
Int. J. Nonlinear Anal. Appl. 14 (2023) 11, 343–364
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.27807.3720

Characterization of n-exact sequence of n-additive categories

Feysal Hassani, Samira Hashemi∗, Rasul Rasuli

Department of Mathematics, Payame Noor University (PNU), P. OBox, 19395-4697 Tehran, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, the concepts of n-monomorphism, n-epimorphism, n-isomorphism, n-equivalent, n-coproduct, n-product,
n-injection, n-projection, n-initial object, n-terminal object, n-pushout diagram, n-inverse system, n-inverse limit, and
n-homology of categories will be introduced and will be shown the relationship between them. Next some of their
properties and structured characteristics will be investigated and obtained some results about them.
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1 Introduction

Category theory formalizes mathematical structures, and their concepts in terms of a labeled directed graph called
a category, whose nodes are called objects and their edges called arrows (or morphisms). This category has two basic
properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. The
language of category theory has been employed to formalize concepts of other high-level abstractions such as sets,
rings, and groups. Several terms were utilized in category theory, including the ”morphism” used differently from their
usage in the rest of mathematics. In category theory, morphisms obey specific conditions of theory. Samuel Eilenberg
and Saunders Mac Lane introduced the concepts of categories, functors, and natural transformations in 1942-45 in
their study of algebraic topology, to understand the processes that preserve the mathematical structure. Category
theory has practical applications in programming language theory, for example, the usage of monads in functional
programming. It may also be used as an axiomatic foundation for mathematics, as an alternative to set theory and
other proposed foundations. In mathematics, an abelian category is a category in which morphisms and objects can be
added and which kernels and cokernels exist and have desirable properties. The motivating prototype example of an
abelian category is the category of abelian groups, Ab. The theory originated to unify several cohomology theories by
Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are
very stable categories. For example, they are regular and satisfy the snake lemma. The class of Abelian categories is
closed under several categorical constructions. For instance, the category of chain complexes of an Abelian category or
the category of functors from a small category to an Abelian category is also Abelian. These stability properties make
them inevitable in homological algebra and beyond. This theory has significant applications in algebraic geometry,
cohomology, and pure category theory. The Abelian categories are named after Niels Henrik Abel. An exact sequence
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is a concept in mathematics, especially in group theory, ring, module theory, homological algebra, and differential
geometry. An exact sequence is a finite or infinite sequence of objects and morphisms between them such that
the image of one morphism equals the kernel of the next. Homological algebra is the branch of mathematics that
studies homology in a general algebraic setting. It is a relatively young discipline whose origins can be traced to
investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules
and syzygies) at the end of the 19th century, chiefly by Henri Poincar´e and David Hilbert. The development of
homological algebra has closely intertwined with the emergence of category theory. By and large, homological algebra
is the study of homological functors and their intricate algebraic structures. One beneficial and ubiquitous concept in
mathematics is that of chain complexes, which can be studied through their homology and cohomology. Homological
algebra allows extracting information in these complexes and presenting it as homo-logical invariants of rings, modules,
topological spaces, and other ’tangible’ mathematical objects. Spectral sequences provide a powerful tool for doing
this. From its very origins, homological algebra has played an enormous role in algebraic topology. Its sphere of
influence has gradually expanded and presently includes commutative algebra, algebraic geometry, algebraic number
theory, representation theory, mathematical physics, operator algebras, complex analysis, and the theory of partial
differential equations. K-theory is an independent discipline that draws upon methods of homological algebra, as does
the noncommutative geometry of Alain Connes.

This paper is organized as follows. In Section Two, we state and discuss the axioms and draw the main consequences.
In Section Three, we define n-monomorphism, n-epimorphism, n-isomorphism, n-equivalent, and consider conditions
that a chain map will be n-isomorphism. Section 4 briefly discusses categorical constructions. In this section, we
introduce the concepts of n-coproduct, n-product, n-injection, n-projection, n-initial object, and n-terminal object.
We prove some results about them. Finally, in Section Five, we discuss the n-homology of categories. We introduce
the n-pushout diagram, n-inverse system, n-inverse limit, and n-homology of categories. We introduce n-pushout
diagram, n-inverse system, n-inverse limit, and n-homology of categories.

2 Preliminaries

In this section, we recall some of the fundamental concepts and definitions, which are necessary for this paper. For
details, we refer to [4,10,12,13].

Definition 2.1. Let C be an additive category and d0 : X0 −→ X1 a morphism in C. An n-coker of d0 is a sequence

(d1, ..., dn) : X1 d1−→ X2 d2−→ ...
dn−→ Xn+1

such that, , for all Y ∈ C the induced sequence of abelian groups

0 −→ C(Xn+1, Y )
dn.?−→ C(Xn, Y )

dn−1.?−→ ...
d1.?−→ C(X1, Y )

d0.?−→ C(X0, Y )

is exact. Equivalently, the sequence (d1, ..., dn) is an n-coker of d0 if, , for all 1 ≤ k ≤ n− 1 the morphism dk is a weak
cokernel of dk−1, and dn is moreover a cokernel of dn−1. The concept of n-ker of morphism is defined dually.

Definition 2.2. Let C be an additive category. An n-exact sequence in C is a complex

X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1

in Chn(C) such that (d0, ..., dn−1) is an n-ker of dn, and (d1, ..., dn) is an n-coker of d0.

Definition 2.3. Let C be an additive category, X a complex in Chn−1(C), and
f0 : X0 −→ Y 0 a morphism in C. An n-pushout diagram of X along f0 is a morphism of complexes

X X0 X1 X2 ... Xn−1 Xn

Y Y 0 Y 1 Y 2 ... Y n−1 Y n

f f0 fn

such that in the mapping cone C = C(f)
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X0 d−1
c−→ X1

⊕
Y 0 d0c−→ ...

dn−2
c−→ Xn

⊕
Y n−1

dn−1
c−→ Y n.

the sequence (d0c , ..., d
n−1
c ) is an n-coker of d−1c , where we define

dkc :=

[
−dk+1

X 0
fk+1 dkY

]
: Xk+1

⊕
Y k −→ Xk+2

⊕
Y k+1

for each k ∈ {−1, 0, 1, ..., n− 1}. In particular

d−1c =

[
−d0X
f0

]
and dn−1c =

[
fn dn−1Y

]
Note that the fact that C(f) is a complex encodes precisely that X and Y are complexes and that f is a morphism

of complexes.The concept of n-pullback diagram is defined dually.

Definition 2.4. Let n be a positive integer. An n-abelian category is an additive category C which satisfies the
following axioms;

(A0) The category C is idempotent complete.

(A1) Every morphism in C has n-ker and n-coker.

(A2) for every monomorphism f0 : X0 −→ X1 in C and, for every n-coker (f0, f1, ..., fn−1) of f0, the following
sequence n-exact:

X0 f0

−→ X1 f1

−→ ...
fn−1

−→ Xn fn

−→ Xn+1.

(A2op) for every epimorphism gn : Xn −→ Xn+1 in C and, for every n-ker (g0, g1, ..., gn−1) of gn, the following
sequence n-exact:

X0 g0−→ X1 g1−→ ...
gn−1

−→ Xn gn−→ Xn+1.

