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Abstract

In the present article, we provide a new nonlinear contraction for the Schauder type selections of multi-valued mappings
in metric spaces which is a new spread of the Darbo theorem. Meanwhile, we apply the main results in coupled fixed-
point theory and functional integral equation.
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1 Introduction and preliminaries

In 1930, the study of the measure of noncompactness (briefly, MoNC) was started by several researchers (see
[1, 2, 3, 4, 6, 15] and references therein). At the same time, Schauder [16] recommended his fixed-point principle.
In 1955, Darbo [9] applied the concept of MoNC to prove the existence of fixed-points of the condensing mappings.
Note that him result generalized both the classical Banach principle and the Schauder fixed-point theorem. Also,
his theorem has many applications to prove the existence of solutions for a big category of differential and integral
equations (see [5, 10]). On the other hand, Nadler [14] expressed the contraction principle for multi-valued mappings.
These mappings and related selection theorems are useful tools in many sections of applied sciences.

In the present article, we establish the existence selections for generalized multi-valued and single-valued mappings
on complete metric spaces using some new generalizations of Darbo theorem. Meanwhile, we obtain a relationship
between coupled fixed-point and fixed-point. Finally, we apply our main theorem in a functional integral equation.
For these, we need some notations and definitions which are expressed below.

Notation.

� F is a Banach space with the norm ∥.∥;

� B(a, r) is the closed ball in F with center a and radius r;

� for A ⊂ F , Ā and Conv A are the closure and the closed convex hull of A;
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� A+B and λA with λ ∈ R are algebraic operations on the sets A and B;

� N(A) is the collection of all nonempty subsets of A;

� MF is the collection of all nonempty and bounded subsets of F and NF is its sub-collection including all relatively
compact set.

Definition 1.1. [6] Consider a mapping ν : MF → R+ = [0,∞) provided that the following cases are held:

i) The family kerν = {A ∈ MF : ν(A) = 0} is nonempty and kerν ⊂ NF , where kerν is the kernel of the MoNC ν;

ii) A ⊂ B ⇒ ν(A) ≤ ν(B);

iii) ν(Ā) = ν(A);

iv) ν(Conv A) = ν(A);

v) ν(λA+ (1− λ)B) ≤ λν(A) + (1− λ)ν(B) for λ ∈ [0, 1];

vi) If (An) is a nested sequence of closed sets from MF so that lim
n→∞

ν(An) = 0, then A∞ =
∞⋂

n=1
An is nonempty.

Then ν is called a MoNC in F .

Note that A∞ in axiom (vi) is a member of the kerν.

Definition 1.2. [8] Consider a multi-valued mapping G from F to N(F).

� A selection from G is a function f : F → F with f(a) ∈ G(a) for any a ∈ F .

� G−1(b) is the set of all a belonging to F such that b is belongs to G(a) for each b ∈ F .

Theorem 1.3. (Browder-Ky Fan Theorem)[8] Assume that G : F → BC(F) is a multi-valued mapping having convex
values and G−1(b) is open for all b. Then there exists a continuous function f : F → F such that f(a) ∈ G(a) for all
a.

2 Results

In this section, A ̸= ∅ is a bounded, closed and convex subset of F . Moreover, suppose that Φ is the class of all
nondecreasing, subadditive, bounded from below and upper semi-continuous functions ϕ : [0,+∞) → [0,+∞) such
that lim

n→∞
ϕn(i) = 0 for every i ≥ 0. Also, we consider β : [0,+∞) → [0,+∞) is a subadditive, continuous and

nondecreasing function with β−1(0) = (0).

Theorem 2.1. Suppose that W : A → N(A) is a multi-valued mapping having convex values so that W−1(b) is open
for all b, ϕ ∈ Φ and

β(ν(WA)) ≤ ϕ(β(ν(A)))− ϕ(β((ν(WA)))). (2.1)

Then W has a fixed-point.

Proof . Using Lemma 1.3, there exists selection of f : A → A such that fa ∈ Wa for all a ∈ A. Suppose
En = ConvfEn−1 for n = 1, 2, ..., where E0 = A. Then, we have En = Convf(En−1) ⊂ W (En−1). Now, from (2.1),
we get

β(ν(E1)) ≤ ϕ(β(ν(E0)))− ϕ(β((ν(E1)))).

