Wardowski [33] introduced a new contraction called F -contraction in metric spaces and proved fixed point results
as a generalization of the Banach contraction principle. Wardowski and Van Dung [34] established weak F -contraction
in metric space and proved fixed point results as an extension of the Banach contraction principle. Also, Cosentino
et al. [11] improved the results due to Wardowski [33] by using the concept of b-metric space and proved some fixed
point results. Aydi et al. [7] modified F -contractions via α-admissible mappings and application to integral equations.
Nazam et al. [26] proved the results for some F -contraction mappings in a dualistic partial metric space which provide
sufficient related conditions for the existence of a fixed point. Wangwe and Kumar [30, 31, 32] used the concept of
F -contraction to prove the fixed point and common fixed point theorem in ordered partial metric spaces, weak partial
metric spaces and generalized metric spaces.
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Recently, Acar [2] proved a fixed point theorem for multivalued almost F -δ-contraction. Kadelburg and Radenović
[19] gave notes on some recent papers concerning F -contractions in b-metric spaces. Nazam and Acar [25] proved
the results on common fixed points theorems for ordered F -contractions with application. Acar [1] proved a fixed
point theorems for rational type F -contraction in complete metric space. Vetro [28] proved a fixed-point problem with
mixed-type on F -H contractive condition.

On the other hand, Asim et al. [5] initiated the study of partial symmetric space by combining the concept of
partial metric space due to Matthew [22] and symmetric space concept due to Wilson [35]. Using this space, they
proved some related fixed point results for single-valued and multi-valued mappings. Since then, several researchers
have been motivated to do their research in this direction. In 2021, Asim and Imdad [4] proved a common fixed
point result in partial symmetric space. Furthermore, Asim et al. [6] proved a multi-valued result using Suzuki and
Wardowski-type contraction mapping in partial symmetric space. Wangwe and Kumar [29] proved the fixed point
theorem for multi-valued non-self mappings in partial symmetric spaces.

In this paper, we attempted to prove the fixed point theorem for F -contraction mappings in partial symmetric
spaces by combining the concept of partial symmetric space [5, 22, 35], and F -contraction notions [33]. We generalize
the theorem due to Dass and Gupta [12], and Jaggi [18]. Also, we give an example and demonstrate the results with an
application to Volterra integral equation inclusion. With this, we have denoted (X , ps) as a partial symmetric space.

2 Preliminaries

The following preliminaries and results will be helpful to develop the new theorem for this paper. Wilson [35]
introduced fixed point results in symmetric spaces (also called E-space, in the terminology of Fréchet) which did not
require triangular inequality, which is as follows:

Definition 2.1. [35] A symmetric space is a pair (X , d) consisting of a non-empty set X together with a function
d : X × X → [0,∞) called the symmetric metric, if and only if it satisfies:

(W1) d(ξ, η) = 0 if and only if ξ = η;

(W2) d(ξ, η) = d(η, ξ), for all ξ = η.

Then the pair (X , d) is called a symmetric space.

Matthews [22] replaced self distance by non-zero value to use it in computer semantics which is as follows:

Definition 2.2. [22] A partial metric space is a pair (X , p) consisting of a non-empty set X together with a function
p : X × X → R+, called the partial metric, such that for all ξ, η, θ ∈ X we have the following properties:

(P1) ξ = η if and only if p(ξ, ξ) = p(ξ, η) = p(η, η);

(P2) p(ξ, ξ) ≤ p(ξ, η);

(P3) p(ξ, η) ≤ p(η, ξ); and

(P4) p(ξ, η) ≤ p(ξ, θ) + p(θ, η)− p(θ, θ).

Then the pair (X , p) is called a partial metric space.

In partial metric space, it is not necessary that p(ξ, ξ) = 0, for every ξ = η, while in metric if ξ = η, then p(ξ, ξ) = 0.
Asim et al. [5] by combining the concept of symmetric space [35] and partial metric space [22] introduced the partial
symmetric space notions and gave some of its properties such as convergence, Cauchy sequence and completeness.

Definition 2.3. [5] Let X be a non-empty set. A mapping ps : X × X → R+ is said to be partial symmetric if for
all ξ, η, θ ∈ X , we have the following properties:

(PS1) ξ = η if and only if ps(ξ, η) = ps(ξ, ξ) = ps(η, η),

(PS2) ps(ξ, ξ) ≤ ps(ξ, η),

(PS3) ps(ξ, η) = ps(η, ξ).

Then the pair (X , ps) is said to be partial symmetric space.
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From (PS1) and (PS2) we have

ps(ξ, η) = 0 ⇒ ps(ξ, ξ) = ps(η, η) ⇒ ξ = η. (2.1)

A partial symmetric space (X , ps) reduces to a symmetric space if ps(ξ, ξ) = 0, for all ξ ∈ X . Every symmetric space
is partial symmetric space, but not conversely.

Let (X , ps) be a partial symmetric space. Then, the ps-open ball, with center ξ ∈ X and radius ε > 0, is defined
by: Bps(ξ, ε) = {η ∈ X : ps(ξ, η) < ps(ξ, ξ) + ε}.

Similarly, the ps-closed ball, with center ξ ∈ X and radius ε > 0, is defined by Bps
[ξ, ε] = {η ∈ X : ps(ξ, η) ≤

(ξ, ξ) + ε}.
The family of ps-open balls for all ξ ∈ X and ε > 0, Ups

= {Bps
(ξ, ε) : ξ ∈ X , ε > 0}, forms basis of some topology

τps
on X .

Definition 2.4. [5] Let (X , ps) be a partial symmetric space. Then,

(i) a sequence {ξn} in (X , ps) is said to be ps-convergent to ξ ∈ X , with respect to τps
if ps(ξ, ξ) = lim

n→∞
ps(ξn, ξ).