3 Special n-chain maps

Definition 3.1. Let C be an additive category and A,B,C ∈ Chn(C), a morphism u : B −→ C in a category C is an
n-monomorphism (or is n-monic) if u can be canceled from the left; that is, , for all objects C and all morphism
f, g : A −→ B, we have that uf = ug implies f=g

A A0 A1 A2 ... An An+1

B B0 B1 B2 ... Bn Bn+1

C C0 C1 C2 ... Cn Cn+1

fg f0g0 fn+1gn+1

u u0 un+1

and, for all 0 ≤ i ≤ n, ui : Bi −→ Ci are monomorphisms. It is clear that u : B −→ C is an n-monomorphism if and
only if, for all A, the induced map u∗ : Hom(A,B) −→ Hom(A,C) is an injection. Hom(A,B) is an abelian groups,
because of C is additive category, and so u is an n-monic if and only if ug = 0 implies g = 0
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Definition 3.2. Let C be an additive category and B,C,D ∈ Chn(C), a morphism v : B −→ C in a category C be
an n-epimorphism (or is n-epic) if v can be canceled from the right; that is, , for all objects D and all morphism
h, k : C −→ D, we have that hv = kv implies h = k.

B B0 B1 B2 ... Bn Bn+1

C C0 C1 C2 ... Cn Cn+1

D D0 D1 D2 ... Dn Cn+1

v v0 vn+1

hk h0k0 hn+1kn+1

and, for all 0 ≤ i ≤ n, vi : Bi −→ Ci are epimorphisms. It is clear that, v : B −→ C is an n-epimorphism if and
only if, for all D, the induced map v∗ : Hom(C,D) −→ Hom(B,D) is an injection. Hom(A,B) is an abelian groups,
because of C is additive category, and so v is n-monic if and only if gv = 0 implies g = 0.

Definition 3.3. Let C be an additive category and A,B ∈ Chn(C), f : A −→ B is an n-isomorphism if there are

the chain maps h : B −→ A and k : B −→ A such that B
h−→ A

f−→ B and A
f−→ B

k−→ A are identity chain maps
and, for all 0 ≤ i ≤ n, f i : Ai −→ Bi are isomorphisms.

It is easy to see that, the composition of n-isomorphisms is an n-isomorphism.

Proposition 3.4.

(a) Let C be an additive category and A,B,C ∈ Chn(C), A −→ B −→ C be an n-monomorphism, then so is A −→ B.
If both A −→ B and B −→ C are n-monomorphism, then so is A −→ B −→ C.

(b) Let C be an additive category and A,B,C ∈ Chn(C), A −→ B −→ C be an n-epimorphism, then so is B −→ C.
If both A −→ B and B −→ C are n-epimorphism,, then so is A −→ B −→ C.

Proof .

(a) By proposition 1.41 [12] this holds for k-monomorphisms, where 0 ≤ k ≤ n. So, The the proof holds for
n-monomorphism.

(b) By proposition 1.42 [12] this holds for k-epimorphisms, where 0 ≤ k ≤ n. So, The the proof holds for n-
epimorphism.

□

Proposition 3.5. Let C be an abelian additive category. A chain maps is an n-isomorphism if and only if is both an
n-monomorphism and an n-epimorphism.

Proof . If

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1

f0 fn+1

is an n-isomorphism, then there are n-chain maps such that

B0 B1 B2 ... Bn Bn+1

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1

K0g0 Kn+1gn+1

f0 fn+1
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is an n-monomorphism and

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1

A0 A1 A2 ... An An+1

f0 fn+1

g0k0 gn+1
kn+1

is an n-epimorphism.

Conversely, let A,B ∈ Chn(C), and

A A0 A1 A2 ... An An+1

B B0 B1 B2 ... Bn Bn+1

f f0 fn+1

clearly be an n-monomorphism and n-epimorphism. Bi −→ 0 is the cokernel of f i : Ai −→ Bi, , for all i ∈ {0, 1, ..., n+
1}. 1Bi : Bi −→ Bi is clearly a kernel of Bi −→ 0. By the theorem 2.11 [4] so is f i : Ai −→ Bi, , for all
i ∈ {0, 1, ..., n+ 1}.

Already, we have the same chain maps. The theorem 2.11 [4] asserts that the chain maps f : A −→ B is an
n-isomorphism. Hence there is a chain maps gi1 : Bi −→ Ai, , for all i ∈ {0, 1, ..., n+ 1} such that

B B0 B1 B2 ... Bn Bn+1

A A0 A1 A2 ... An An+1

B B0 B1 B2 ... Bn Bn+1

B B0 B1 B2 ... Bn Bn+1

B B0 B1 B2 ... Bn Bn+1

g1 g01 gn+1
1

f f0 fn+1

1B 1B0 1Bn+1

Dually we note that 0 −→ Ai is a kernel of f i : Ai −→ Bi, and that both f i : Ai −→ Bi and 1Ai : Ai −→ Ai are
cokernel of 0 −→ Ai , for all i ∈ {0, 1, ..., n+1}. Hence there is a chain maps gi1 : Bi −→ Ai , for all i ∈ {0, 1, ..., n+1}
such that

A A0 A1 A2 ... An An+1

B B0 B1 B2 ... Bn Bn+1

A A0 A1 A2 ... An An+1

A A0 A1 A2 ... An An+1

A A0 A1 A2 ... An An+1

f1 f0
1 fn+1

1

g2 g02 gn+1
2

1A 1A0 1An+1
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By the definition of n-isomorphism, f : A −→ B is. □

Proposition 3.6. Let C be an additive category and A,B ∈ Chn(C). If f : A −→ B is an n-isomorphism, then there

is a unique n-chain map g : B −→ A such that A
f−→ B

g−→ A and B
g−→ A

f−→ B are identity chain maps and
g : B −→ A is an n-isomorphism.

Proof . Let h and k be as in the definition of n-isomorphism. Then we have the following diagram:

B0 B1 B2 ... Bn Bn+1

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1

A0 A1 A2 ... An An+1

A0 A1 A2 ... An An+1.

h0 hn+1

k0 kn+1

1 1

According to the above diagram, the proof is complete. □

Proposition 3.7. Let C be an additive category, A,B ∈ Chn(C), and let U : A −→ B be an morphism in chain maps.
Then the following hold,

(i) if keru exists, then u is an n-monic if and only if keru = 0.

(ii) if cokeru exists, then u is an n-epic if and only if cokeru = 0.

Proof . We refer to the diagrams in the definition of kernel and cokernel. Let kerui be pi : Ki −→ Ai, and assume
that , for all 0 ≤ i ≤ n+1, pi = 0. If gi : Xi −→ Ai satisfies uigi = 0 , for all 0 ≤ i ≤ n+1, pi = 0, then the universal
property of kernel provides a morphism of chain maps θi : Xi −→ Ki with gi = piθi = 0 (because pi = 0), for all
0 ≤ i ≤ n+ 1. Hence, ui is a monic and then u is an n-monic. Conversely, if u is an n-monic, consider

K0 K1 K2 ... Kn Kn+1

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1.

p00 pn+10

u0 un+1

Since ui is a monic, uipi = 0 = ui0 = 0 , for all 0 ≤ i ≤ n+ 1, we have pi = 0. The proof for n-epimorphisms and
cokernels are similar. □

Definition 3.8. Let C be an additive category, let A,B ∈ Chn−1(C). If B is an object in an additive category C,
consider all ordered pairs (A, f), where f : A −→ B is an n-monomorphism. Call two such pairs (A, f) and (A′, f ′)
n-equivalent if there exists an n-isomorphism g : A′ −→ A whit f ′ = fg.