Also, for E1 ⊂ A, there exists E2 ⊂ WE1 with E1 ̸= E2 and

β(ν(E2)) ≤ ϕ(β(ν(E1)))− ϕ(β((ν(E2)))).
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Continue this process, we obtain a sequence {En}, where En ⊂ WEn−1 and

β(ν(En)) ≤ ϕ(β(ν(En−1)))− ϕ(β((ν(En)))). (2.2)

If there exists n0 ∈ N provided that ν(En0) = 0, then En0 will be compact. In this manner, Schauder theo-
rem induces that f has a fixed-point. Now, from (2.2), we have ϕ(β(ν(En−1))) ≥ ϕ(β(ν(En))) for all n. Hence,
{ϕ(β(ν(En)))} is a decreasing sequence. Since ϕ is bounded from below, this sequence is convergence. On the other,
from Remark 3 of [12] and Remark 2 of [13], we get

lim
i→0+

β(i)

i
= sup{β(i)

i
: i > 0},

so

lim inf
i→0+

β(i)

i
> 0. (2.3)

By (2.3), there exists δ > 0 and c > 0 such that

β(i) ≥ ci, (2.4)

for all i ∈ [0, δ]. Since β is nondecreasing, then β(i) ≥ β(δ) for all i ∈ [δ,+∞). Let 0 < ϵ < β(δ). Then β(i) > ϵ for
any i ∈ [δ,+∞), i.e. if β(i) ≤ ϵ, then i ∈ [0, δ]. Therefore, we have

{i ≥ 0 : β(i) ≤ ϵ} ⊂ [0, δ],

which together with (2.4) implies that
β(i) ≥ ci (2.5)

for all i ∈ {i ≥ 0 : β(i) ≤ ϵ}. Now, notice that {ϕ(β(ν(En)))} is convergent. Thus, there exists some N ∈ N so that

β(ν(En)) ≤ ϕ(β(ν(En−1)))− ϕ(β(ν(En))) < ϵ

for each n ≥ N , which induces that β(ν(En)) → 0 as n → ∞. Moreover, by (2.5), we get

cν(En) ≤ β(ν(En)) ≤ ϕ(β(ν(En−1)))− ϕ(β(ν(En)))

for every n ≥ N , which induces that ν(En) → 0. Now, by axiom (vi) of Definition 1.1, we conclude that E∞ ⊂ A is a

nonempty, closed, convex set, where E∞ =
∞⋂

n=1
En. Furthermore, E∞ is invariant under function f and E∞ ∈ ker ν.

Now, by applying the Schauder theorem, the proof ends (because f has a fixed-point and since fa ∈ Wa, W has a
fixed-point). □

Theorem 2.2. Suppose W : A → A is a mapping provided that

β(ν(WA)) ≤ ϕ(β(ν(A)))− ϕ(β(ν(WA))),

where ϕ ∈ Φ. Then W has a fixed-point.

Proof . The proof is analogous on the argument of Theorem 2.1 and left to the reader. □

Corollary 2.3. Assume that W : A → A is a mapping so that

β(||Wa−Wb||) ≤ ϕ(β(||a− b||))− ϕ(β(||Wa−Wb||)),

where || · || is the same usual norm and ϕ ∈ Φ. Then W has a fixed-point.

Proof . Let ν : MF → R+ defined by ν(A) = diamA, where diamA = sup{||a− b|| : a, b ∈ A} stands for the diameter
of A. Note that ν is a MoNC in F . So, we have

sup
a,b∈A

β(||Wa−Wb||) ≤ sup
a,b∈A

ϕ(β(||a− b||))− sup
a,b∈A

ϕ(β(||Wa−Wb||)).
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By the continuity of the function β, we derive that

β( sup
a,b∈A

||Wa−Wb||) ≤ ϕ(β( sup
a,b∈A

||a− b||))− ϕ(β( sup
a,b∈A

||Wa−Wb||)).