(ii) a sequence {ξn} in (X , ps) is called a ps-Cauchy sequence if only if lim
n,m→∞

ps(ξn, ξm) exists and is finite.

(iii) a partial symmetric space (X , ps) is said to be ps-complete if every ps- Cauchy sequence {ξn} in X is ps convergent,
with respect to τps

to a point ξ ∈ X , such that

ps(ξ, ξ) = lim
n→∞

ps(ξn, ξ) = lim
n,m→∞

ps(ξn, ξm).

Definition 2.5. [5] Let (X , ps) be a partial symmetric space. Then

(A1) lim
n→∞

ps(ξn, ξ) = ps(ξ, ξ) and lim
n→∞

ps(ξn, η) = ps(ξ, η) imply that ξ = η, for a sequence {ξn}, ξ, η ∈ X .

(A2) a partial symmetric ps is said to be 1-continuous if lim
n→∞

ps(ξn, ξ) = ps(ξ, ξ) implies that lim
n→∞

ps(ξn, η) = ps(ξ, η),

where {ξn} is a sequence in X and ξ, η ∈ X .

(A3) a partial symmetric ps is said to be continuous if lim
n→∞

ps(ξn, ξ) = ps(ξ, ξ) and lim
n→∞

ps(ξn, η) = ps(ξ, η) imply

that lim
n→∞

ps(ξn, ηn) = ps(ξ, η) where {ξn} and {ηn} are sequences in X and ξ, η ∈ X .

(A4) lim
n→∞

ps(ξn, ξ) = ps(ξ, ξ) and lim
n→∞

ps(ξn, ηn) = ps(ξ, ξ) =⇒ lim
n→∞

ps(ηn, ξ) = ps(ξ, ξ), for sequences (ξn), (ηn),

and ξ in X .

(A5) lim
n→∞

ps(ξn, ηn) = ps(ξ, ξ) and lim
n→∞

ps(ηn, θn) = ps(ξ, ξ) =⇒ lim
n→∞

ps(ξn, θn) = ps(ξ, ξ), for sequences (ξn), (ηn), (θn),

and ξ in X .

We recall the following examples in [5] which satisfy the above axioms of partial symmetric space as follows:

(1) Let X = R. Define a mapping ps : X × X → R+ for all ξ, η ∈ X and p, q > 1, as follows:

ps(ξ, η) = |ξ − η|p + |ξ − η|q.

Then the pair (X , ps) is a partial symmetric space.

(2) Let X = R. Define a mapping ps : X × X → R+ for all ξ, η ∈ X and p, q > 1, as below:

ps(ξ, η) = (max{ξ, η})p + (max{ξ, η})q.

(3) Let X = R. Define a mapping ps : X × X → [0,∞) for all ξ, η ∈ X , p, q > 1 and α ≥ 0, as follows:

ps(ξ, η) = |ξ − η|p + |ξ − η|q + β.

(4) Let X = [0,∞). Define a mapping ps : X × X → [0,∞) for all ξ, η ∈ X and p, q > 1, as follows:

ps(ξ, η) = (max{ξ, η})p + |ξ − η|q.
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(5) Let X = [0, π) and define a mapping ps : X × X → [0,∞) for all ξ, η ∈ X and p, q > 1, as follows:

ps(ξ, η) = (max{ξ, η})p + e|ξ−η|q .

(6) Let X = [0, 1) and define a mapping ps : X × X → [0,∞) for all ξ, η ∈ X , p, q > 1 and α > 0, as follows:

ps(ξ, η) = sin|ξ − η|+ α.

Wardowski [33] introduced a generalization of the Banach contraction principle in metric spaces as follows.

Definition 2.6. [33] Let (X , d) be a metric space. A self-mapping T on X is called an F-contraction mapping if
there exists F ∈ F and Γ ∈ R+ such that for all ξ, η ∈ X ,

d(T ξ, T η) > 0 ⇒ Γ + F (d(T ξ, T η)) ≤ F (d(ξ, η)).

Wardowski [33] proved the following fixed point theorem:

Theorem 2.7. [33] Let (X , d) be a complete metric space and T : X → X be a F -contraction mapping. If there exist
Γ > 0 such that for all ξ, η ∈ X ,

d(T ξ, T η) > 0 =⇒ Γ + F (d(T ξ, T η)) ≤ F (d(ξ, η)), (2.2)

then T has a unique fixed point.

The following explanations for developing the F -contraction definition were obtained from Wardowski [33], War-
dowski and Van Dung [34], and Cosentino et al. [11].

Let F : R+ → R be a mapping satisfying:

(F1) F is strictly increasing, i.e. for all ξ, η ∈ R+, ξ < η implies F (ξ) < F (η);

(F2) For each sequence {ξn}n∈N of positive numbers, limn→∞ ξn = 0 if and only if limn→∞ F (ξn) = −∞;

(F3) There exists k ∈ (0, 1) satisfying limn→∞(ξn)
kF (ξn) = 0, for all n ∈ N, and some Γ ∈ R+.

We denote the family of all functions F satisfying conditions ((F1) − (F3)) by F . Some examples of functions
F ∈ F are:

(1) F1(z) = ln z =⇒ d(T ξ,T η)
d(ξ,η) ≤ e−Γ;

(2) F2(z) = z + ln z =⇒ d(T ξ,T η)
d(ξ,η) ≤ e−Γ+d(ξ,η)−d(T ξ,T η);

(3) F3(z) = − 1√
z

=⇒ d(T ξ,T η)
d(x,y) ≤ 1

(1+Γ
√

d(ξ,η))2
;

(4) F4(z) = ln(z2 + z) =⇒ d(T ξ,T η)(1+d(T ξ,T η))
d(ξ,η)(1+d(ξ,η)) ≤ e−Γ.

In 1975, Dass and Gupta [12] proved the following results in complete metric space.