A′0 A′1 A′2 ... A′n−1 A′n

A0 A1 A2 ... An−1 An

B0 B1 B2 ... Bn−1 Bn

g0

f ′0
gn

f ′n

f0 fn
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A n-subgadget of B is an n-equivalence class [(A, f)] such that Ai subgadget of is an equivalence class [(Ai, f i)]
for all 0 ≤ i ≤ n, and we call A a n-subobject of B. Note that if (A′i, f ′i) is equivalent to (Ai, f i), then A′i ∼= Ai ,
for all 0 ≤ i ≤ n then (A′, f ′) is an n-equivalent to (A, f) and A′ ∼= A.

Definition 3.9. Let C be an additive category, let C,B ∈ Chn−1(C). If B is an object in an additive category C,
consider all ordered pairs (f, C), where f : B −→ C is an n-epimorphism. Call two such pairs (f, C) and (f ′, C ′)
n-equivalent if there exists an n-isomorphism g : C −→ C ′ whit f ′ = gf .

B0 B1 B2 ... Bn−1 Bn

C0 C1 C2 ... Cn−1 Cn

C ′0 C ′1 C ′2 ... C ′n−1 C ′n

f0

f ′0
fn

f ′n

g0 gn

A n-quotient of B is an n-equivalence class [(f, C)] such that Ai quotient of is an equivalence class [(f i, Ci)]
for all 0 ≤ i ≤ n, and we call C a n-quotient of B. Note that if (f ′i, C ′i) is equivalent to (f i, Ci), then Ci ∼= C ′i for
all 0 ≤ i ≤ n then (f ′, C ′) is an n-equivalent to (f, C) and C ′ ∼= C

By the above definition, we define difference n-ker as follows:

Definition 3.10. Let C be an additive category and dn : Xn −→ Xn+1, d′n : Xn −→ Xn+1 two morphisms in C.
We say that X0 −→ X1 −→ X2 −→ ... −→ Xn is a difference n-ker of dn and d′n if

� (i) we have

K0 K1 K2 ... Kn Kn+1

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1

h0 hn+1

g0f0 gn+1fn+1

� D n-K2 , for all k : X −→ A

X0 X1 X2 ... Xn Xn+1

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn An+1

k0 kn+1

g0f0 gn+1fn+1

There is a unique X −→ K such that

X0 X1 X2 ... Xn Xn+1

C0 C1 C2 ... Cn Cn+1

A0 A1 A2 ... An An+1

is commute.
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Proposition 3.11. Let C be an additive category and K,A,B ∈ Chn(C). If f : K −→ A is a difference n-ker
of x : A −→ B and y : A −→ B. Then it is an n-monomorphism and represents the largest n-subobjects S of

A, S A B.u x

y

Proof . Let for X ∈ Chn(C), then we have the following;

C0 C1 C2 ... Cn Cn+1

K0 K1 K2 ... Kn Kn+1

A0 A1 A2 ... An An+1

C0 C1 C2 ... Cn Cn+1

A0 A1 A2 ... An An+1

a0b0 an+1bn+1

f0 fn+1

c0 cn+1

thus, leads to the following diagram:

C0 C1 C2 ... Cn Cn+1

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1,

c0 cn+1

x0y0 xn+1yn+1

by D n-K1. But by D n-K2,

C0 C1 C2 ... Cn Cn+1

K0 K1 K2 ... Kn Kn+1

A0 A1 A2 ... An An+1

a0

c0
an+1

cn+1

f0 fn+1

and

C0 C1 C2 ... Cn Cn+1

K0 K1 K2 ... Kn Kn+1

A0 A1 A2 ... An An+1

b0

c0
bn+1

cn+1

f0 fn+1

is commute, then fa = fb implies a = b and f : K −→ A is an n-monomorphism. □

All difference n-ker of x : A −→ B and y : A −→ B represent the same n-subobject, and conversely, if K −→ A is
a difference n-ker of x : A −→ B and y : A −→ B, if K ′ −→ A represent the same object, Then K ′ −→ A is difference
n-ker of x : A −→ B and y : A −→ B.

Definition 3.12. Let C be an additive category and A,B,C,X ∈ C. Given two chain maps f : A −→ B and
g : A −→ B we say that h : B −→ C is a difference n-coker of f and g if
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� D n-C1 we have

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1

C0 C1 C2 ... Cn Cn+1

f0g0 fn+1gn+1

h0 hn+1

� D n-C2 , for all k : B −→ X such that

A0 A1 A2 ... An An+1

B0 B1 B2 ... Bn Bn+1

X0 X1 X2 ... Xn Xn+1

f0g0 fn+1gn+1

h0 hn+1

There is a unique C −→ X such that

B0 B1 B2 ... Bn Bn+1

C0 C1 C2 ... Cn Cn+1

X0 X1 X2 ... Xn Xn+1

is commute.

Definition 3.13. Let C be an additive category and dn−1 : Xn−1 −→ Xn a morphism in C its cokerdn−1 is dn :
Xn −→ Xn+1 . An n-image of dn−1 is a sequence

(d0, ..., dn−1) : X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn

such that

n− im(dn−1) = n− ker(cokerdn−1).

Definition 3.14. Let C be an additive category. An we say the complex

X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1

in Chn(C) from the left, it is strongly n-exact sequence (d0, ..., dn−1) is an n-ker of dn, and d0 is an injection.

Definition 3.15. Let C be an additive category. An we say the complex

X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1

in Chn(C) from the right, it is strongly n-exact sequence (d1, ..., dn) is an n-coker of d0, and dn is a projection.

Proposition 3.16. Let C be an abelian additive category. The composition of kernel and n-coker, (n − 1)-ker and
cokernel, cokernel and n-ker, (n− 1)-coker and kernel are identity.
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Proof . The prove is by induction on n ≥ 1. The base step n = 1, by theorem 2.11 [4] is clear. If n = 2, , for
all X ∈ Ch2(C), then (d0, d1) is a 2-coker of d2. Let X0 −→ X1 be the kernel of X1 −→ X2 −→ X3 and, , for all
K ∈ obj(C), K −→ X1, also. We have to prove that X0 −→ X1 and K −→ X1 are equal. We shall apply the definition
of kernel and n-coker a number of times. If X0 −→ X1 is a monomorphism, by definition of abelian category [4] it is
a kernel of some map X1 −→ B −→ 0. By definition of n-coker, we have X0 −→ X1 −→ B −→ 0 that X2 −→ B and
X3 −→ 0 yielding a commutative diagram:

ker(X1 −→ B −→ 0) X0 X2 X3 2− coker(X0 −→ X1)

X1

ker(X1 −→ X2 −→ X3) K B 0 .