This yields that β(ν(WA)) ≤ ϕ(β(ν(A)))− ϕ(β(ν(WA))). Now, using Theorem 2.2, W has a fixed-point. □

As you know, the theory of coupled fixed-points was started by Bhaskar and Lakshmikantham’s article [7]. After
that, many researchers generalized this concept. For more details on n-tuple fixed-point theorems, we refer to [11, 17]
and significantly some references therein.

Theorem 2.4. [4] Let ν1, ν2, . . . , νn be M(s)oNC in Banach spaces F1,F2, . . . ,Fn, respectively. Also, suppose that
W : [0,∞)n → [0,∞) is a convex function so that W(l1, . . . , ln) = 0 iff li = 0 for i = 1, 2, . . . , n. Then ν̃(A) =
W(ν1(A1), ν2(A2), . . . , νn(An)) defines a MoNC in F1 ×F2 × · · · × Fn, where Ai are the natural projection of A into
Fi for i = 1, 2, . . . , n.

Notice that ν̃(A) = ν(A1) + ν(A2) is a MoNC, where A1 and A2 denote the natural projections of A into F (see
[6]).

Theorem 2.5. Assume that W : A×A → A is a mapping so that for any subset A1, A2 of A, we have

β(ν(W (A1 ×A2))) ≤
1

2
[ϕ(β(ν(A1) + ν(A2)))]− ϕ(β(ν(W (A1 ×A2)))),

where ϕ ∈ Φ. Then W has a coupled fixed-point.

Proof . Define the mapping W : A2 → A2 by W(a, b) = (W (a, b),W (b, a)). Now, we have

β(ν̃(W(A))) = β(ν̃((W (A1 ×A2),W (A2 ×A1))))

≤ β(ν(W (A1 ×A2))) + β(ν(W (A2 ×A1)))

≤ 1

2
[ϕ(β(ν(A1) + ν(A2)))]− ϕ(β(ν(W (A1 ×A2)))) +

1

2
[ϕ(β(ν(A2) + ν(A1)))]− ϕ(β(ν(W (A2 ×A1))))

=
1

2
[ϕ(β(ν̃(A)))]− ϕ(β(ν(W (A1 ×A2)))) +

1

2
[ϕ(β(ν̃(A)))]− ϕ(β(ν(W (A2 ×A1))))

= ϕ(β(ν̃(A)))− [ϕ(β(ν(W (A1 ×A2)))) + ϕ(β(ν(W (A2 ×A1))))]

≤ ϕ(β(ν̃(A)))− [ϕ(β(ν(W (A1 ×A2)) + ν(W (A2 ×A1))))]

= ϕ(β(ν̃(A)))− ϕ(β(ν̃(W (A1 ×A2),W (A2 ×A1))))

= ϕ(β(ν̃(A)))− ϕ(β(ν̃(W(A)))).

Continue the same argument as in the proof of Theorem 2.2. Thus, W has a fixed-point, which induces that W
has a coupled fixed-point. □

3 Application

In this section we provide applications of the generalization of Darbo fixed-point theorem contained in Theorem
2.1 to prove the existence of solutions of a functional integral equation. For this, assume that BC(R+) is the Banach
space of all real, continuous and bounded functions on the positive real number with ∥y∥ = sup{|y(i)| : i ≥ 0}. Now,
let A be a nonempty and bounded subset of BC(R+) and L > 0. For y ∈ A and ϱ > 0, we consider the following
notations:

ML(y, ϱ) = sup{|y(i)− y(j)| : i, j ∈ [0, L], |i− j| ≤ ϱ},
ML(A, ϱ) = sup{ML(y, ϱ) : y ∈ A},
ML

0 (A) = lim
ϱ→0

ML(A, ϱ),

M0(A) = lim
L→∞

ML
0 (A).
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Further, for i ∈ R+, put A(i) = {y(i) : y ∈ A}. Finally, define the mapping ν on the family MBC(R+) by

ν(A) = M0(A) + lim sup
i→∞

diamA(i),

where diamA(i) is understood as
diamA(i) = sup{|y(i)− z(i)| : y, z ∈ A}.

