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Abstract

In this paper, we examine the notions of mj-clean ring and strongly mj-clean ring. And we will provide some of its
basic properties. We examine the relationship of mj-clean ring with m-clean ring and j-clean ring. We prove that R is
strongly mj-clean ring if and only if Mn(R) is strongly mj-clean ring. We prove that mj-clean ring is Dedekind-finite;
i.e., ab = 1 implies that ba = 1.
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1 Introduction

The notion of clean ring was first titled by W.K. Nicolson in his study of ”Lifting idempotents and exchange rings”
in [10]. A ring is clean if each element can be written as a sum of a unit and an idempotent element. A ring is strongly
clean if each of its elements can be written as a sum of an idempotent and a unit which are commutative. After the
introduction of clean rings by Nicholson, many authors introduced new constructions of clean rings, includings j-clean
rings and m-clean rings [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13]. In this paper, we examine the notions of mj-clean ring and
strongly mj-clean ring. Throughout this paper all rings are associative with unity. We denote the Jacobson radical
of the ring R by radR. The right and left annihilators of a set X ⊆ R are denoted by r(X) and l(X) respectively.We
denote the group of units of the ring R by U(R). An element x of a ring R is j-clean if x = e+ w where e2 = e ∈ R
and w ∈ radR; if further ew = we, the element x is called strongly j-clean. The ring R is called j-clean (strongly
j-clean) if each of its element is j-clean (strongly j-clean). Let m ⩾ 2 be a positive integer. An element x of a ring R
is m-clean if x = e + w, where w is a unit and e is m-potent (that is em = e) element of R; if further ew = we, the
element x is called strongly m-clean. The ring R is called m-clean (strongly m-clean) if each of its element is m-clean
(strongly m-clean).

2 mj-clean ring

Definition 2.1. Let m ⩾ 2 be a positive integer. An element x of a ring R is said to be mj-clean if x can be written
as x = e+w, where w ∈ radR and e is m-potent element of R; if ew = we, in this case x is called strongly mj-clean.
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A ring R is called mj-clean (strongly mj-clean) if every elements of R is mj-clean (strongly mj-clean).

2.1 Example

1. It is clear from definition of mj-clean ring, that j-clean ring is an mj-clean ring.

2. Let R be a ring in which every element is m-potent, in this case R is mj-clean ring.

3. Any quotient of a strongly mj-clean ring is strongly mj-clean.

4. Any direct product of strongly mj-clean ring is strongly mj-clean.

Lemma 2.2. Homomorphic image of strongly mj-clean rings is strongly mj-clean.

Proof . Let ϕ : R → S be a ring epimorphism, where R is a strongly mj-clean ring. For any s ∈ R, there exist r ∈ R
such that ϕ(r) = s. since R is strongly mj-clean, we can write r = e+ w, where w ∈ radR, e is an m-potent element
of R and ew = we. Now ϕ(r) = ϕ(e + w) = ϕ(e) + ϕ(w) and ϕ(e) = ϕ(em) = ϕ(e)m, and for any s′ ∈ S, there exist
r′ ∈ R such that ϕ(r′) = s′, then 1− s′ϕ(w) = ϕ(1)− ϕ(r′)ϕ(w) = ϕ(1− r′w) ∈ U(S), so ϕ(w) ∈ radS. □

Proposition 2.3. Let R be a ring. The following are equivalent:

1. R is m-potent.

2. R is strongly mj-clean and radR = 0

Proof . (1) =⇒ (2) Clearly, R is strongly mj-clean. For any x ∈ radR, xm = x, x − xm = 0 =⇒ x(1 − xm−1) = 0
that (1− xm−1) ∈ U(R) and so x = 0. This implies that radR = 0.
(2) =⇒ (1) is trivial. □

Proposition 2.4. Let R be a ring. The following are equivalent:

1. R is mj-clean.

2. R
radR is m-potent.

Proof . The proof is clear. □

Corollary 2.5. Let R be a local ring. The following are equivalent:

1. R is strongly mj-clean.

2. R
radR

∼= Zp

Proof . The proof is clear. □

Theorem 2.6. Let R be a ring. And x ∈ R be a mj-clean, then 1 + x is m-clean.

Proof . Let x ∈ R be mj-clean. There exist an m-potent e ∈ R and w ∈ radR such that x = e + w. Hence,
1 + x = e+ 1 + w. We see 1 + w ∈ U(R). Thus, 1 + x ∈ R is m-clean. □

Theorem 2.7. Let R be a mj-clean ring. Then R is m-clean ring.

Proof . For every x ∈ R, x − 1 is mj-clean. Then there exist an m-potent e ∈ R and a w ∈ radR such that
x− 1 = e+ w. Hence x = 1 + x− 1 = e+ 1 + w. We see 1 + w ∈ U(R). Thus, R is m-clean ring. □

Note: The upper theorem reverse is not true. For example, suppose Q is the ring of rational numbers. Then Q is
m-clean ring, but Q is not mj-clean ring.