(3.1)

The above diagram implies there are the chain maps X0 −→ X1 −→ X2 −→ X3 −→ 0, and X0 −→ K such that

X0

X1

K

commutes. Again by (3.1), there are the chain maps K −→ X1 −→ B −→ 0 and K −→ X1 such that

X0

X1

K

commutes. Thus the subobjects represented by X0 −→ X1 and K −→ X1 are contained in each other and hence
equal. Since X0 −→ X1 is a kernel of X1 −→ X2 −→ X3, ker(2-coker)=Id. We now turn to the inductive step.
Assume inductively, that n = k+1, where k ≥ 2, and the result has been proved in the case where n = k. In the case
in which n = k + 1, then, , for all X ∈ Chk+1(C), then (d0, d1, d2, ..., dk) be a (k + 1)-coker of dk+1. Let X0 −→ X1

be the kernel of X1 −→ X2 −→ X3 −→ ... −→ Xk −→ Xk+1 and, for all K ∈ obj(C), K ′ −→ X1 also. We have to
prove that X0 −→ X1 and K ′ −→ X1 is equal. We shall apply the definition of n-ker and n-coker a number of times.
If X0 −→ X1 a monomorphism. By definition of abelian category [4] it is a kernel of some map X1 −→ B −→ 0 −→
0 −→ 0 −→ ... −→ 0. By definition of n-coker, we have X0 −→ X1 −→ B −→ 0 −→ 0 −→ ... −→ 0 that X2 −→ B,
X3 −→ 0, X4 −→ 0,..., Xk −→ 0, Xk+1 −→ 0 yielding a commutative diagram:

ker(X1 → B → 0 → ...→ 0) X0 X2 X3 ... Xk+1 (k + 1)− coker(X0 → X1)

X1

ker(X1 → X2...→ Xk+1) K ′ B 0 ... 0

By the chain maps, there is the chain map and X0 −→ X1 −→ X2 −→ X3 −→ ... −→ Xk −→ Xk+1 −→ 0, there
is a map X0 −→ K ′ such that

X0

X1

K ′

commutes. K ′ −→ X1 −→ B −→ 0 −→ 0 −→ ... −→ 0; there is a chain map K ′ −→ X1 such that

X0

X1

K ′
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Thus the subobjects represented by X0 −→ X1 and K ′ −→ X1 are contained in each other and hence equal.
X0 −→ X1 is a kernel of X1 −→ X2 −→ X3 −→ ... −→ Xk −→ Xk+1. Thus ker ((k+1)-coker)=Identity, and dually
((n− 1)-ker) and cokernel, cokernel and (n-ker), ((n-1)-coker) and kernel are identities. □

4 Categorical constructions

Definition 4.1. Let C be an additive category, if A and B are complexes in Chn−2, then their n-coproduct is a
triple (A ⊔ B,α, β), where A ⊔ B is an complex in Chn−2 and α : A −→ A ⊔B, β : B −→ A ⊔B are morphisms in
chain maps, called n-injections, such that,

(i) for every complex X in Chn−2 and every pair of morphism in chain maps f : A −→ X and g : B −→ X,
there exists a unique morphism in chain maps θ : A ⊔ B −→ X making the diagram commute: θα = f and

θβ = g.

A0 A1 A2 ... An−2 An−1

A0 ⊔B0 A1 ⊔B1 A2 ⊔B2 ... An−2 ⊔Bn−2 An−1 ⊔Bn−1

X0 X1 X2 ... Xn−2 Xn−1

B0 B1 B2 ... Bn−2 Bn−1

α0

f0

αn−1

fn−1

θ0 θn−1

β0

g0

(ii) the sequences

A0 α0

−→ A0 ⊔B0 d0∗−→ A1 ⊔B1 d1∗−→ ...An−2 ⊔Bn−2 d
n−2
∗−→ An−1 ⊔Bn−1 θ

n−1

−→ Xn−1

and

B0 β0

−→ A0 ⊔B0 d0∗−→ A1 ⊔B1 d1∗−→ ...An−2 ⊔Bn−2 d
n−2
∗−→ An−1 ⊔Bn−1 θ

n−1

−→ Xn−1

exists such that the sequences (d0∗, ..., d
n−2
∗ , θn−1) is an n-coker of α0 and (d0∗, ..., d

n−2
∗ , θn−1) is an n-coker of β0

where we define

dk∗ := (Ak+1 ⊔Bk+1, αk+1θkαk, βk+1θkαk) : Ak ⊔Bk −→ Ak+1 ⊔Bk+1

for each k ∈ {0, 1, .., n− 2}.

Proposition 4.2. Let C be an additive category of commutative k-algebra such that k is a commutative rings,
A,B ∈ Chn−2(C), then A

⊗
k B is the n-coproduct in the category of commutative k-algebra.

Proof . We prove this by induction on n, the case in which n = 1 having been dealt with in proposion 5.2 [12] . In the
case in which n = 2, for a 2-coproduct, we define αi : Ai −→ Ai

⊗
k B

i by ai 7→ ai⊗1 and define βi : Bi −→ Ai
⊗

k B
i

by bi 7→ 1⊗ bi; note that both αi and βi are k-algebra in chain maps.

Now let X ∈ Ch0(C), f i : Ai −→ Xi and gi : Bi −→ Xi be k-algebra in chain maps. First, the diagram commute:
by the diagram
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A0 A1

A0
⊗
B0 A1

⊗
B1

X0 X1

B0 B1

α0

f0

α1

f1

Θ0 Θ1

β0

g0
β1

g1

If ai ∈ Ai and bi ∈ Bi for i = 1, 2, so that Θiβi(bi) = Θi(1 ⊗ bi) = gi(bi) and Θiαi(ai) = Θi(ai ⊗ 1) = f i(ai) for
i = 0, 1.

The function φi : Ai ×Bi −→ Xi, given by (ai, bi) 7−→ f(ai)g(bi) for i = 0, 1, is easily seen to be k-bilinear, and
so there is a unique map of k-modules Θi : Ai

⊗
k B

i −→ Xi with Θi(ai × bi) = f(ai)g(bi) for i = 0, 1. To prove that
Θi is an k-algebra in chain maps, it suffices to prove that Θi((a⊗ b)(a′ ⊗ b′)) = Θi(a⊗ b)Θi(a′ ⊗ b′) for i = 0, 1. Now
for i = 0, 1

Θi((ai ⊗ bi)(a′i ⊗ b′i)) = Θi((aia′i ⊗ bib′i) = f(ai)f(a′i)g(bi)g(b′i).

On the other hand, Θi(ai ⊗ bi)Θi(a′i ⊗ b′i) = f(ai)g(bi)f(a′i)g(b′i) for i = 0, 1. Since X is commutative, f(a′i)g(bi) =
g(bi)f(a′i), and so Θi does preserve multiplication for i = 0, 1.

Second, Θi is unique for i = 0, 1. If Φi : Ai ⊗k Bi −→ Xi be a k-algebra in chain maps making the diagram
commutate for i = 0, 1. In Ai ⊗k Bi, we have (ai ⊗ bi) = (ai ⊗ 1)(1 ⊗ bi) = αi(ai)βi(bi), where ai ∈ Ai and bi ∈ Bi

for i = 0, 1. Thus, for i = 0, 1

Φi(ai ⊗ bi) = Φi[αi(ai)βi(bi)] = Φi(αi(ai))Φi(βi(bi)) = f(ai)g(bi) = Φi(ai ⊗ bi).

Since Ai ⊗k Bi is generated as a k-module by all ai ⊗ bi, we have Ψi = Φi for i = 0, 1.

Third, the sequence (d0∗,Θ
0) is 2-coker of α1. By the definition α0 is injection, then sequence A0 α0

−→ A0
⊗
B0 d0∗−→

A1
⊗
B1 Θ1

−→ X1 is exact. Now let Y ∈ (C) the induced sequence of abelian groups

0−→Hom(X1, Y )
Θ1.?−→ Hom(A1

⊗
B1, Y )

d0∗.?−→ Hom(A00
⊗

B0, Y )
α0.?−→ Hom(A0, Y ),

so that is exact. For proof of (d0∗,Θ
0) is an 2-coker of β0 is dual.

We now turn to the inductive step. Assume, inductively, that n = (k′ + 1), where k ≥ 2, and that the result has
been proved in the case where n = k′. In the case in which n = (k′ + 1), for a (k′ + 1)-coproduct requires, we define
αk

′
: Ak

′ −→ Ak
′ ⊗

k B
k′ by ak

′ 7→ ak
′ ⊗ 1 and define βk

′
: Bk

′ −→ Ak
′ ⊗

k B
k′ by bk

′ 7→ 1⊗ bk
′
; note that both αk

′

and βk
′
are k-algebra in chain maps.