Theorem 2.8. [12] Suppose (X , d) is a complete metric space. Let T : X −→ X be a mapping such that there exists
δ1, δ2 ∈ [0, 1) with δ1 + δ2 < 1 satisfying

d(T ξ, T η) ≤ δ1d(ξ, T ξ)[1 + d(η, T η)]

1 + d(ξ, η)
+ δ2d(ξ, η), (2.3)

for any distinct ξ, η ∈ X . Then T has a unique fixed point in X .

The above results have been generalized in different directions employing various abstract spaces. For more details,
we refer the reader in [8, 9, 10, 14, 15, 18, 21] and the references therein.
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3 Main Results

We begin this section by introducing a definition of partial symmetric space.

Definition 3.1. Let (X , ps) be a partial symmetric space. A mapping T : X → X is said to be a Dass-Gupta type
F -contraction if, for all ξ, η ∈ X ,

Γ + F (ps(T ξ, T η)) ≤ F

(
δ1ps(ξ, T ξ)[1 + ps(η, T η)]

1 + ps(T ξ, T η)
+ δ2ps(ξ, η)

)
,

where δ1, δ2 ∈ [0, 1) with δ1 + δ2 < 1.

We prove our main theorem as given below:

Theorem 3.2. Let (X , ps) be a complete partial symmetric space and T : X −→ X . Assume that the following
conditions hold:

(i) there is ξ0 ∈ X such that ξ0 ∈ T ξ0,

(ii) T is continuous;

(ii) there exists F ∈ F and Γ > 0 with ps(T ξ, T η) > 0; such that

Γ + F (ps(T ξ, T η)) ≤ F

(
δ1ps(ξ, T ξ)[1 + ps(η, T η)]

1 + ps(T ξ, T η)
+ δ2ps(ξ, η)

)
,

(3.1)

where δ1, δ2 ∈ [0, 1) with δ1 + δ2 < 1.

Then, T has a unique fixed point, if there exists ξ ∈ X such that ps(ξ, ξ) = 0.

Proof . Suppose that ξ0 is an arbitrary point in X . By given assumption, there exists ξ0 and ξ1 in X such that
ξ0 ∈ T ξ0 and ξ1 ∈ T ξ1. If ξ0 = T ξ0 or ξ1 ∈ T ξ1, then, either ξ0 or ξ1 is a fixed point of T . Hence, our proof
is complete. On contrary, assume that ξ0 /∈ T ξ0 and ξ1 /∈ T ξ1, we can construct a sequence {ξn} in X such that
ps(ξn, ξn+1) > 0 which implies that

ps(ξn, ξn+1) = ps(T ξn−1, T ξn),∀n ∈ N. (3.2)

Now, taking ξ = ξn−1 and η = ξn in (3.1) and using (3.2) we have

Γ + F (ps(T ξn−1, T ξn)) ≤ F

(
δ1ps(ξn−1, T ξn−1)[1 + ps(ξn, T ξn)]

1 + ps(T ξn−1, T ξn)
+ δ2ps(ξn−1, ξn)

)
.

It follows that

Γ + F (ps(ξn, ξn+1)) ≤ F

(
δ1ps(ξn−1, ξn)[1 + ps(ξn, ξn+1)]

1 + ps(ξn, ξn+1)
+ δ2ps(ξn−1, ξn)

)
.

Consequently,

Γ + F (ps(ξn, ξn+1)) ≤ F
(
δ1ps(ξn−1, ξn) + δ2ps(ξn−1, ξn)

)
,

which is equivalent to

Γ + F (ps(ξn, ξn+1)) ≤ F
(
(δ1 + δ2)ps(ξn−1, ξn)

)
. (3.3)

Since δ1 + δ2 < 1, from (3.3) we obtain

Γ + F (ps(ξn, ξn+1)) ≤ F (ps(ξn−1, ξn). (3.4)
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Thus, we have

F (ps(ξn, ξn+1)) ≤ F (ps(ξn−1, ξn)− Γ. (3.5)

Similarly, we obtain

F (ps(ξn+1, ξn+2)) ≤ F (ps(ξn−1, ξn)− 2Γ. (3.6)

Continuing with this process through induction, for n ∈ N, we get

F (ps(ξn, ξn+1)) ≤ F (ps(ξn−1, ξn)− nΓ. (3.7)

By letting ξn = ps(ξn+1, ξn+2), for every n ∈ N and using (3.1), (3.7) with (F1), the following hold for every n ∈ N:

F (ξn) ≤ F (ξn−1)− Γ ≤ F (ξn−1)− 2Γ · · · ≤ F (ξ0)− nΓ. (3.8)

By (3.7), (F2) and letting n → ∞ gives limn→∞ F (ξn) = −∞. So,

lim
n→∞

ξn = 0. (3.9)

From condition (F3) there exists k ∈ (0, 1) such that

lim
n→∞

(ξn)
kF (ξn) = 0. (3.10)

By (3.8), the following hold for all n ∈ N:

(ξn)
kF (ξn) ≤ (ξn)

k(F (ξn−1)− Γ) ≤ (ξn)
k(F (ξn−1)− 2Γ) . . .