The mapping ν is a MoNC in BC(R+) (see [6]). Also, kerν includes nonempty and bounded sets A so that
functions in A are locally equicontinuous on R+ and the thickness of the bundle organized by the graphs of functions
in A arrives to 0 at infinity.

Theorem 3.1. Consider the following conditions:

(i) f : R+ × R → R is a continuous mapping and the mapping i → f(i, 0) located in BC(R+);

(ii) There is ϕ ∈ Φ provided that for every i ∈ R+ and any a, b ∈ R, we have

|f(i, a)− f(i, b)| ≤ ϕ(|a− b|)− ϕ(|f(i, a) +
∫ i

0

g(i, j, a)ds− f(i, b)−
∫ i

0

g(i, j, b)dj|).

Further, suppose that ϕ is superadditive;

(iii) There are continuous mappings g : R+ × R+ × R → R and o, h : R+ → R+ provided that lim
i→∞

o(i)
∫ i

0
h(j)dj = 0

and |g(i, j, a)| ≤ o(i)h(j) for i, j ∈ [0,∞) with j ≤ i and for any a ∈ R;

(iv) There is a positive solution r0 of the relation ϕ(r) + q ≤ r, with q = sup{|f(i, 0)|+ o(i)
∫ i

0
h(j)dj : i ≥ 0}.

Then the functional integral equation

y(i) = f(i, y(i)) +

∫ i

0

g(i, j, y(j))dj (3.1)

has a solution in BC(R+).

Proof . Consider T : BC(R+) → BC(R+) by

(Ty)(i) = f(i, y(i)) +

∫ i

0

g(i, j, y(j))dj

for i ∈ R+ and W : BC(R+) → N(BC(R+)) by W (y) = {(Ty)(i)}. By assumptions, the function Ty is continuous
on R+. Moreover, for an optional y ∈ BC(R+), we get

|(Ty)(i)| ≤ |f(i, y(i))− f(i, 0)|+ |f(i, 0)|+
∫ i

0

|g(i, j, y(j))|dj

≤ ϕ(|y(i)|)− ϕ(|f(i, y(i)) +
∫ i

0

g(i, j, y(j))dj − f(i, 0)−
∫ i

0

g(i, j, 0)dj|) + |f(i, 0)|+ c(i)

≤ ϕ(|y(i)|) + |f(i, 0)|+ c(i),

which c(i) = o(i)
∫ i

0
h(j)dj. Since the function ϕ is nondecreasing, ∥Ty∥ ≤ ϕ(∥y∥) + q, where q is defined in (iv).

Further, we deduce that T is a self-mapping on Br0 , where r0 is a constant extant in (iv). Here, we present T is
continuous on Br0 . For this, select an optional number ϱ > 0. Then, by a normal calculation, we gain

|(Ty)(i)− (Tz)(i)| ≤ ϕ(ϱ)− ϕ(|f(i, y(i)) +
∫ i

0

g(i, j, y(j))dj − f(i, z(i))−
∫ i

0

g(i, j, z(j))dj|) + 2c(i) (3.2)

for y, z ∈ Br0 so that ∥y − z∥ ≤ ϱ and for any i ∈ R+. Moreover, by hypothesis (iii), there exists a number L > 0 so
that

2o(i)

∫ i

0

h(j)dj ≤ ϱ (3.3)
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for each i ≥ L. Thus, by (3.2) and (3.3), we obtain

|(Ty)(i)− (Tz)(i)| ≤ 2ϱ− ϕ(|f(i, y(i)) +
∫ i

0

g(i, j, y(j))dj − f(i, z(i))−
∫ i

0

g(i, j, z(j))dj|) < 2ϱ (3.4)

for an arbitrary i ≥ L. Now, let us define the quantity ML(g, ϱ) and ML(f, ϱ) by putting

ML(g, ϱ) = sup{|g(i, j, a)− g(i, j, b)| : i, j ∈ [0, L], a, b ∈ [−r0, r0], |a− b| ≤ ϱ},

ML(f, ϱ) = sup{|f(i, y(i)) +
∫ i

0

g(i, j, y(j))dj − f(i, z(i))−
∫ i

0

g(i, j, z(j))dj| : i, j ∈ [0, L], y, z ∈ Br0 , ||y − z|| ≤ ϱ}.

