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Abstract

In the present article, we provide a new nonlinear contraction for the Schauder type selections of multi-valued mappings
in metric spaces which is a new spread of the Darbo theorem. Meanwhile, we apply the main results in coupled fixed-
point theory and functional integral equation.
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1 Introduction and preliminaries

In 1930, the study of the measure of noncompactness (brieflyy, MoNC) was started by several researchers (see
[, 2, B, @, [6, 15] and references therein). At the same time, Schauder [16] recommended his fixed-point principle.
In 1955, Darbo [9] applied the concept of MoNC to prove the existence of fixed-points of the condensing mappings.
Note that him result generalized both the classical Banach principle and the Schauder fixed-point theorem. Also,
his theorem has many applications to prove the existence of solutions for a big category of differential and integral
equations (see [Bl, [10]). On the other hand, Nadler [14] expressed the contraction principle for multi-valued mappings.
These mappings and related selection theorems are useful tools in many sections of applied sciences.

In the present article, we establish the existence selections for generalized multi-valued and single-valued mappings
on complete metric spaces using some new generalizations of Darbo theorem. Meanwhile, we obtain a relationship
between coupled fixed-point and fixed-point. Finally, we apply our main theorem in a functional integral equation.
For these, we need some notations and definitions which are expressed below.

Notation.
e F is a Banach space with the norm ||.||;
e B(a,r) is the closed ball in F with center a and radius 7;

e for A C F, A and Conv A are the closure and the closed convex hull of A;
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e A+ B and M with A € R are algebraic operations on the sets A and B;
e N(A) is the collection of all nonempty subsets of A;

e M is the collection of all nonempty and bounded subsets of F and Nz is its sub-collection including all relatively
compact set.

Definition 1.1. [6] Consider a mapping v : Mr — Ry = [0, 00) provided that the following cases are held:

i) The family kerv = {A € Mz : v(A) = 0} is nonempty and kerv C Nz, where kerv is the kernel of the MoNC v;
ii) AC B=v(A) <v(B);
i) v(4) = v(A);
iv) v(Conv A) = v(A);
v) V(AMA+ (1= X)B) < w(A) + (1 - Nv(B) for A € [0, 1];

vi) If (A,) is a nested sequence of closed sets from Mz so that lim v(A,) =0, then A, = [ A, is nonempty.

n— o0 n=1
Then v is called a MoNC in F.

Note that A, in axiom (vi) is a member of the kerv.
Definition 1.2. [8] Consider a multi-valued mapping G from F to N(F).

e A sclection from G is a function f: F — F with f(a) € G(a) for any a € F.
e G1(b) is the set of all a belonging to F such that b is belongs to G(a) for each b € F.
Theorem 1.3. (Browder-Ky Fan Theorem)[8] Assume that G : F — BC/(F) is a multi-valued mapping having convex

values and G~1(b) is open for all b. Then there exists a continuous function f : F — F such that f(a) € G(a) for all
a.

2 Results

In this section, A # () is a bounded, closed and convex subset of F. Moreover, suppose that @ is the class of all
nondecreasing, subadditive, bounded from below and upper semi-continuous functions ¢ : [0, +00) — [0, +00) such
that lim ¢™(¢) = 0 for every ¢ > 0. Also, we consider 8 : [0,+00) — [0,400) is a subadditive, continuous and

n—oo

nondecreasing function with 371(0) = (0).

Theorem 2.1. Suppose that W : A — N(A) is a multi-valued mapping having convex values so that W~1(b) is open
for all b, ¢ € & and

Bw(WA)) < o(B(v(A))) — o(B((v(WA)))). (2.1)
Then W has a fixed-point.

Proof . Using Lemma there exists selection of f : A — A such that fa € Wa for all a € A. Suppose
E, =ConvfE,_1 forn=1,2, ..., where Ey = A. Then, we have E,, = Convf(E,_1) C W(E,_1). Now, from (2.1)),
we get

Bv(Ey)) < ¢(B(v(Eo))) — ¢(B((v(E1)))).