≤ (ξn)
kF (ξ0)− (ξn)

knΓ. (3.11)

Using (3.9) in (3.11) we get

0 ≤ −(ξn)
kΓ ≤ −(ξn)

k2Γ · · · ≤ −(ξn)
knΓ. (3.12)

By taking limit n → ∞ in (3.12), we obtain

lim
n→∞

(ξn)
knΓ = 0. (3.13)

From (3.13) there exists N ∈ N such that (ξn)
kn ≤ 1 for all n ≥ N . As a result, we have

n(ξn)
k ≤ 1,

ξn ≤ 1

n
1
k

,∀n ≥ N. (3.14)

Therefore,
∑∞

n=0 ξn =
∑∞

n=0
1

n
1
k

converges. By (3.14) and (2.4), we prove that {ξn} is a Cauchy sequence. A

partial symmetric space is said to be ps-complete if every ps-Cauchy sequence {ξn} in X is ps-convergent.

ps(ξ, ξ) = lim
n→∞

ps(ξn, ξ) = lim
n,m→∞

ps(ξn, ξm). (3.15)

For all n ≥ N and n,m ≥ N, we have

ps(ξn, ξm) ≤ ps(ξn, ξn+1) + ps(ξn+1, ξn+2) + · · ·+ ps(ξm−1, ξm+n),

≤ ξn + ξn+1 + ξn+2 + · · ·+ ξm−1,

=
1

n
1
k

+
1

(n+ 1)
1
k

+
1

(n+ 2)
1
k

+ · · ·+ 1

(m− 1)
1
k

,

≤
∞∑

n=0

1

n
1
k

.
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This shows that the series
∑∞

n=0
1

n
1
k

converges. Thus, limn→∞ ps(ξn, ξm) = 0. So, ξn = ξm for every m ≥ n in

X . Hence, ξn is a Cauchy sequence in X . Thus, we proved that {ξn} is Cauchy sequence. Also, since (X , ps) is a
complete partial symmetric space, there exists ξ∗ ∈ X such that ξn → ξ∗, and p(ξ∗, ξ∗) = 0. Now we will show that ξ
is a fixed point of T . We do this by showing that ps(ξ

∗, T ξ∗) = ps(ξ
∗, ξ∗) = 0. Suppose ps(ξ

∗, T ξ∗) > 0. Then there
exists some N ∈ N such that ps(ξn, T ξ∗) > 0 for all n > N . Letting ξ = ξn and η = ξ∗ in (3.1), we have

Γ + F (ps(T ξn, T ξ∗)) ≤ F

(
δ1ps(ξn, T ξn)[1 + ps(ξ

∗, T ξ∗)]

1 + ps(T ξn, T ξ∗)
+ δ2ps(ξn, ξ

∗)

)
,

Γ + F (ps(T ξn, T ξ∗)) ≤ F
(
δ1ps(ξn, T ξn) + δ2ps(ξn, ξ

∗)
)
. (3.16)

Taking n → ∞ in (3.16) and applying the fact that T is continuous, we get

Γ + F (ps(T ξ∗, T ξ∗)) ≤ F
(
δ1ps(ξ

∗, T ξ∗) + δ2ps(ξ
∗, ξ∗)

)
,

Γ ≤ F
(
δ1ps(ξ

∗, T ξ∗)
)
.

The above inequality satisfies if ps(ξ
∗, T ξ∗) = 0. By the continuity of T , we get Γ ≤ ps(ξ

∗, T ξ∗). Therefore, Γ ≤ 0,
which is a contradiction. Hence, ξ∗ is a fixed point of T . For the uniqueness of ξ∗, we claim that η∗ is another element
in X such that T ξ∗ = ξ∗ and T η∗ = η∗. Let ξ = ξ∗ and η = η∗ in (3.1), we have

Γ + F (ps(T ξ∗, T η∗)) ≤ F

(
δ1ps(ξ

∗, T ξ∗)[1 + ps(η
∗, T η∗)]

1 + ps(T ξ∗, T η∗)
+ δ2ps(ξ

∗, η∗)

)
,

Γ + F (ps(ξ
∗, η∗)) ≤ F

(
δ1ps(ξ

∗, ξ∗)[1 + ps(η
∗, η∗)]

1 + ps(ξ∗, η∗)
+ δ2ps(ξ

∗, η∗)

)
.

(3.17)

Using (2.1) in (3.17), we obtain

Γ + F (ps(ξ
∗, η∗)) ≤ F

(
δ2ps(ξ

∗, η∗)
)
.

The above inequality satisfy if ps(ξ
∗, η∗) = 0, for Γ ≤ 0 which is a contradiction. By(F1) implies that

ps(ξ
∗, η∗) < δ2ps(ξ

∗, η∗),

(1− δ2)ps(ξ
∗, η∗) < 0,

ps(ξ
∗, η∗) < 0,

which is a contradiction. Hence, the fixed point is unique, that is to say, ξ∗ = η∗. Thus, ξ∗ is a unique fixed point of
T . □

We give the following corollary:

Corollary 3.3. Let (X , ps) be a complete partial symmetric space and suppose D is a non-empty subset of X . Let
T : D → D be a mapping such that T ξ ̸= 0 for each ξ, η ∈ D, Γ > 0 and q, r ≥ 2 with ps(T ξ, T η) ≥ 0, we have

Γ + F (ps(T ξ, T η)) ≤ F (Mps(ξ, η)),

where

Mps
(ξ, η) = max

{
ps(ξ, η),

ps(ξ, T ξ) + ps(η, T η)

q
,
ps(ξ, T η) + ps(η, T ξ)

r

}
,

(3.18)

and F is an increasing function in F . Also, assume that the following conditions hold:
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(i) there exist ξ0 ∈ D and ξ1 ∈ T ξ0 such that T ξ0 ∈ D,

(ii) F is continuous,

(iiii) for any sequence {ξn} in D such that ξn → ξ as n → ∞ and ξn ⪯ ξn+1 for each n ∈ N∪ {0}, ps(ξn, ξ) → ps(ξ, ξ)
as n → ∞.

Then T has a unique fixed point.