Now let X ∈ Chk
′
(C), and let fk

′
: Ak

′ −→ Xk′ and gk
′
: Bk

′ −→ Xk′ be k-algebra in chain maps.

A0 A1 A2 ... Ak
′−1 Ak

′

A0
⊗
B0 A1

⊗
B1 A2

⊗
B2 ... Ak

′−1 ⊗Bk
′−1 Ak

′ ⊗
Bk

′

X0 X1 X2 ... Xk′−1 Xk′

B0 B1 B2 ... Bk
′−1 Bk

′

α0

f0

αk′

fk′

Θ0 Θk′

β0

g0
βk′

gk
′

If ak
′ ∈ Ak

′

and bk
′ ∈ Bk

′
, so that Θk

′
βk

′
(bk

′
) = Θk

′
(1⊗ bk

′
) = gk

′
(bk

′
) and Θk

′
αk

′
(ak

′
) = Θk

′
(ak

′ ⊗ 1) = fk
′
(ak

′
).

The function φk
′
: Ak

′ ×Bk
′ −→ Xk′ , given by (ak

′
, bk

′
) 7−→ f(ak

′
)g(bk

′
), is easily seen to be k-bilinear, and so

there is a unique map of k-modules Θk
′
: Ak

′ ⊗
k B

k′ −→ Xk′ with Θk
′
(ak

′ × bk′) = f(ak
′
)g(bk

′
). To prove that Θk

′
is

an k-algebra in chain maps, it suffices to prove that Θk
′
((ak

′ ⊗ bk
′
)(a′k

′ ⊗ b′k
′
)) = Θk

′
(ak

′ ⊗ bk
′
)Θk

′
(a′k

′ ⊗ b′k
′
). Now

Θk
′
((ak

′
⊗ bk

′
)(a′k

′
⊗ b′k

′
)) = Θk

′
((ak

′
a′k

′
⊗ bk

′
b′k

′
) = f(ak

′
)f(a′k

′
)g(bk

′
)g(b′k

′
).
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On the other hand, Θk
′
(ak

′ ⊗ bk
′
)Θk

′
(a′k

′ ⊗ b′k
′
) = f(ak

′
)g(bk

′
)f(a′k

′
)g(b′k

′
). Since X is commutative, f(a′k

′
)g(bk

′
) =

g(bk
′
)f(a′k

′
), and so Θk

′
does preserve multiplication.

Second, Θk
′
is unique. If Φk

′
: Ak

′ ⊗k Bk
′ −→ Xk′ be a k-algebra in chain maps making the diagram commutate.

In Ak
′ ⊗k Bk

′
, we have (ak

′ ⊗ bk
′
) = (ak

′ ⊗ 1)(1⊗ bk
′
) = αk

′
(ak

′
)βk

′
(bk

′
), where ak

′ ∈ Ak
′
and bk

′ ∈ Bk
′
. Thus,

Φk
′
(ak

′
⊗ bk

′
) = Φk

′
[αk

′
(ak

′
)βk

′
(bk

′
)] = Φk

′
(αk

′
(ak

′
))Φk

′
(βk

′
(bk

′
)) = f(ak

′
)g(bk

′
) = Φk

′
(ak

′
⊗ bK

′
).

Since Ak
′ ⊗k Bk

′
is generated as a k-module by all ak

′ ⊗ bk
′
, we have Ψk

′
= Φk

′
.

Third, the sequence (d0∗, d
1
∗, ..., d

k−1
∗ ,Θk) is (k + 1)-coker of α0. By the definition α0 is injection and the sequence

(d0∗, d
1
∗, ..., d

k−2
∗ ,Θk−1) is k-coker of α0, then we have the sequence A0 α0

−→ A0
⊗
B0 d0∗−→ A1

⊗
B1 d1∗−→ ...

dk
′−2

∗−→

Ak
′−2 ⊗Bk

′−2 Θk′−1

−→ Xk′−1 such that, for all Y ∈ (C) the induced sequence of abelian groups

0−→Hom(Xk′−1, Y )
Θk′−1.?−→ Hom(Ak

′−2
⊗

Bk
′−2, Y )

dk
′−2

∗ .?−→ ...

d1∗.?−→ Hom(A1
⊗

B1, Y )
d0∗.?−→ Hom(A0

⊗
B0, Y )

α0.?−→ Hom(A0, Y )

so that is exact. By dk−1X : Xk−1 −→ Xk is complex and by the definition (, for every object X) we put Xk = Ak

and we have Ak
αk

−→ Ak
⊗
Bk

θk−→ Xk, then we have the sequence A0 α0

−→ A0
⊗
B0 d0∗−→ A1

⊗
B1 d1∗−→ ...

dk
′−1

∗−→

Ak
′−1 ⊗Bk

′−1 Θk′

−→ Xk′ and, for all Y ∈ (C) the induced sequence of abelian groups

0−→Hom(Xk′ , Y )
Θk′

.?−→ Hom(Ak
′−1

⊗
Bk

′−1, Y )
dk

′−1
∗ .?−→ ...

d1∗.?−→ Hom(A1
⊗

B1, Y )
d0∗.?−→ Hom(A0

⊗
B0, Y )

α0.?−→ Hom(A0, Y )

so that is exact, and the sequence (d0∗, d
1
∗, ..., d

k−1
∗ , dk∗,Θ

k) is (k + 1)-coker of α0. For proof of (d0∗, d
1
∗, ..., d

k−1
∗ ,Θk) is

(k + 1)-coker of β0 is dual. □

Definition 4.3. let C be an additive category, A and X a complex in Chn(C) is called an n-initial object if, for
every object X in C, there exists a unique chain maps A −→ X.

Lemma 4.4. let C an additive category, Any two n-initial objects A,A′ a complex, in Chn(C), should they exist, are
n-isomorphic. In fact, the unique chain maps f : A −→ A′ is an n-isomorphism.

Proof . By hypothesis, there exist unique morphism in chain maps

A A0 A1 A2 ... An An+1

A′ A′0 A′1 A′2 ... A′n A′n+1

f f0 fn+1

and

A′ A′0 A′1 A′2 ... A′n A′n+1

A A0 A1 A2 ... An An+1.

g g0 gn+1

Since A is an n-initial object, the unique morphism in chain maps
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A A0 A1 A2 ... An An+1

A A0 A1 A2 ... An An+1

h h0 hn+1

must be the identity: h = 1A. Thus the composition

A A0 A1 A2 ... An An+1

A A0 A1 A2 ... An An+1

gf g0f0 gn+1fn+1

and

A′ A′0 A′1 A′2 ... A′n A′n+1

A′ A′0 A′1 A′2 ... A′n A′n+1.

fg f0g0 fn+1gn+1

are identities, and so

A A0 A1 A2 ... An An+1

A′ A′0 A′1 A′2 ... A′n A′n+1

f f0 fn+1

is an n-isomorphism. □

Proposition 4.5. Let C be an additive category, if A,B in Chn(C), then any two n-coproducts of A and B, exists,
are n-isomorphic.

Proof . If C is an n-coproduct of A and B, then there are morphisms in chain maps

A A0 A1 A2 ... An An+1

C C0 C1 C2 ... Cn Cn+1

α α0 αn+1

and

B B0 B1 B2 ... Bn Bn+1

C C0 C1 C2 ... Cn Cn+1

.