Also, for F4y C A, there exists F5 C WE; with E; # F5 and

Bv(E2)) < ¢(B(v(E1))) — o(B((v(E2))))-
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Continue this process, we obtain a sequence {E,}, where E,, C WE,_; and
Bw(E)) < ¢(B(v(En-1))) — o(B((V(En)))). (2.2)

If there exists ng € N provided that v(E,,) = 0, then E,, will be compact. In this manner, Schauder theo-
rem induces that f has a fixed-point. Now, from (2.2), we have ¢(3(v(E,-1))) = ¢(B(v(E,))) for all n. Hence,
{6(B(W(Ey)))} is a decreasing sequence. Since ¢ is bounded from below, this sequence is convergence. On the other,
from Remark 3 of [I2] and Remark 2 of [13], we get

_ B) HON
lim —= = —=:i>0
Jm = = sup{= 0> 03,
SO )
lim inf @ > 0. (2.3)
i—0t 1
By (2.3)), there exists § > 0 and ¢ > 0 such that
Bi) = ci, (2.4)

for all ¢ € [0,4]. Since S is nondecreasing, then §(i) > £(0) for all i € [§,4+00). Let 0 < € < (). Then S(i) > € for
any i € [0, +00), i.e. if B(i) <, then i € [0,0]. Therefore, we have

{i>0:p(i) <e} C0,4],

which together with (2.4) implies that
8(i) > ci (2.5)

for all i € {i > 0: B(i) < e}. Now, notice that {¢(3(v(E,)))} is convergent. Thus, there exists some N € N so that
Bv(En)) < ¢(B(V(En-1))) — d(Bv(En))) <€
for each n > N, which induces that 8(v(E,)) = 0 as n — co. Moreover, by (2.5), we get
c(En) < Bv(En)) < ¢(B(V(En-1))) — ¢(B(v(En)))

for every n > N, which induces that v(E, ) — 0. Now, by axiom (vi) of Definition we conclude that E,o C Ais a

nonempty, closed, convex set, where Eo, = (| E,. Furthermore, E is invariant under function f and F. € kerv.
n=1

Now, by applying the Schauder theorem, the proof ends (because f has a fixed-point and since fa € Wa, W has a
fixed-point). O

Theorem 2.2. Suppose W : A — A is a mapping provided that

Blr(WA)) <o(B(v(A))) — o(B(v(WA))),
where ¢ € ®. Then W has a fixed-point.

Proof . The proof is analogous on the argument of Theorem and left to the reader. [J

Corollary 2.3. Assume that W : A — A is a mapping so that
BlWa —Wb[|) < ¢(B(|la —bl])) — ¢(B(I[Wa — Wb])),

where || - || is the same usual norm and ¢ € ®. Then W has a fixed-point.

Proof . Let v: Mr — R, defined by v(A) = diamA, where diamA = sup{||la —b|| : a,b € A} stands for the diameter
of A. Note that v is a MoNC in F. So, we have

sup S(|[Wa—Wb||) < sup ¢(B(|la —bl[)) — sup ¢(B(|[Wa —Wb])).

a,becA a,beA a,be
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By the continuity of the function 8, we derive that

B sup [[Wa —Wb[[) < ¢(B( sup [la —bl[)) — (5 sup [[Wa - Wb])).
beA a,beA

a,be A a,

This yields that 8(v(WA)) < ¢(8(v(A))) — ¢(B(v(WA))). Now, using Theorem [2.2] W has a fixed-point. [J

As you know, the theory of coupled fixed-points was started by Bhaskar and Lakshmikantham’s article [7]. After
that, many researchers generalized this concept. For more details on n-tuple fixed-point theorems, we refer to [11], 7]
and significantly some references therein.

Theorem 2.4. [4] Let vy, vs,...,v, be M(s)oNC in Banach spaces Fi, Fa, ..., Fn, respectively. Also, suppose that
W : [0,00)" — [0,00) is a convex function so that W(ly,...,l,) = 0iff [; = 0 for ¢ = 1,2,...,n. Then v(4) =
W(vi(4y), v (Ag), 1/"( n)) defines a MoNC in F; x Fa X -+ X JF,, where A; are the natural projection of A into
Fifori=1,2,...,n

Notice that 7(A) = v(A41) + v(Asz) is a MoNC, where A; and As denote the natural projections of A into F (see

[6]).
Theorem 2.5. Assume that W : A x A — A is a mapping so that for any subset A, As of A, we have

B (W(A1 x A))) < S[d(B(r(Ar) +v(A2)))] — o(BW(W (A1 X A3)))),

DN | =

where ¢ € ®. Then W has a coupled fixed-point.