Proof . Let ξ0 ∈ D, since T ξ0 ∈ D for every ξ0 ∈ X . Then there exists ξ1 ∈ D such that ξ1 ∈ T ξ0. Assume that
ξ1 /∈ T ξ0, on contrary to that ξ1 is a fixed point of T . Then, since T ξ0 is closed in D, ps(ξ0, T ξ0) > 0. Suppose that
ξ ∈ D and {ξn}n be a sequence in D ⊆ X defined as ξn = T ξn−1. Let ξ = ξn−1 and η = ξn in (3.18), we have

Γ + F (ps(T ξn−1, T ξn)) ≤ F (Mps
(ξn−1, ξn)), (3.19)

where

Mps
(ξn−1, ξn) = max

{
ps(ξn−1, ξn),

ps(ξn−1, T ξn−1) + ps(ξn, T ξn)

q
,
ps(ξn−1, T ξn) + ps(ξn, T ξn−1)

r

}
,

≤ max

{
ps(ξn−1, ξn),

ps(ξn−1, ξn) + ps(ξn, ξn+1)

q
,
ps(ξn−1, ξn+1) + ps(ξn, ξn)

r

}
.

Since q, r ≥ 2, it follows that

Mps
(ξn−1, ξn) = ps(ξn−1, ξn). (3.20)

Using (3.20) in (3.19) yields

Γ + F (ps(ξn, ξn+1)) ≤ F (ps(ξn−1, ξn)).

Consequently,

F (ps(ξn, ξn+1)) ≤ F (ps(ξn−1, ξn))− Γ.

The steps follow the similar proof of Theorem (3.2). This completes the proof. □

Corollary 3.4. Let (X , ps) be a complete partial symmetric spaces, C a non empty closed subset of X and T : C −→ C
be a self- mapping. Assume that the following conditions hold:

(i) T ξ0 ∈ C for each ξ0 ∈ C,
(ii) T is F -continuous,

(iii) There exists k ∈ (0, 1),∀ ξ, η ∈ C and Γ > 0 with ps(T ξ, T η) > 0; such that

Γ + F (ps(T ξ, T η)) ≤ F (kMps
(ξ, η)), (3.21)

where

Mps
(ξ, η) = max

{
ps(ξ, η),

ps(ξ, T ξ) + ps(η, T η)

q
,
ps(ξ, T η) + ps(η, T ξ)

r

}
.

Then, T has a unique fixed point, if there exists ξ ∈ X such that ps(ξ, ξ) = 0.

Proof . The proof of this corollary follows the similar steps of Theorem (3.2). This completes the proof. □

Now, we give an example to illustrate the use of Theorem 3.2.

Example 3.5. Let X = [0,∞) be an Euclidean space. Denote the unit interval of real numbers, with the partial
symmetric ps(ξ, η) = ps : X × X → [0,∞) defined by ps(ξ, η) = |ξ − η|p + |ξ − η|q, Γ > 0, for all ξ, η ∈ X and a
mapping T : X −→ X given by

T ξ =
ξ

23ξ
.
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Let F (z) = ln(z2 + z), using (3.1), we obtain

ps(T ξ, T η)[1 + ps(T ξ, T η)]

Mps(ξ, η)[1 +Mps(ξ, η)]
≤ e−Γ, (3.22)

where

Mps
(ξ, η) =

δ1ps(ξ, T ξ)[1 + ps(η, T η)]

1 + ps(T ξ, T η)
+ δ2ps(ξ, η),

where δ1, δ2 ∈ [0, 1) with δ1 + δ2 < 1.

Equivalent to

Mps
(ξ, η) =

δ1ps(ξ, T ξ)[1 + ps(η, T η)] + δ2ps(ξ, η)[1 + ps(T ξ, T η)]

1 + ps(T ξ, T η)
.

We prove that T satisfies (3.22). Now we calculate the following metrics:

ps(T ξ, T η) = |T ξ − T η|p + |T ξ − T η|q

≤

∣∣∣∣∣ ξ

23ξ
− η

23η

∣∣∣∣∣
p

+

∣∣∣∣∣ ξ

23ξ
− η

23η

∣∣∣∣∣
q

=

∣∣∣∣∣23ηξ − 23ξη

23ξ+3η

∣∣∣∣∣
p

+

∣∣∣∣∣23ηξ − 23ξη

23ξ+3η

∣∣∣∣∣
q

, (3.23)

ps(ξ, T ξ) = |ξ − T ξ|p + |ξ − T ξ|q

≤

∣∣∣∣∣ξ − ξ

23ξ

∣∣∣∣∣
p

+

∣∣∣∣∣ξ − ξ

23ξ

∣∣∣∣∣
q

=

∣∣∣∣∣23ξξ − ξ

23ξ

∣∣∣∣∣
p

+

∣∣∣∣∣23ξξ − ξ

23ξ

∣∣∣∣∣
q

, (3.24)

ps(η, T η) = |η − T η|p + |η − T η|q

≤

∣∣∣∣∣η − η

23η

∣∣∣∣∣
p

+

∣∣∣∣∣η − η

23η

∣∣∣∣∣
q

=

∣∣∣∣∣23ηη − η

23η

∣∣∣∣∣
p

+

∣∣∣∣∣23ηη − η

23η

∣∣∣∣∣
q

, (3.25)

ps(ξ, η) = |ξ − η|p + |ξ − η|q. (3.26)

Using (3.23)-(3.26) in (3.22), we obtain[∣∣∣ 23ηξ−23ξη
23ξ+3η

∣∣∣p + ∣∣∣ 23ηξ−23ξη
23ξ+3η

∣∣∣q][1 + ∣∣∣ 23ηξ−23ξη
23ξ+3η

∣∣∣p + ∣∣∣ 23ηξ−23ξη
23ξ+3η

∣∣∣q]
Mps

(ξ, η)[1 +Mps
(ξ, η)]

≤ e−Γ,

(3.27)

where

Mps
(ξ, η) =

δ1

[∣∣∣ 23ξξ−ξ
23ξ

∣∣∣p + ∣∣∣ 23ξξ−ξ
23ξ

∣∣∣q][1 + ∣∣∣ 23ηη−η
23η

∣∣∣p + ∣∣∣ 23ηη−η
23η

∣∣∣q]+
δ2

[
|ξ − η|p + |ξ − η|q

][
1 +

∣∣∣ 23ηξ−23ξη
23ξ+3η

∣∣∣p + ∣∣∣ 23ηξ−23ξη
23ξ+3η

∣∣∣q]
1 +

∣∣∣ 23ηξ−23ξη
23ξ+3η

∣∣∣p + ∣∣∣ 23ηξ−23ξη
23ξ+3η

∣∣∣q .
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By choosing δ1 = 1
2 , δ2 = 1