Because of the uniformly continuity of g(i, j, a) on [0, L] × [0, L] × [−r0, r0], ML(g, ϱ) → 0 as ϱ → 0. Now, using
(3.2), we obtain

|(Ty)(i)− (Tz)(i)| ≤ ϕ(ϱ)− ϕ(ML(f, ϱ)) +

∫ L

0

ML(g, ϱ)dj < ϕ(ϱ) + LML(g, ϱ) (3.5)

for an optional fixed i ∈ [0, L]. Finally, combining (3.4) and (3.5), the operator T will be continuous on the ball Br0 .
Now, select an arbitrary nonempty subset A of Br0 also, choose arbitrarily i, j ∈ [0, L] with j < i so that |i− j| ≤ ϱ.
Then, for y ∈ A, we get

|(Ty)(i)− (Ty)(j)| = |f(i, y(i)) +
∫ i

0

g(i, τ, y(τ))dτ − f(j, y(j))−
∫ j

0

g(j, τ, y(τ))dτ |

≤ |f(i, y(i))− f(j, y(i))|+ |f(j, y(i))− f(j, y(j))|

+ |
∫ i

0

g(i, τ, y(τ))dτ −
∫ i

0

g(j, τ, y(τ))dτ |+ |
∫ i

0

g(j, τ, y(τ))dτ −
∫ j

0

g(j, τ, y(τ))dτ |

≤ ML
1 (f, ϱ) + ϕ(|y(i)− y(j)|)− ϕ(|f(i, y(i)) +

∫ i

0

g(i, j, y(j))dj − f(i, y(j))

−
∫ i

0

g(i, j, y(j))dj|) +
∫ i

0

|g(i, τ, y(τ))− g(j, τ, y(τ))|dτ +

∫ i

j

|g(j, τ, y(τ))|dτ

≤ ML
1 (f, ϱ) + ϕ(ML(y, ϱ))− ϕ(ML(f, ϱ)) +

∫ i

0

ML
1 (g, ϱ)dτ + o(j)

∫ i

j

h(τ)dτ

≤ ML
1 (f, ϱ) + ϕ(ML(y, ϱ))− ϕ(ML(f, ϱ)) + LML

1 (g, ϱ) + ϱ sup{o(j)h(i) : i, j ∈ [0, L]}, (3.6)

in which

ML
1 (f, ϱ) = sup{|f(i, y)− f(j, y)| : i, j ∈ [0, L], y ∈ [−r0, r0], |i− j| ≤ ϱ},

ML
1 (g, ϱ) = sup{|g(i, τ, y)− g(j, τ, y)| : i, j, τ ∈ [0, L], y ∈ [−r0, r0], |i− j| ≤ ϱ}.

Note that f and g are uniform continuous on [0, L] × [−r0, r0] and [0, L] × [0, L] × [−r0, r0], respectively. Thus,
ML

1 (f, ϱ),ML
1 (g, ϱ) → 0 as ϱ → 0. Further, by the continuity of the mappings o = o(i) and h = h(i) on R+, we find

that sup{o(j)h(i) : i, j ∈ [0, L]} is a finite value. Hence, by (3.6), we arrive

ML
0 (TA) ≤ lim

ϱ→0
ϕ(ML(A, ϱ))− lim

ϱ→0
ϕ(ML(TA, ϱ)).

Now, since ϕ is upper semicontinuous, we get

ML
0 (TA) ≤ ϕ(ML

0 (A))− ϕ(ML
0 (TA))

and consequently,
M0(TA) ≤ ϕ(M0(A))− ϕ(M0(TA)). (3.7)

Now, select two optional functions y, z ∈ A. By simple calculation, we gain

|(Ty)(i)− (Tz)(i)| ≤ ϕ(|y(i)− z(i)|)− ϕ(|f(i, y(i)) +
∫ i

0

g(i, j, y(j))dj − f(i, z(i))−
∫ i

0

g(i, j, z(j))dj|) + 2c(i)
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for i ∈ R. It follows for this estimate that

diam(TA)(i) ≤ ϕ(diamA(i))− ϕ(diamTA(i)) + 2c(i).