β β0 βn+1

Define a new category D whose objects are diagrams
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A A0 A1 A2 ... An An+1

X X0 X1 X2 ... Xn Xn+1

B B0 B1 B2 ... Bn Bn+1,

γ γ0 γn+1

δ δ0 δn+1

where X is a complex, in Chn(C) and

A A0 A1 A2 ... An An+1

X X0 X1 X2 ... Xn Xn+1

γ γ0 γn+1

and

B B0 B1 B2 ... Bn Bn+1

X X0 X1 X2 ... Xn Xn+1

.

δ δ0 δn+1

are morphism in chain maps. Define a morphism in D to be a triple (1iA, θ
i, 1iB), for all i ∈ {1, 2, ..., n+1}, where θ is

a morphism in chain maps in C making the following diagram commute:

A0 A1 A2 ... An An+1

A0 A1 A2 ... An An+1

X0 X1 X2 ... Xn Xn+1

X ′0 X ′1 X ′2 ... X ′n X ′n+1

B0 B1 B2 ... Bn Bn+1

B0 B1 B2 ... Bn Bn+1

1A0

γ0

1An+1

γn+1

γ′0 γ′n+1

δ0 δn+1

δ′0 δ′n+1

Define composition in D by (1iA, ψ
i, 1iB)(1

i
A, θ

i, 1iB) = (1iA, ψ
iθi, 1iB), for all

i ∈ {1, 2, ..., n + 1}. It is easy to check that D is a category and that an n-coproduct in C is an n-initial object
in C. By Lemma (4.4), n-coproduct in a category are unique to (unique) n-isomorphism if they exist. □

Definition 4.6. Let C be an additive category, if A and B are complexes in Chn−2, then their n-product is a triple
(A⊓B, p, q),where A⊓B is an complex in Chn−2 and p : A ⊓B −→ A, q : A ⊓B −→ B are morphisms in chain maps,
called n-projections, such that,

� (i) for every complex X in Chn−2 and every pair of morphism in chain maps f : X −→ A and g : X −→ B, there
exists a unique morphism in chain maps θ : X −→ A ⊓B making the diagram commute: pθ = f and qθ = g.
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A0 A1 A2 ... An−2 An−1

A0 ⊓B0 A1 ⊓B1 A2 ⊓B2 ... An−2 ⊓Bn−2 An−1 ⊓Bn−1

X0 X1 X2 ... Xn−2 Xn−1

B0 B1 B2 ... Bn−2 Bn−1

p0

q0

pn−1

qn−1
θ0

f0

g0

fn−1

gn−1

θn−1

(ii) the sequences

X0 θ0−→ A0 ⊓B0 d0∗−→ A1 ⊓B1 d1∗−→ ...An−2 ⊓Bn−2 d
n−2
∗−→ An−1 ⊔Bn−1 p

n−1

−→ An−1

and

X0 θ0−→ A0 ⊓B0 d0∗−→ A1 ⊓B1 d1∗−→ ...An−2 ⊓Bn−2 d
n−2
∗−→ An−1 ⊓Bn−1 q

n−1

−→ Bn−1

is exist such that the sequences (θ0, d0∗, ..., d
n−2
∗ ) is an n-ker of pn−1 and (θ0, d0∗, ..., d

n−2
∗ ) is an n-coker of qn−1

where we define

dk∗ := (Ak+1 ⊓Bk+1, pk+1θk+1pk, qk+1θk+1qk) : Ak ⊓Bk −→ Ak+1 ⊓Bk+1

for each k ∈ {0, 1, .., n− 2}.

Definition 4.7. let C an additive category, Ω and X a complex in Chn(C) is called an n-terminal object if, for
every object X in C, there exists a unique morphism in chain maps X −→ Ω.

Lemma 4.8. let C be an additive category, Any two n-terminal objects Ω,Ω′ a complex, Chn(C), should they exist,
are n-isomorphic. In fact, the unique chain maps f : Ω −→ Ω′ is an n-isomorphism.

Proof . Just reveres all the arrows in the proof of Lemma (4.4); that is, apply Lemma (4.4) to the opposite category
Cop. □

Proposition 4.9. let C be an additive category, Any two n-terminal objects A and B a complex, Chn(C), then any
two n-product of A and B, should they exist, are n-isomorphic.

Proof . Adapt the proof of property, Proposition (4.5); n-products are n-terminal objects in suitable category. □

5 n-Homology

Example 5.1. We show that n-ker is an n-pullback. Let C be an additive category, X a complex in Chn(C), and
fn+1 : Xn+1 −→ Y n+1 a morphism in complex.

Let Z0, Z1 ∈ C the induced sequence of abelian groups

C(Z0, X0)
?.d0−→ C(Z1, X1)

?.d1−→ ...
?.dn−1

−→ C(Zn, Xn)
?.dn−→ C(Zn+1, Xn+1) −→ 0

is exact, equivalently, the sequence (d0X , d
1
X , ..., d

n−1
X ) is an n-ker of dnY . Such that in the mapping cone C = C(f)
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X0 = X1
∏

Y 0 d0c−→ X2
∏

Y 1 d1c−→ ...
dn−2
c−→ Xn

∏
Y n−1

dn−1
c−→ Xn+1

∏
Y n

dnc−→ Y n+1.

the sequence (d0c , ..., d
n−1
c ) is an n-ker of dnc .

Definition 5.2. Let C be an additive category and given a partially ordered set I. An n-inverse system in C is an
ordered pair ((Mi)i∈I , (ψ

j
i )j⪰i), abbreviated {Mi, ψ

j
i }, where (Mi)i∈I is an indexed family of complexes in Chn−2(C)

and (ψji : Mi −→ Mj)j⪰i is an indexed family of morphisms in chain maps for which ψii = 1Mi
, , for all i, and such

that the following diagrams commute where k ⪰ j ⪰ i.

(M0
k )k∈K0

(M1
k )k∈K1

(M2
k )k∈K2

... (Mn−2
k )k∈Kn−2

(Mn−1
k )k∈Kn−1

(M0
i )i∈I0 (M1

i )i∈I1 (M2
i )i∈I2 ... (Mn−2

i )i∈In−2
(Mn−1

i )i∈In−1

(M0
j )j∈J0 (M1

j )j∈J1 (M2
j )j∈J2 ... (Mn−2

j )j∈Jn−2
(Mn−1

j )j∈Jn−1

(ψ0)ik (ψn−1)ki
(ψn−1)kj

(ψ0)kj

(ψ0)ji (ψn−1)ji

Definition 5.3. Let C be an additive category, I be a partially ordered set, (Mi)i∈I a complex in Chn−2, and let
{Mi, ψ

i
j} be an n-inverse system in C over I. The n-inverse limit (also called n-projective limit or n-limit) is an

object lim
←−

Mi and a family of projection in chain maps (αi : lim←−
Mi −→Mi)i∈I such that

� (i) ψijαj = αi whenever j ⪰ i

� (ii), for every X ∈ Chn−2(C) and all chain maps fi : X −→Mi satisfying ψ
i
jfi = fi, for all j ⪰ i, there exists a

unique morphisms in chain maps θ : X −→ lim
←−

Mi making diagram commutes.