4 , p = q = 2, ξ = 1, η = 2 and Γ = 1
2 in (3.27) we get[∣∣∣ 23×2×1−23×1×2

23×1+3×2

∣∣∣2 + ∣∣∣ 23×2×1−23×1×2
23×1+3×2

∣∣∣2]×[
1 +

∣∣∣ 23×2×1−23×1×2
23×1+3×2

∣∣∣2 + ∣∣∣ 23×2×1−23×1×2
23×1+3×2

∣∣∣2]
Mps

(1, 2)[1 +Mps
(1, 2)]

≤ e−Γ,

where

Mps
(1, 2) =

1
2

[∣∣∣ 23×1×1−1
23×1

∣∣∣2 + ∣∣∣ 23×1×1−1
23×1

∣∣∣2][1 + ∣∣∣ 23×2×2−2
23×2

∣∣∣2 + ∣∣∣ 23×2×2−2
23×2

∣∣∣2]+
1
4

[
|1− 2|2 + |1− 2|2

][
1 +

∣∣∣ 23×2×1−23×1×2
23×1+3×2

∣∣∣2 + ∣∣∣ 23×2×1−23×1×2
23×1+3×2

∣∣∣2]
1 +

∣∣∣ 23×2×1−23×1×2
23×1+3×2

∣∣∣2 + ∣∣∣ 23×2×1−23×1×2
23×1+3×2

∣∣∣2 .

Consequently,[∣∣∣ 26−24

28

∣∣∣2 + ∣∣∣ 26−24

28

∣∣∣2][1 + ∣∣∣ 26−24

28

∣∣∣2 + ∣∣∣ 26−24

28

∣∣∣2]
Mps

(1, 2)[1 +Mps
(1, 2)]

≤ e−
1
2 ,

where

Mps
(1, 2) =

1
2

[∣∣∣ 23−1
23

∣∣∣2 + ∣∣∣ 23−1
23

∣∣∣2][1 + ∣∣∣ 27−2
26

∣∣∣2 + ∣∣∣ 27−2
26

∣∣∣2]+
1
4

[
1 + 1

][
1 +

∣∣∣ 26−24

29

∣∣∣2 + ∣∣∣ 26−24

29

∣∣∣2]
1 +

∣∣∣ 26−24

29

∣∣∣2 + ∣∣∣ 26−24

29

∣∣∣2 ,

=
6.700715786 + 0.508789062

1.01758125
,

=
7.209504848

1.01758125
= 7.084942699.

From the above inequality, follows that

0.0752563476

7.084942699[1 + 7.084942699]
≤ e−

1
2 ,

0.0752563476

57.28135575
≤ e−

1
2 ,

0.001313801 ≤ 0.606530659,

which shows that the contraction (3.1) is satisfied. Therefore, the conditions of the Theorem 3.2 are satisfied; thus, T
has a unique fixed point such that T 0 = 0. Hence, ps(0, 0) = 0.

4 Some Applications

In this section, we attempt to apply Theorem 3.2 and Corollary 3.3 to prove the existence and uniqueness of a
solution of Volterra integral inclusion and the Hammerstein integral equation.

4.1 An Application to Volterra Integral Inclusion

This subsection proves the existence of Volterra integral equation inclusion, where Theorem 3.2 can be applied as
an application to the fixed point theory in complete partial symmetric space. Motivated by [3, 4, 13, 27], we present
an existence result for the following Volterra integral equation inclusion given by

ξ(t) ∈
∫ T

0

G(t, s)H(s, ξ(s))ds+ h(t), t ∈ [0, T ], h ∈ X , (4.1)
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where F : [0, T ]×R → R is continuous function with non-empty compact values. Here T > 0 is a constant. Throughout
this section, the map ξ → F (t, ξ) is lower semi-continuous i.e. t ∈ [0, T ]. Define ps : X × X → X by

ps(ξ, η) = sup
t∈[0,T ]

|ξ − η|p + sup
t∈[0,T ]

|ξ − η|q, p, q > 1. (4.2)

Then (X , ps) is a ps-complete partial symmetric space. We recall the Hölder’s inequality as follows:

Definition 4.1. [24] Let p > 1 and 1
p +

1
q = 1. Assume that fξ and gξ are continuous real-valued functions on [a, b],

then the Hölder’s inequality for integral states that

∫ b

a

|fξ, gξ|ds ≤

[∫ b

a

|fξ|pds

] 1
p
[∫ b

a

|gξ|qds

] 1
q

. (4.3)

Now, we prove our results as follows:

Theorem 4.2. Suppose that, for all ξ, η ∈ C([0, T ],R), the following conditions hold:

(i) there exists a continuous function H ∈ [0, T ]× R such that

|H(t, s, ξ(s))−H(t, s, η(s))| ≤ e−Γ

t
|ξ(s)− η(s)|,

where

ps(ξ, η) = Mps
(ξ, η) ≤ δ1ps(ξ, T ξ)[1 + ps(η, T η)]

1 + ps(T ξ, T η)
+ δ2ps(ξ, η),

and δ1, δ2 ∈ [0, 1) with δ1 + δ2 < 1.
(ii) there exist t, s ∈ [0, T ] and Γ > 0 such that∣∣∣∣∣

∫ t

0

G(t, s)ds

∣∣∣∣∣
p

=

∣∣∣∣∣
∫ t

0

G(t, s)ds

∣∣∣∣∣
q

≤ 1. (4.4)

Then, the Volterra integral equation inclusion (4.1) has a unique solution.