Lemma 2.8. Let R be a ring, and let x = e + w be a strongly mj-clean decomposition of x in R. Then l(x) ⊆ l(e)
and r(x) ⊆ r(e).

Proof . Let r ∈ l(x), then rx = 0. Write x = e + w that em = e, w ∈ radR, and ew = we. Then re = −rw; hence
re = −rwem−1. It follows that re(1+em−2w) = 0, where 1+em−2w ∈ U(R), and so re = 0. that is r ∈ l(e). Therefor,
l(x) ⊆ l(e). A similar argument shows that r(x) ⊆ r(e). □
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Theorem 2.9. Let R be a ring, and let e ∈ R be an m-potent. Then x ∈ em−1Rem−1 is strongly mj-clean in R if
and only if x is strongly mj-clean in em−1Rem−1.

Proof . At first we note that em−1 is an idempotent element of R because e is an m-potent of R. If r ∈
rad(em−1Rem−1). Then r ∈ rad(R). suppose that x = f +w, that fm = f ∈ em−1Rem−1, w ∈ rad(em−1Rem−1) and
fw = wf . Obviously, w ∈ rad(em−1Rem−1) ⊆ radR. Hence, x ∈ em−1Rem−1 is strongly mj-clean in R.

Conversely, suppose x ∈ R, x = f + w, fm = f , w ∈ radR, fw = wf . As x ∈ em−1Rem−1, we see that:

1− em−1 ∈ l(x) ∩ r(x)

⊆ l(f) ∩ r(f)

= R(1− fm−1) ∩ (1− fm−1)R

= (1− fm−1)R(1− fm−1).

Hence, fm−1(1 − em−1) = 0 = (1 − em−1)fm−1 and fm−1 = fm−1em−1 = em−1fm−1 and f = fem−1 =
em−1f . We observe that x = em−1fem−1 + em−1wem−1 that (em−1fem−1)m = em−1fem−1 and so em−1wem−1 ∈
rad(em−1Rem−1). Clearly, em−1fem−1 and em−1wem−1 commute together. □

Theorem 2.10. Let {e1, e2, ......, en} be set of m-potent elements of a ring R such that em−1
i and em−1

j are mutually

orthogonal for all i ̸= j, where 1 ≤ i, j ≥ n. Suppose that 1 = e1+ .....+ en and each em−1
i Rem−1

i is strongly mj-clean
for every i = 1, ..., n. Then R is strongly mj-clean.

Proof . By using upper theorem, the proof is clear. □

Theorem 2.11. If a ring R is strongly mj-clean then Mn(R) is strongly mj-clean.

Proof . We observe that In = E11+ ......+Enn, where In is the n×n identity matrix and Eii is the n×n elementary
matrix whose (ii)′′th is 1 and all other entries are 0. We see that each Eii is m-potent and Em−1

ii are mutually
orthogonal for all i = 1, ...., n. We also have R ∼= Em−1

ii Mn(R)Em−1
ii . It is given that R is strongly mj-clean which

implies that each Em−1
ii Mn(R)Em−1

ii is strongly mj-clean. Consequently, by upper theorem, it follow that Mn(R) is
strongly mj-clean. □

Note: The upper theorem reverse is true. LetMn(R) be a stronglymj-clean. In this case, put e = diag(1, 0, 0, .., 0) ∈
Mn(R). We will have R ∼= em−1Mn(R)em−1. Therefor, R is strongly mj-clean.

Let R, S be two rings, and let M be an (R,S)-bimodule. In this case T =

(
R M
0 S

)
will form a ring. We already

know, radT =

(
radR M
0 radS

)
, T

radT
∼= R

radR × S
radS . Note here that, T is mj-clean ring if and only if R and S are

mj-clean rings if and only if R
radR and S

radS are m-potent.

A Morita context is a 4-tuple

(
A M
N B

)
, where A,B are rings, AMB and BNA are bimodules, and there exist

context products M ×N → A and N ×M → B written multiplicatively as (w, z) 7→ wz and (z, w) 7→ zw, such that(
A M
N B

)
is an associative ring with the obvious matrix operation. The following lemmas have already been proved

[12].

Lemma 2.12. Let R :=

(
A M
N B

)
be a Morita context. Then radR =

(
radA M0

N0 radB

)
, where M0 = {x ∈ M : xN ⊆

radA} and N0 = {y ∈ N : yM ⊆ radB}.

Canonically, M/M0 is an (A/radA,B/radB)-bimodule and N/N0 is an (B/radB,A/radA)-bimodule, and this

include a Morita context

(
A/radA M/M0

N/N0 B/radB

)
where the context products are given by (x+M0)(y+N0) = xy+radA,

(y +N0)(x+M0) = yx+ radB for all x ∈ M and y ∈ N .
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Lemma 2.13. Let R :=

(
A M
N B

)
be a Morita context, and let

(
A/radA M/M0

N/N0 B/radB

)
be defined above. Then

R/radR ∼=
(
A/radA M/M0

N/N0 B/radB

)
.

