
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,943 |
تعداد دریافت فایل اصل مقاله | 7,656,400 |
A new univalent integral operator defined by the Opoola differential operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 5، دوره 15، شماره 8، آبان 2024، صفحه 53-64 اصل مقاله (408.35 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.30730.4477 | ||
نویسندگان | ||
Bitrus Sambo* 1؛ Timothy Oloyede Opoola2 | ||
1Department of Mathematics, Gombe State University, P.M.B. 127, Gombe, Nigeria | ||
2Department of Mathematics, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria | ||
تاریخ دریافت: 04 خرداد 1402، تاریخ پذیرش: 25 خرداد 1402 | ||
چکیده | ||
In this investigation, using Opoola differential operator ($D^{m}(\mu,\beta,t)f(z)$), a new integral operator: $I_{t,\beta,\mu}^{m,\sigma}(f_{1},...,f_{n})(z): A^{n}\rightarrow A$ is defined in the unit disk, $U=\left\lbrace z\in C:\left|z\right|<1\right\rbrace$; and we investigated the Univalence conditions of this generalized operator. Finally, a number of corollaries and remarks which show the extension of our results are presented. | ||
کلیدواژهها | ||
Analytic functions؛ Univalent functions starlike functions؛ convex functions؛ close-to-convex functions؛ Integral operator | ||
مراجع | ||
[1] F.M. Al-Oboudi, On univalent functions defined by a S˘al˘agean differential operator, Int. J. Math. Math. Sci. 2004 (2004), 1429–1436. [2] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915), no. 1, 12–22. [3] C. Barbatu and D. Breaz, Univalence criteria for some general integral operators, An. St. Univ. Ovidius Const. 29 (2021), no. 1, 37–52. [4] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446. [5] D. Breaz, N. Breaz, and H.M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett. 22 (2009), no. 1, 41–44. [6] D. Breaz and N. Breaz, Two integral operators, Studia Univ. Babes-Bolyai Math. 47 (2002), 13–20. [7] D. Breaz and N. Breaz, Univalence of an integral operator, Mathematica 70 (2005), 35–38. [8] D. Breaz and N . Breaz, An integral Univalent operator, Acta Math. Univ. Comenianae. New Ser. 76 (2007), no. 2, 137–142. [9] S. Bulut, Univalence preserving integral operators defined by generalized Al-Oboudi differential Operator, An St. Univ. Ovidius Constanta 17 (2009), no. 1, 37–50. [10] S. Bulut, Univalence condition for a new generalization of the family of integral operators, Acta Univ. Apulensis Math. Inf. 18 (2009), 71–78. [11] S. Bulut, A new univalent integral operator defined by Al-Oboudi differential operator, Gen. Math. 18 (2010), no. 2, 85–93. [12] S. Bulut, An integral univalent operator defined by generalized Al-Oboudi differential operator on the classes Tj , Tj,μ, Sj(p), Novi Sad J. Math. 40 (2010 ), no. 1, 43–53. [13] C. Barbatu and D. Breaz, Some Univalence conditions of a certain general integral operator, Eur. J. Pure Appl. Math. 13 (2020), no. 5, 1285–1299. [14] S. Bulut and D. Breaz, Univalency and convexity conditions for a general integral operator, Chin. J. Math. 2014 (2014), 4 pages. [15] S. Bulut, Sufficient conditions for univalence of an integral operator defined by Al-Oboudi differential operator, J. Inequal. Appl. 2008 (2008), 5 pages. [16] E. Deniz, D. Raducanu, and H. Orhan, On the univalence of an integral operator defined by Hadamard product, Appl. Math. Lett. 24 (2012), 179–184. [17] I. Faisal and M. Darus, A study of Ahlfors’ univalence criteria for a space of analytic functions: Criteria II, Math. Comput. Model. 55 (2012), 1466–1470. [18] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758. [19] S.S. Miller, P.T. Mocanu, and M.O. Reade, Bezilevic functions and generalized convexity, Rev. Roumaine. Math. Pure Appl. 19 (1974), 213–224. [20] S.S. Miller, P.T. Mocanu and M.O. Reade, Starlike integral operators, Pacific J. Math. 79 (1978), no. 1, 157–168. [21] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975. [22] T.O. Opoola, On a subclass of univalent functions defined by a generalized differential operator, Int. J. Math. Anal. 11 (2017), no.18, 869–876. [23] G.I. Oros, G. Oros, and D. Breaz, Sufficient conditions for univalence of an integral operator, J. Inequal. Appl. 2008 (2008), 7 pages. [24] A. Oprea, D. Breaz, and H.M. Srivastava, Univalence conditions for a new family of integral operators, Filomat 30 (2016), no. 5, 1243–1251. [25] A. Oprea and D. Breaz, Univalence conditions for a general integral operator, An. St. Univ. Ovidius Constanta 23 (2015), no. 1, 213–224. [26] V. Pescar, A new generalization of Ahlfors’s and Becker’s criterion of univalence, Bull. Malays. Math. Soc. (Ser. 2) 19 (1996), 53–54. [27] V. Pescar, New criteria for Univalence of certain integral operators, Demonst. Math. 33 (2000), 51–54. [28] V. Pescar, On the Univalence of some integral operators, J. Indian Acad. Math. 27 (2005), 239–243. [29] N. Pascu, An improvement on Becker’s univalence criterion, Proc. Commem. Session Stoilow, Brasov, 1987, pp. 43–48. [30] G.S. Salagean, Subclasses of Univalent Functions, Complex Anal. Fifth Roman. Seminar, part I (Bucharest, 1983), Lecture Notes in Mathematics, vol. 1013, Springer, Berlin, 1983, pp 362–372. [31] N. Seenivasagan and D. Breaz, Certain sufficient conditions for univalence, Gen. Math. 15 (2007), no. 4, 7–15. [32] V. Singh, On class of univalent functions, Int. J. Maths. Math Soc. 23 (2000). | ||
آمار تعداد مشاهده مقاله: 2,789 تعداد دریافت فایل اصل مقاله: 272 |