Proof . Using the Volterra integral equation inclusion (4.1), we can define an operator T : X → X as follows:

T ξ(t) ∈
∫ T

0

G(t, s)H(s, ξ(s))ds+ h(t), t ∈ [0, T ], h ∈ X , (4.5)

which shows that ξ is a fixed point of the operator T if and only if it is a solution of Equation (4.1). Now, for all
ξ, η ∈ X , using condition (i), (ii) and (4.3) we obtain

|T ξ − T η|p + |T ξ − T η|q ≤

[∫ t

0

G(t, s)(H(s, ξ(s))−H(s, η(s)))ds

]p
+

[∫ t

0

G(t, s)(H(s, ξ(s))−H(s, η(s)))ds

]q

≤

[[∣∣∣∣∣
∫ t

0

G(t, s)ds

∣∣∣∣∣
q] 1

q
[∫ t

0

∣∣∣∣∣H(s, ξ(s))−H(s, η(s))

∣∣∣∣∣
p

ds

] 1
p
]p

+

[[∣∣∣∣∣
∫ t

0

G(t, s)ds

∣∣∣∣∣
p] 1

p
[∫ t

0

∣∣∣∣∣H(s, ξ(s))−H(s, η(s))

∣∣∣∣∣
q

ds

] 1
q
]q

≤

∣∣∣∣∣
∫ t

0

G(t, s)ds

∣∣∣∣∣
p ∫ t

0

∣∣∣H(s, ξ(s))−H(s, η(s))
∣∣∣pds

+

∣∣∣∣∣
∫ t

0

G(t, s)ds

∣∣∣∣∣
q ∫ t

0

∣∣∣H(s, ξ(s))−H(s, η(s))
∣∣∣qds,
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≤

∣∣∣∣∣
∫ t

0

G(t, s)ds

∣∣∣∣∣
p[∫ t

0

ds

]∣∣∣H(s, ξ(s))−H(s, η(s))
∣∣∣p + ∣∣∣∣∣

∫ t

0

G(t, s)ds

∣∣∣∣∣
q[∫ t

0

ds

]∣∣∣H(s, ξ(s))−H(s, η(s))
∣∣∣q

≤ sup
t∈[0,t]

|ξ(s)− η(s)|p e
−Γ

t
× t+ sup

t∈[0,t]

|ξ(s)− η(s)|q e
−Γ

t
× t,

≤ sup
t∈[0,t]

|ξ(s)− η(s)|pe−Γ + sup
t∈[0,t]

|ξ(s)− η(s)|qe−Γ,

≤

[
sup

t∈[0,t]

|ξ(s)− η(s)|p + sup
t∈[0,t]

|ξ(s)− η(s)|q
]
e−Γ,

≤ ps(ξ, η)e
−Γ.

So,

ps(T ξ, T η) ≤ ps(ξ, η)e
−Γ. (4.6)

By taking natural logarithms on both sides in (4.6) and the property of F , we obtain

F (ps(T ξ, T η)) ≤ F (ps(ξ, η))− Γ. (4.7)

Consequently,

Γ + F (ps(T ξ, T η)) ≤ F (ps(ξ, η)). (4.8)

Equivalently,

Γ + F (ps(T ξ, T η)) ≤ F (Mps(ξ, η)). (4.9)

Hence, ξ is a fixed point of T . Thus, (4.5) has a unique solution, which is also a solution of the Volterra integral
equation inclusion (4.1). This completes our proof. □

4.2 An Application of Fixed Point Theorem to a Chemical Reactor Problem

This subsection covers the application of fixed point theorem to a chemical reactor problem using ordinary dif-
ferential equations which can be converted to Hammerstein integral equation, where Corollary 3.3 is applied. The
following differential equation was inspired by Heinemann and Poor [16, 17], Lovo and Balakotaiah [20] and McGhee
et al. [23], which represents the mathematical model for an adiabatic tubular chemical reactor which processes an
irreversible exothermic chemical reaction for steady-state solutions. ξ

′′ − αξ
′
+W(α, ν, γ, ξ) = 0,

ξ
′
(0) = αξ(0), ξ

′
(1) = 0,

where, W(α, ν, γ, ξ) = αν(γ − ξ)eξ. (4.10)

The unknown ξ represents the steady state temperature of the reaction, and the parameter α, ν and γ represent
the Péclet number (Pe = advective transport rate

diffusive transport rate ), Damkohler number (Da = reaction rate
convective mass transport rate ) and the

dimensionless adiabatic temperature rise respectively.

The differential equation (4.10) can be written in the form of a Hammerstein integral equation using the Green
function technique.

ξ(t) = ν

∫ 1

0

G(t, s)f(t, s, ξ(s))ds,∀ t ∈ [0, 1], (4.11)

where ξ(t) is unknown function on I = [0, 1], The Green function associated with the Hammerstein integral Equation
(4.11) is defined by

G(t, s) =

{
eα(t−s), 0 ≤ t ≤ s ≤ 1,
1 0 ≤ s ≤ t ≤ 1,

(4.12)



Fixed point theorem for F -contraction mappings in partial symmetric space with some applications 357

and

f(t, s, ξ) = (γ − ξ)eξ,

which we consider in the space C[0, 1] of continuous functions on the closed interval [0, 1]. Throughout, we assume α
and ν are positive, and γ is non-negative.

It is well known that ξ ∈ C2[0, 1] is a solution of (4.10) which is equivalent to find a solution ξ ∈ C[0, 1] of the
Hammerstein integral Equation (4.11).

Now, we will construct the following theorem.