(M0
j ) (M1

j ) (M2
j ) ... (Mn−2

j ) (Mn−1
j )

lim
←−

M0
i lim

←−
M1
i lim

←−
M2
i ... lim

←−
Mn−2
i lim

←−
Mn−1
i

X0 X1 X2 ... Xn−2 Xn−1

(M0
i ) (M1

i ) (M2
i ) ... (Mn−2

i ) (Mn−1
i )

(iii) We have

X0 θ0−→ lim
←−

M0
i

d0−→ lim
←−

M1
i ...

dn−2

−→ lim
←−

Mn−1
i

αn
i −1−→ Mn−1

i

the sequence (θ0, d0, ..., dn−2) is an n-ker of αn−1, where defined

dk := dkMi
αki θ

K+1
i : lim

←−
Mk
i −→ lim

←−
Mk+1
i

for each K ∈ {0, 1, .., n− 2}.

Definition 5.4. Let C be an additive category and given a partially ordered set I. An n-direct system in C is an
ordered pair ((Mi)i∈I , (φ

i
j)i⪯j), abbreviated {Mi, φ

i
j}, where (Mi)i∈I is an indexed family of complexes in Chn−2(C)

and (φij : Mi −→ Mj)i⪯j is an indexed family of morphisms in chain maps for which, φii = 1Mi , for all i, and such
that the following diagrams commute where i ⪯ j ⪯ k.
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(M0
i )i∈I0 (M1

i )i∈I1 (M2
i )i∈I2 ... (Mn−2

i )i∈In−2 (Mn−1
i )i∈In−1

(M0
k )k∈K0 (M1

k )k∈K1 (M2
k )k∈K2 ... (Mn−2

k )k∈Kn−2 (Mn−1
k )k∈Kn−1

(M0
j )j∈J0 (M1

j )j∈J1 (M2
j )j∈J2 ... (Mn−2

j )j∈Jn−2 (Mn−1
j )j∈Jn−1

(φ0)ik (φn−1)ik
(φn−1)jk

(φ0)jk

(φ0)ij (φn−1)ij

Definition 5.5. Let C be an additive category, I be a partially ordered set, (Mi)i∈I a complex in Chn−2, and let
{Mi, φ

j
i} be an n-direct system in C over I. The n-direct limit (also called n-inductive limit or n-colimit) is an

object lim
−→

Mi and insertion morphisms in chain maps (αi :Mi −→ lim
−→

Mi)i∈I such that

� (i) αjφ
j
i = αi whenever i ⪯ j

� (ii) Let X ∈ Chn−2(C), and let there be given morphisms in chain maps fi :Mi −→ X satisfying fjφ
j
i = fi, for

all i ⪯ j. There exists a unique morphism in chain maps θ : lim
−→

Mi −→ X making diagram commutes.

(M0
j ) (M1

j ) (M2
j ) ... (Mn−2

j ) (Mn−1
j )

lim
−→

M0
i lim

−→
M1
i lim

−→
M2
i ... lim

−→
Mn−2
i lim

−→
Mn−1
i

X0 X1 X2 ... Xn−2 Xn−1

(M0
i ) (M1

i ) (M2
i ) ... (Mn−2

i ) (Mn−1
i )

� (iii) We have

M0
i

α0
i−→ lim
−→

M0
i

d0−→ lim
−→

M1
i ...

dn−2

−→ lim
−→

Mn−1
i

θn−1

−→ Xn−1

the sequence (d0, ..., dn−2, θn−1) is an n-coker of α0
i , where defined

dk := αk+1
i dkMi

θk : lim
−→

Mk
i −→ lim

−→
Mk+1
i

for each K ∈ {0, 1, .., n− 2}.

Definition 5.6. Let C be an n-abelian category, X a complex in Chn(C), define

(n)− i− cycles = n− Zi(Xn) = n− ker dn = (d0, d1, ..., dn−1)

(n)− i− boundaries = n−Bi(Xn) = (n)− imdn−1

for all i ∈ {0, 1, 2, ..., n}. Notice that n− Zi and n−Bi all lie in C.

Definition 5.7. Let C be an n-abelian category, X a complex in Chn(C) and dn : Xn −→ Xn+1 a morphism in C.
A ith n-homology of dn is, for all i ∈ {0, 1, 2, ..., n}



Characterization of n-exact sequence of n-additive categories 361

n−Hi(X) =
n− Zi(X)

n−Bi(X)
=

n− ker dn

n− imdn−1
=

(d0, d1, ..., dn−1)

(imd0, imd1, ..., imdn−1)

Now n−Hi(X) lies in n−obj(C) if n-quotient are viewed as object, as on definition (3.8). However, if we recognize
C as a full subcategory of n-Ab, then an element of n−Hi(C) is a coset (z0+imd0, z1+imd1, ..., zn−2+imdn−2, zn−1+
imdn−1); we call this element a n-homology class , and often denote it by cls(z0, z1, ..., zn−2, zn−1).

Proposition 5.8. If C is an n-abelian category, then n−Hi : Comp(C) −→ (C) is an additive category for each i ∈ Z.

Proof . LetX and Y are complex in Chn(C), if f : X −→ Y is a chain map, define n−Hi(f) : n−Hi(X) −→ n−Hi(Y )
by

n−Hi(f) : cls(z
0, z1, ..., zn−1) 7→ cls(fiz

0, fiz
1, ..., fiz

n−1).

We must show that fiz
k is a cycle, for all 0 ≤ k ≤ n− 1, and that n−Hi(f) is independent of the choice of cycle

zk; both of these the following from f being a chain map; that is, from commutatively of following diagram:

X X0 X1 X2 ... Xn Xn+1

Y Y 0 Y 1 Y 2 ... Y n Y n+1.

f f0

d0X dnX

fn+1

d0Y dnY

First, let z be an i-cycle in n−Zi(X ), so that diXz
k = 0, for all 0 ≤ k ≤ n−1. Then commutativity of the diagram

gives dkY f
kzk = fk+1dkXz

k = 0, so that fiz
k is an i-cycle.

Next, assume that (z0 + imd0, z1 + imd1, ..., zn−1 + imdn−1) = (y0 + imd0, y1 + imd1, ..., yn−1 + imdn−1); hence,
zk − yk ∈ imdkX , for all 0 ≤ k ≤ n − 1; zkyk = dk−1X xk−1 for some xk−1 ∈ Xk−1 and, for all 0 ≤ k ≤ n. Applying fi
gives

fki z
k − fki y

k = fki d
k−1
X xk−1 = dk−1Y fk−1xk−1 ∈ imdk−1Y

for all 0 ≤ k ≤ n− 1. Thus, cls(z0, z1, ..., zn−1) = cls(y0, y1, ..., yn−1), and n−Hi(f) is well defined

Let us now see that n − Hi is a functor. It obvious that n − Hi(1X) is the identity. If f and g are chain maps
whose composite gf is defined, then, for every i-cycle zk, wh have

n−Hi(gf) : cls(z
0, z1, ..., zn−1) 7→(gf)icls(z

0, z1, ..., zn−1)

=gificls(z
0, z1, ..., zn−1)

=n−Hi(g)cls(fi(z
0), fi(z

1), ..., fi(z
n−1))

=n−Hi(g)n−Hi(f)cls(z
0, z1, ..., zn−1).

Finally n−Hi is additive: if f, g : (X, dX) −→ (Y, dY ) are chain maps, then

Hi(f + g) : cls(z0, z1, ..., zn−1) 7→(fi + gi)cls(z
0, z1, ..., zn−1)

=cls((fi + gi)(z
0), (fi + gi)(z

1), ..., (fi + gi)(z
n−1))

=(Hi(f) +Hi(g))cls(z
0, z1, ..., zn−1).