Now, because of the upper semicontinuity of ϕ we obtain

lim sup
i→∞

diam(TA)(i) ≤ ϕ(lim sup
i→∞

diamA(i))− ϕ(lim sup
i→∞

diamTA(i)). (3.8)

Now, combining (3.7) and (3.8), applying the superadditivity of ϕ and using (iii), we gain

M0(TA) + lim sup
i→∞

diam(TA)(i) ≤ ϕ(M0(A) + lim sup
i→∞

diamA(i))− ϕ(M0(TA)− lim sup
i→∞

diamTA(i)),

that results
ν(TA) ≤ ϕ(ν(A))− ϕ(ν(TA)), (3.9)

in which ν is the MoNC introduced in BC(R+). Finally, applying (3.9) and Theorem 2.1, and putting β(i) = i, the
proof ends. □

4 Conclusions

In this paper, established the existence selections for generalized multi-valued and single-valued mappings on
complete metric spaces using some new generalizations of Darbo theorem. Also, obtained a relationship between
coupled fixed-point and fixed-point. Finally, the main theorem was applied to a functional integral equation.

Acknowledgment

We are grateful to the Research Council of Shahid Chamran University of Ahvaz for financial support (Grant
number: SCU.MM1401.25894). Also, the authors wish to thank the Editorial Board and referees for their helpful
suggestions to improve this manuscript.

References

[1] S. Abbas, A. Deep, B. Singh, M.R. Alharthi, and K.S. Nisar, Solvability of functional stochastic integral equations
via Darbo’s fixed point theorem, Alexandria Engin. J. 60 (2021), 5631–5636.

[2] R. Arab, H.K. Nashine, and R.W. Ibrahim, Tripled fixed point results via a measure of noncompactness with
applications, Asian-Eur. J. Math. 14 (2021), no. 2, 2150008.

[3] T.D. Benavides and P.L. Ramirez, Measures of noncompactness in modular spaces and fixed point theorems for
multivalued nonexpansive mappings, J. Fixed Point Theory Appl. 2021 (2021), 21:40.

[4] J. Banas, M. Jleli, M. Mursaleen, and B. Samet, Advances in Nonlinear Analysis via the Concept of Measure of
Noncompactness, Springer, Singapore, 2017.

[5] J. Banas and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear
Anal. 69 (2008), 1945–1952.

[6] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math. New
York, Vol. 60, 1980.

[7] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications,
Nonlinear Anal. 65 (2006), 1379–1393.

[8] K.C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University
Press, 1985.

[9] G. Darbo, Punti uniti in transformazioni a condomino non compatto, Rend. Sem. Mat. Univ. Padova. 24 (1955),
84–92.



58 Lotfali Ghasab, Majani

[10] B.C. Dhage and S.S. Bellale, Local asymptotic stability for nonlinear quadratic functional integral equations,
Electr. J. Qual. Theo. Differ. Equ. 10 (2008), 1–13.

[11] E.L. Ghasab, H. Majani, E. Karapinar, and G. Soleimani Rad, New fixed point results in F-quasi-metric spaces
and an application, Adv. Math. Phys. 2020 (2020), 9452350.

[12] M.A. Khamsi, Remarks on Caristis fixed point theorem, Nonlinear Anal. 71 (2009), 227–231.

[13] Z. Li, Remarks on Caristis fixed point theorem and Kirk’s problem, Nonlinear Anal. 73 (2010), 3751–3755.

[14] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.

[15] V. Parvaneh, M. Khorshidi, and M. De La Sen, Measure of noncompactness and a generalized Darbo fixed point
theorem and its applications to a system of integral equations, Adv. Differ. Equ. 2020 (2020), 243.

[16] J. Schauder, Der fixponktestatz in funktionalarumen, Studia Math. 2 (1930), 171–180.

[17] G. Soleimani Rad, S. Shukla, and H. Rahimi, Some relations between n-tuple fixed point and fixed point results,
RACSAM. 109 (2015), 471–481.


	Introduction and preliminaries
	Results
	Application
	Conclusions