Theorem 4.3. Suppose that f : [0, 1]× [0, 1]× [0, 1] → R is continuous for all t, s, ξ, η ∈ C([0, 1],R) and the following
conditions are satisfied:

(i) for all t, s ∈ [0, 1] and ξ, η ∈ D, we have

|f(t, s, ξ(s))− f(t, s, η(s))| ≤ e−Γ|ξ(s)− η(s)| (4.13)

where

L = γ(eξ − eη) + ηeη − ξeξ,∫ 1

0

G(t, s)ds = Z =
αt+ 1− eα(t−1)

α
,

and νpZL ≤ e−Γ implies that νqZL ≤ e−Γ, for p, q ≥ 0, with

Mps
(ξ, η) = max

{
ps(ξ, η),

ps(ξ, T ξ) + ps(η, T η)

q
,
ps(ξ, T η) + ps(η, T ξ)

r

}
.

(ii) for any sequence {ξn} in D such that ξn → ξ as n → ∞ and ξn ⪯ ξn+1 for each n ∈ N∪ {0}, ps(ξn, ξ) → ps(ξ, ξ)
as n → ∞. Then there is a unique continuous functions ξ : [0, 1] → R which satisfies (4.11).

Then, the integral equation (4.11) has a unique solution ξ ∈ X .

Proof . We prove this result by showing that, when inequality (4.13) is satisfied, the map T is a contraction on the
normed space C([0, 1]) with the uniform norm ∥.∥∞. Now, define a map T : C[0, 1] → C[0, 1] by

Tξ(t) = ν

∫ 1

0

G(t, s)f(t, s, ξ(s))ds, t ∈ [0, 1]. (4.14)

Define ps : X × X → X by

ps(ξ, η) = sup
t∈[0,T ]

|ξ − η|p + sup
t∈[0,T ]

|ξ − η|q + β,∀ p, q > 1and β ≥ 0.

Then (X , ps) is a ps-complete partial symmetric space. We prove that a mapping T defined in Equation (4.14) is
a contraction for two continuous functions ξ and η on C([0, 1],X ). By using the condition imposed in Theorem 4.3,
(4.3) and (4.15) , for all ξ, η ∈ X , we obtain

|T ξ − T η|p + |T ξ − T η|q ≤

[
ν

∫ 1

0

G(t, s)(f(t, s, ξ(s))−H(s, η(s)))ds

]p

+

[
ν

∫ 1

0

G(t, s)(f(s, ξ(s))− f(t, s, η(s)))ds

]q
+ β

≤

[[∣∣∣∣∣
∫ 1

0

G(t, s)ds

∣∣∣∣∣
q] 1

q
[
νp
∫ 1

0

∣∣∣∣∣f(t, s, ξ(s))− f(t, s, η(s))

∣∣∣∣∣
p

ds

] 1
p
]p

+

[[∣∣∣∣∣
∫ 1

0

G(t, s)ds

∣∣∣∣∣
p] 1

p
[
νq
∫ 1

0

∣∣∣∣∣f(t, s, ξ(s))− f(t, s, η(s))

∣∣∣∣∣
q

ds

] 1
q
]q

+ β



358 Wangwe, Kumar

≤

∣∣∣∣∣
∫ t

0

G(t, s)ds

∣∣∣∣∣
p

νp
∫ 1

0

∣∣∣f(t, s, ξ(s))− f(t, s, η(s))
∣∣∣pds+ ∣∣∣∣∣

∫ 1

0

G(t, s)ds

∣∣∣∣∣
q

νq
∫ t

0

∣∣∣f(t, s, ξ(s))− f(t, s, η(s))
∣∣∣qds+ β

≤

∣∣∣∣∣
∫ 1

0

G(t, s)ds

∣∣∣∣∣
p[∫ 1

0

ds

]
νp
∣∣∣f(t, s, ξ(s))− f(t, s, η(s))

∣∣∣p + ∣∣∣∣∣
∫ 1

0

G(t, s)ds

∣∣∣∣∣
q[∫ 1

0

ds

]
νq
∣∣∣f(t, s, ξ(s))− f(t, s, η(s))

∣∣∣q + β

≤ sup
t∈[0,1]

|ξ(s)− η(s)|pνpZL+ sup
t∈[0,1]

|ξ(s)− η(s)|qνqZL

≤ sup
t∈[0,1]

|ξ(s)− η(s)|pe−Γ + sup
t∈[0,1]

|ξ(s)− η(s)|qe−Γ

≤

[
sup

t∈[0,t]

|ξ(s)− η(s)|p + sup
t∈[0,t]

|ξ(s)− η(s)|q
]
e−Γ

≤ps(ξ, η)e
−Γ.

So,

ps(T ξ, T η) ≤ ps(ξ, η)e
−Γ. (4.15)

By taking natural logarithms on both sides in (4.15) and the property of F , we obtain

F (ps(T ξ, T η)) ≤ F (ps(ξ, η))− Γ. (4.16)

As a result, we have

Γ + F (ps(T ξ, T η)) ≤ F (ps(ξ, η)). (4.17)

Equivalent to

Γ + F (ps(T ξ, T η)) ≤ F (Mps
(ξ, η)). (4.18)

Operator T satisfies the condition of Equation 4.10. Hence by Theorem 4.3 we have shown that the operator T
has a unique fixed point ξ ∈ X , that is, the Hammerstein integral equation (4.11) has a solution in X , which is the
solution of differential equation (4.10). Therefore, T satisfies all the conditions in Corollary 3.3. □

5 Conclusion

The novelty of this study to fixed point theory is the fixed point result given in Theorem 3.2. This theorem provides
the fixed points conditions for a substantial class of self-mappings on various abstract spaces. This paper, inspired by
the results obtained by Wilson [35], Matthew [22], Wardowski [33] and Asim et al. [5] in partial symmetric space. We
proved a fixed point theorem for a self-mapping involving F -contraction in partial symmetric space, which generalizes
some well-known literature results. These results have some applications in many areas of applied mathematics,
especially in integral equation inclusion.
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