Theorem 2.14. Let R :=

(
A M
N B

)
be a Morita context. Let A and B are mj-clean rings, MN ⊆ radA and

NM ⊆ radB. In This case R is mj-clean ring.

Proof . Because A and B aremj-clean rings, then A/radA and B/radB arem-potent. MN ⊆ radA and NM ⊆ radB

gives M = M0 and N = N0. So, it follow that R/radR ∼=
(
A/radA M/M0

N/N0 B/radB

)
. Thus, A/radA and B/radB being

m-potent implies R/radR is m-potent, and R is mj-clean ring. □

A ring R is said to be Dedekind-finite (or von Neumann-finite) if ab = 1 =⇒ ba = 1.

Theorem 2.15. Let R be a mj-clean ring. Then R is Dedekind-finite.

Proof . Let a, b ∈ R, where ab = 1. Since R is mj-clean ring, we can write a = e + w, b = f + u, where em = e,
fm = f , u,w ∈ radR. Now ab = (e+w)(f +u) = 1, ef + eu+wf +wu = 1, therefore ef = 1− eu−wf −wu ∈ U(R).
There exist v ∈ U(R) such that ef = v. We see that (1−em−1)ef = (1−em−1)v = 0, v = em−1v, em−1 = 1, e ∈ U(R).
Therefore a = e+ w ∈ U(R), then ba = 1 and R is Dedekind finite. □

Note: Let R be a mj-clean ring. And let a = e+ w be a mj-clean element in R, where em = e, w ∈ radR. Then
a ∈ U(R) if and only if e ∈ U(R).

3 strongly g(x)-mj-clean ring

Definition 3.1. Let R be a ring, and C(R) denote the center of a ring R. Let g(x) ∈ C(R)[x] be a fixed polynomial.
An element r ∈ R is strongly g(x)-mj-clean if r = e + w where g(e) = 0 and w ∈ radR and ew = we. R is strongly
g(x)-mj-clean ring if every element of R is strongly g(x)-mj-clean.

Also an element r ∈ R is strongly g(x)-m-clean if r = e+w where g(e) = 0, w ∈ U(R) and ew = we. R is strongly
g(x)-m-clean ring if every element of R is strongly g(x)-m-clean. Clearly, every strongly g(x)-mj-clean ring is strongly
g(x)-m-clean ring.

For a ring R, R is strongly mj-clean if and only if R is strongly (xm − x)-mj-clean.

Theorem 3.2. Let R be a ring and a ∈ C(R). Then R is strongly mj-clean ring and a ∈ U(R) if and only if R is
strongly x(xm−1 − am−1)-mj-clean ring.

Proof . Let r ∈ R. Since R is stronglymj-clean and a ∈ U(R), r
a = e+w where em = e, w ∈ radR and ew = we. Then

r = ea+wa where wa ∈ radR, ea is a root of x(xm−1−am−1), because ea((ea)m−1−am−1) = ea((em−1−1)am−1) = 0.
We also have eawa = waea.

Conversely, let R is strongly x(xm−1−am−1)-mj-clean ring. Since 1 is strongly x(xm−1−am−1)-mj-clean, 1 = s+w
where s(sm−1 − am−1) = 0 and w ∈ radR and ws = sw. Since s = 1 − w ∈ U(R) and s(sm−1 − am−1) = 0
so sm−1 = am−1 ∈ U(R) therefore a ∈ U(R). Let r ∈ R. Since R is strongly x(xm−1 − am−1)-mj-clean ring,
ra = e + w where e(em−1 − am−1) = 0, w ∈ radR and ew = we. Thus, r = e

a + w
a where w

a ∈ radR and

( ea )
m = em

am = e(em−1−am−1+am−1)
am = e

a . So R is strongly mj-clean ring. □

Theorem 3.3. Let R be strongly g(x)-mj-clean ring and strongly h(x)-mj-clean ring where g(x), h(x) ∈ C(R)[x].
Then R is g(x)h(x)-mj-clean ring.

Proof . The proof is clear. □

Theorem 3.4. Let R be a strongly x(xm−1 − am−1)-mj-clean ring with a ∈ C(R). Then for any e = em ∈ R,
em−1Rem−1 is strongly x(xm−1 − em−1am−1)-mj-clean ring.

Proof . R is strongly x(xm−1 − am−1)-mj-clean ring if and only if R is strongly mj-clean ring and a ∈ U(R). If R is
strongly mj-clean ring, then em−1Rem−1 is strongly mj-clean. Again em−1Rem−1 is strongly x(xm−1 − em−1am−1)-
mj-clean ring, because em−1am−1 ∈ U(em−1Rem−1). □
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