Proof . Define the mapping W : A2 — A? by W(a,b) = (W (a,b), W(b,a)). Now, we have

BEOW(A)) = BE(W (A1 x 42).W(dz x A1)
< Bv(W (AL x Ag))) + B(r(W(Az x A1)))
< SB(B0(A) + (A2))] = SBWT (A1 x A2)))) + FB(B(A2) + v(A))] ~ H(BEV (A3 x A1)
= SIB(B(A))] — S(BOW (Ar x An)) + S[0(BE(A))]  H(BEW (As x A1)
= G(5(P(A))) ~ BBV (A1 x A) + GBI (A3 x A1)
< O(B(H(A))) ~ [D(B/(W Ay x 42)) + V(W (dg x A1))))]
= G(B(P(A))) — BV (A1 x A2), W (A x A1)
= B(5(2(4))) — H(BEV(A))))

Continue the same argument as in the proof of Theorem Thus, W has a fixed-point, which induces that W
has a coupled fixed-point. [

3 Application

In this section we provide applications of the generalization of Darbo fixed-point theorem contained in Theorem
to prove the existence of solutions of a functional integral equation. For this, assume that BC(R,) is the Banach
space of all real, continuous and bounded functions on the positive real number with |ly|| = sup{|y(¢)| : i > 0}. Now,
let A be a nonempty and bounded subset of BC(R;) and L > 0. For y € A and ¢ > 0, we consider the following
notations:

0) = sup{|y(i) —y(j)| : 4,5 € [0, L], |i — j| < o},
ML(A7 0) = sup{M*(y,0) : y € A},

)= hHgJM (4, 0),

)=
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Further, for i € Ry, put A(i) = {y(i) : y € A}. Finally, define the mapping v on the family Mpc®, ) by
v(A) = Mo(A) + lim sup diamA(i),

1—00

where diamA(7) is understood as
diamA(i) = sup{|y(i) — z(9)| : y, 2z € A}.

The mapping v is a MoNC in BC(Ry) (see [6]). Also, kerv includes nonempty and bounded sets A so that
functions in A are locally equicontinuous on R, and the thickness of the bundle organized by the graphs of functions
in A arrives to 0 at infinity.

Theorem 3.1. Consider the following conditions:

(i) f:Ry x R — R is a continuous mapping and the mapping ¢ — f(¢,0) located in BC(R4);

(ii) There is ¢ € ® provided that for every ¢ € Ry and any a,b € R, we have

£.0) = 70,0 < dlla—b) — 617G ) + | g(i.sads = £(0.0) = [ gli. D))
0 0
Further, suppose that ¢ is superadditive;

(iii) There are continuous mappings ¢ : Ry x Ry x R — R and o,h : Ry — R provided that lim o(i) foz h(j)dj =0

71— 00

and |[g(i,4,a)| < o(i)h(j) for i,j € [0,00) with j < i and for any a € R;
(iv) There is a positive solution 7 of the relation ¢(r) + ¢ < r, with ¢ = sup{|f(¢,0)| + o(%) fol h(j)dj : i > 0}.

Then the functional integral equation

y(i) = £(i.y(0)) + / gl joy ()i (3.1)
has a solution in BC(R).

Proof . Consider T': BC(R;) — BC(R4) by

(Ty)i) = £ y(0)) + / (i oy

for i € Ry and W : BC(Ry) — N(BC(Ry)) by W(y) = {(T'y)(¢)}. By assumptions, the function T’y is continuous
on R;. Moreover, for an optional y € BC(R.), we get

(O] = 1£ip(@) - 16,01+ 1760+ [ oG gy )
< o(ly(0)]) — B(1F G y(0)) + / (i . y()di — £(0,0) - / (0.5, 0)di]) + 1£(5,0)] + (i)
< o(ly(0))) + 17, 0)] + (i),

which ¢(i) = o(i) j;)z h(j)dj. Since the function ¢ is nondecreasing, [|[Ty| < ¢(|ly||) + ¢, where ¢ is defined in (iv).
Further, we deduce that T is a self-mapping on B,,, where 7 is a constant extant in (iv). Here, we present T is
continuous on B,,. For this, select an optional number o > 0. Then, by a normal calculation, we gain

()0~ (T2)0)] < 6l0) — 617Gy + [ 90i.jniNai — £G,20) - [ glig i) +2e)  (32)
0 0
for y, z € By, so that ||y — z|| < ¢ and for any ¢ € R;. Moreover, by hypothesis (iii), there exists a number L > 0 so
that

20(i) /0 W) < o (3.3)
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for each ¢ > L. Thus, by (3.2) and (3.3]), we obtain

