
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,739 |
تعداد دریافت فایل اصل مقاله | 7,656,160 |
Bifurcation analysis and chaos in a discretized prey-predator system with Holling type III | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 1، دوره 15، شماره 8، آبان 2024، صفحه 1-15 اصل مقاله (13.27 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.28658.3949 | ||
نویسندگان | ||
Karima Mokni؛ Mohamed Ch-Chaoui* ؛ Rachid Fakhar | ||
Faculte Polydisciplinaire Khouribga, Sultan moulay Slimane University, BP: 145 Khouribga principale, 25000, Kingdom of Morocco | ||
تاریخ دریافت: 19 مهر 1401، تاریخ بازنگری: 25 خرداد 1402، تاریخ پذیرش: 17 تیر 1402 | ||
چکیده | ||
In this paper, we investigate a discrete-time prey-predator model. The system is formulated by using the piecewise constant argument method for differential equations and taking into account Holling type III. The existence and local behavior of equilibria are studied. We established that the system experienced both Neimark-Sacker and period-doubling bifurcations analytically by using bifurcation theory and the center manifold theorem. In order to control chaos and bifurcations, the state feedback method is implemented. Numerical simulations are also provided for the theoretical discussion. | ||
کلیدواژهها | ||
Difference equation؛ Asymptotic stability؛ Bifurcation analysis؛ Holling’s type 3؛ Chaos control | ||
مراجع | ||
[1] H. Ben Ali, K. Mokni, and M. Ch-Chaoui, Controlling chaos in a discretized prey-predator system, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 1, 1385–1398. [2] M. Ch-Chaoui and K. Mokni, A discrete evolutionary Beverton-Holt population model, Int. J. Dynam. Control 11 (2023), 1060–1075. [3] S. Elaydi, Discrete Chaos, Applications in Science and Engineering, Second Edition, Chapman and Hall / CRC London, 2008. [4] S. Elaydi, Global dynamics of discrete dynamical systems and difference equations, Elaydi S et al. (eds) Differ. Equ. Discrete Dyn. Syst. Appl., ICDEA 2017, Springer Proc. Math. Statist., 2019. [5] E. Elaydi, Y. Kang, and R. Luıs, The effects of evolution on the stability of competing species, J. Bio. Dyn. 16 (2022), no. 1, 816. [6] Q. Din, Complexity and chaos control in a discrete-time prey–predator model, Commun. Nonlin. Sci. Numer. Simulat. 49 (2017), 113—134. [7] Z. He and X. Lai, Bifurcation and chaotic behavior of a discrete-time predator–prey system, Nonlinear Anal.: Real World Appl. 12 (2011), 403-417. [8] S.B. Hsu and T.W, Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math. 55 (1995), no. 13, 763–783. [9] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edn, Springer, New York, 2004. [10] R. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459—467. [11] K. Mokni and M. Ch-Chaoui, Asymptotic stability, bifurcation analysis and chaos control in a discrete evolutionary Ricker population model with immigration, Elaydi S, et al. (eds) Adv. Discrete Dyn. Syst. Differ. Equ. Appl., ICDEA 2021, Springer Proc. Mathe. Statist., 2023. [12] K. Mokni and M. Ch-Chaoui, Complex dynamics and Bifurcation analysis for a discrete evolutionary Beverton-Holt population model with Allee effect, Int. J. Biomath. 16 (2023), no. 7, 2250127. [13] K. Mokni, S. Elaydi, M. Ch-Chaoui, and A. Eladdadi, Discrete evolutionary population models: A new approach, J. Biol. Dyn. 14 (2020), no. 1, 454–478. [14] M.D. Murry, Mathematical Biology, Springer, New York, 1989. [15] P.K. Santra and G.S. Mahapatra, Dynamical study of discrete-time prey-predator model with prey refugee under imprecise biological parameters, J. Bio. Syst. 28 (2020), no. 3, 681–699. [16] P.K. Santra, G.S. Mahapatra, and G.R. Phaijoo, Bifurcation analysis and chaos control of discrete prey–predator model incorporating novel prey–refuge concept, Comput. Math. Meth. 3 (2022), no. 6. [17] H. Singh, J. Dhar, and H.S. Bhatti, Discrete-time bifurcation behavior of a prey-predator system with generalized predator, Adv. Differ. Equ. 2015 (2015), no. 1, 206. | ||
آمار تعداد مشاهده مقاله: 2,965 تعداد دریافت فایل اصل مقاله: 347 |