□

Proposition 5.9. Let C be an n-abelian category. If

X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1.
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is an n-exact sequence in Chn(C), then, for each i ∈ Z, there is a morphism in C

σi : n−Hi(X
n+1) −→ Hi−1(X

0)

defined by

σi : cls(z
0
n+1, z

1
n+1, ..., z

n−1
n+1) −→cls((d0Xi−1

)−1(d1Xi−1
)−1(d2Xi−1

)−1...(dn−1Xi−1
)−1(dX

n

i )(dnxi
)−1z0n+1

,(d0Xi−1
)−1(d1Xi−1

)−1(d2Xi−1
)−1...(dn−1Xi−1

)−1(dX
n

i )(dnxi
)−1z1n+1

,...

,(d0Xi−1
)−1(d1Xi−1

)−1(d2Xi−1
)−1...(dn−1Xi−1

)−1(dX
n

i )(dnxi
)−1zn−1n+1)

Proof . We will make many notation abbreviation in this proof. Consider the commutative diagram having n-exact
rows:

X0
i+1 X1

i+1 X2
i+1 ... Xn−1

i+1 Xn
i+1 Xn+1

i+1

X0
i X1

i X2
i ... Xn−1

i Xn
i Xn+1

i

X0
i−1 X1

i−1 X2
i−1 ... Xn−1

i−1 Xn
i−1 Xn+1

i−1 .

, , , ... , , ,

dX
0

i+1

d0Xi+1

dX
1

i+1

d1Xi+1

dX
2

i+1

d2Xi+1

dX
n−1

i+1

dn−1
Xi+1

dX
n

i+1

dnXi+1

dX
n+1

i+1

dX
0

i

d0Xi

dX
1

i

d1Xi

dX
2

i

d2Xi

dX
n−1

i

dn−1
Xi

dX
n

i

dnXi

dX
n+1

i

d0Xi−1
d1Xi−1

d2Xi−1
dn−1
Xi−1

dnXi−1

Let zkn+1 ∈ Xn+1
i and xkn ∈ Xn

i , for all 0 ≤ k ≤ n − 1, then by definition n-abelian category dnXi
is epimorphism,

by 2.3 coker dnXi
= 0, then dnXi

is surjective and dnXi
xkn = zkn+1. Now push xkn down to dX

n

i xkn ∈ Xn
i−1. By

commutatively, dn−1Xi−1
dX

n−1

i xkn−1 = dX
n

i dn−1Xi
xkn−1, so that dn−1Xi−1

dX
n−1

i xkn−1 ∈ imdn−1Xi−1
and dX

n

i dn−1Xi
xkn−1 ∈ Xn

i−1.

Thus dX
n

i xn ∈ imdn−1Xi−1
. Since (d0, d1, ..., dn−1) is n-ker of dn, for zk0 ∈ X0

i−1, d
n−1dn−2...d1d0zk0 ⊆ n − ker dnXi−1

.

Given that imdn−1Xi−1
⊆ ker dnXi−1

⊆ n− ker dnXi−1
, then dX

n

i xkn = dn−1dn−2...d1d0xk0 , for all 0 ≤ k ≤ n− 1, for d0Xi−1
is

injection, because ker d0Xi−1
= 0 by definition n-abelian category. Thus

(d0Xi−1
)−1(d1Xi−1

)−1(d2Xi−1
)−1...(dn−1Xi−1

)−1(dX
n

i )(dnxi
)−1zkn+1

make senses; that is, the claim is that

cls(z0n+1, z
1
n+1, ..., z

n−1
n+1) = cls(x00, x

1
0, ..., x

n−1
0 )

is a well-defined homomorphism. First, let us show independence of the choice of lifting. Suppose that dnXi
x̌kn = zkn+1,

where x̌kn ∈ Xn. Then x̌
k
n = xkn. By the definition of complex,

(d0)−1(d1)−1...(dn−2)−1(dn−1)−1(dX
n

)x̌kn = (d0)−1(d1)−1...(dn−2)−1(dn−1)−1(dX
n

)xkn ∈ BX
0

i−1;

that is,

cls((d0)−1(d1)−1...(dn−2)−1(dn−1)−1(dX
n

)x̌kn) = cls((d0)−1(d1)−1...(dn−2)−1(dn−1)−1(dX
n

)xkn).

Thus, the formula gives a well-defined function

ZXn+1 −→ X0

BX
0

i−1
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Second, the function ZXn+1 −→ X0

BX0
i−1

is a homomorphism. If zkn+1, z
′k
n+1 ∈ ZXn+1 , let dnxkn = zkn+1 and dnx′kn =

z′kn+1, for all 0 ≤ k ≤ n− 1. Since the definition of σ independent of the choice of lifting, choose xkn + x′kn as a lifting
of zkn+1 + z′kn+1, for all 0 ≤ k ≤ n− 1. This step may now be completed in a routine way.

Third, we show that xk0 is a cycle: by dX
n

i xkn = dn−1dn−2...d1d0xk0 = 0, for all 0 ≤ k ≤ n−1, d0 is injective. Hence,
the formula gives a homomorphism

ZXn+1 −→ ZX0

BX
0

i−1
= 1−Hi−1

Finally, the subgroup BX
0

i−1 goes into B
Xn+1

i−1 . Suppose that zkn+1 = dX
n+1

xkn+1, where x
k
n+1 ∈ Xn+1

i+1 , and let dnxkn =

xkn+1, where x
k
n+1 ∈ Xn

i+1, for all 0 ≤ k ≤ n− 1. Commutatively gives dndX
n

xkn = dX
n+1

dnxkn = dX
n+1

xkn+1 = zkn+1,

for all 0 ≤ k ≤ n − 1. Since σ(zkn+1) is independent of the choice of lifting, we choose dX
n

xkn whit dndX
n

xkn = zkn+1,
for all 0 ≤ k ≤ n− 1, and so

σ(cls(z0n+1, z
1
n+1, ..., z

n+1
n+1)) =cls((d

0)−1(d1)−1...(dn−2)−1(dn−1)−1(dX
n

)(dX
n

)(x00))

,cls((d0)−1(d1)−1...(dn−2)−1(dn−1)−1(dX
n

)(dX
n

)(x10))

,...

,cls((d0)−1(d1)−1...(dn−2)−1(dn−1)−1(dX
n

)(dX
n

)(xn−10 ))

= cls(0, 0, ..., 0).

Thus, the formula gives a homomorphism σi : n−Hi(X
n+1) −→ Hi−1(X

0). □

Theorem 5.10. ((n+1)-Long Exact sequence) Let C be an n-abelian category. If

X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1. (5.1)

is an n-exact sequence in Chn(C), then there is an (n+ 1)-exact sequence in C

0−Hi(X
0)

d0∗−→ 1−Hi(X
1)

d1∗−→ 2−Hi(X
2)

d2∗−→ ...

dn−1
∗−→ n−Hi(X

n)
dn∗−→ (n+ 1)−Hi(X

n+1)
δi−→ 0−Hi+1(X

0). (5.2)

Proof . We have to prove that, the sequence (5.1) have a (n+1)-ker and (n+1)-coker. By (5.1) is n-exact sequence, then
(d0, d1, ..., dn−1) is n-ker of dn, so that dndn−1dn−2...d1d0 = 0. Thus δid

n
∗d

n−1
∗ dn−2∗ ...d1∗d

0
∗ = δi(d

ndn−1dn−2...d1d0)∗ =
δi0∗ = 0, then (d0∗, d

1
∗, ..., d

n−1
∗ , dn∗ ) is n-ker of δi. This is the sequence (5.2) is n-coker now follows by duality. □
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