(@)0) = (T2))] < 20— (1w + | 0000 9 0))d) — 706, 2(9) — / g N <20 (34)
for an arbitrary ¢ > L. Now, let us define the quantity M%(g, o) and M~ (f, o) by putting
M (g, 0) = sup{lg(i, j.a) — g(i, 5,b)| : i, j € [0, L], a,b € [~r0, 7o), |a — b] < o},
ME(f.0) = s £ G.o(i) + [ 000 90— 100, 2(0) — / 90605, 2] <125 € [0, L), 7 € Broslly — 211 < o}

0

Because of the uniformly continuity of g(i,j,a) on [0, L] x [0, L] x [~rq,70], M*(g,0) — 0 as ¢ — 0. Now, using

, we obtain
(Ty)0) — (T=2)(0)] < dlo) — SMH(f,0) / M (g, 0)dj < 6(0) + LM (g, ) (35)

for an optional fixed ¢ € [0, L]. Finally, combining (3.4) and (3.5), the operator T" will be continuous on the ball B,,.
Now, select an arbitrary nonempty subset A of B, also, choose arbitrarily ,j € [0, L] with j < ¢ so that |i — j| < g.
Then, for y € A, we get

(Ty)(i) — (Ty)()| = | £ u(i)) + / gl y(n))dr — £y () — / " 9. y(r))dr]
< 1FGinu(@) — FG ()] + G (@) — FGy() |
+\/ olé, 7, 9(r dr—/ (My()dTHI/ Gory(r >>dr—/og<jmy<f>>df|

< ME(F 0+ 6(ly(i) — y(i)) — B G y(@)) + / 'y = £ y()
- / 903, 3,9 / 97, y(7) — g, my(r))ldr + / 90,7 y(r)dr

MECE, 0) + SME (. 0)) — o(ME (1, 0) / ME(g, Q)dr + o) /lhde
< ME(f,0) + d(MP(y, 0)) — 9(ME(f, 0)) + LMY (g, 0) + osup{o(j)h(i) : i,5 € [0, L]}, (3.6)

in which
Mf(f7 Q) = sup{\f(z,y) - f(.77 y)' : ’La] € [OaL]ay € [_’I"(),’I“o], |Z _.7| < Q}a
M{J(ga 9) = Sup{‘g(i,T, y) - g(]a T, y)| : iaj7T € [O,L],y € [77'0?7’0]7 ‘Z 7‘7| < Q}
Note that f and g are uniform continuous on [0, L] x [—7g,7o] and [0, L] x [0, L] X [—rg, o], respectively. Thus,

ME(f, 0), M¥(g,0) — 0 as o — 0. Further, by the continuity of the mappings o = o(i) and h = h(i) on R, , we find
that sup{o(j)h(i) : i, j € [0, L]} is a finite value. Hence, by (3.6), we arrive

MG (TA) < lim §(M*(4, 0)) — lim $(M"(T4, 0)).

Now, since ¢ is upper semicontinuous, we get
MG (TA) < ¢(Mg(A)) — d(Mg(T'4))

and consequently,
Mo(T'A) < p(Mo(A)) — ¢(Mo(TA)). (3.7)
Now, select two optional functions y, z € A. By simple calculation, we gain

i

(Ty)(i) — (T2)(0)] < 6(y() — 2()]) — S £, y(d)) + / (i gy )i — £, =(0)) — / 9(ird, 2(7)djl) + 2¢(i)
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for ¢ € R. It follows for this estimate that

diam(T A)(i) < ¢(diamA(i)) — ¢(diamT A(7)) + 2¢(3).

Now, because of the upper semicontinuity of ¢ we obtain

lim sup diam (T A) (i) < ¢(limsup diamA(i)) — ¢(lim sup diamT A(7)). (3.8)

1—00 i—00 1—00
Now, combining (3.7) and (3.8), applying the superadditivity of ¢ and using (ii7), we gain

Mo (T A) 4 limsup diam(TA) (i) < p(Mo(A) + limsup diamA(i)) — ¢(Mo(T A) — lim sup diamT A(%)),
1—00 1—00 i—00
that results

v(TA) < ¢(v(A4)) = ¢(v(TA)), (3.9)

in which v is the MoNC introduced in BC(R). Finally, applying (3.9) and Theorem and putting 5(i) = 4, the
proof ends. [J

4 Conclusions

In this paper, established the existence selections for generalized multi-valued and single-valued mappings on
complete metric spaces using some new generalizations of Darbo theorem. Also, obtained a relationship between
coupled fixed-point and fixed-point. Finally, the main theorem was applied to a functional integral equation.
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