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Abstract

This investigation deals with two new subclasses of analytic and bi-univalent functions defined by Bernoulli polynomial.
In this paper, coefficient estimation and Fekete-Szego problems are solved for these newly defined function subclasses.
In addition, certain remarks are indicated for the subclasses of bi-starlike and bi-convex functions.
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1 Introduction

Let A denote the class of all analytic functions in the open unit disk A = {z € C: |z] < 1}, which are of the form
f(z) :z—&—Zakzk, (z € A). (1.1)
k=2

It is clear that the function f of the form satisfy normalization conditions f(0) = 0 and f/(0) = 1. By S
we show the subclass of A consisting of all functions, which are univalent in A. It is well-known that the familiar
Koebe—i theorem [J] makes sure that the image of A under every function f € S contains a disk with radius %. Thus,
every function f € S has an inverse f ! satisfying

FTHf(2) ==, (z€4)

and
1

FUHw) = w, (o] <ro(f)ro(f) 2 7)-

It is emphasize here that every inverse function f~! need not to be univalent in A. If f and f~! are univalent in
A, then f € S is said to be bi-univalent in A, and the class of all analytic and bi-univalent functions defined in the
unit disk A is donated by ¥. By using series expression of the function f of the form one can see that inverse
function f~! may be expressed as below:

FHw) = w — agw? + (2a3 — az)w® — (5a3 — Sagas + ag)w* + - - - = g(w). (1.2)
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It is known that the functions

z 1 1+2
l = dl =-1
1(2) = 7— and a(z) = 5 log —
are in the function class §. Moreover, the inverses of these functions are, respectively,
2w
_1 W 1 et —1
ll (’U}) = 1 Tw and l2 ('LU) = W

Also, the functions /] ' (w) and I; ' (w) are in the class S. So, these functions are in the function class ¥ and the
function class ¥ is a non-empty set. In addition, the familiar Koebe function k(z) = ﬁ ¢ ¥, since the third

coefficient of the function k~!(z) is —5 and it does not satisfy Bieberbach conjecture.

There are a wide literature on some properties of analytic and bi-univalent functions. In the recent years, numerious
papers have been published on this topic. For the recent developments in this field the interested readers can refer to
the papers [11, 8, 10, 12, 13| 17, 18] 20 2], 22| 23] 24], 25| 26] and references therein.

If the functions f and F' € A, then f is said to be subordinate to F' if there exists a Schwarz function w such that

w(0) =0, |w(z)] <1 and f(z) = F (w(z)) (z € A).

This subordination is shown by
f=<F or f(z)<F(2) (z€A).

If F' is univalent function in A, then this subordination is equivalent to

f(0)=F(0), f(A)CF(A).

There are comprehensive information about the subordination notion in Monographs written by Miller and Mocanu
(see [19]).

In univalent function theory, one of the most attractive problems is known as the Fekete-Szegd problem [111 [14].
This problem is related to coefficients of the functions in the class S and it is expressed below:

-2
|a3—ua§’ <14 2exp (1'[L>, for 0 < p<1.

The fundemental inequality |a3 — ua%| < 1 is obtained as p — 1. The coefficient functional

F;L(f):CLS*Nag

on the normalized analytic functions f in the open unit disk A has a significant impact on univalent function theory.
The Fekete-Szeg6 problem is known as the maximization problem for functional |F),(f)].

Orthogonal polynomials such as Hermite, Laguerre, Jacobi and Bernoulli polynomials are of great importance in
applied sciences. In recent years, mathematicians have built a bridge between geometric function theory and orthogonal
polynomials. In [2| B} [, [6] [7, T9] the authors defined some new subclasses of analytic and univalent functions by using
some orthogonal polynomials and they investigated coefficient estimation and Fekete-Szego problems for the functions
belonging to these function classes. In this paper, we define two new subclasses of analytic and bi-univalent functions
by using Bernoulli polynomial and investigate initial coefficient estimation and Fekete-Szego problems for the functions
belonging to new classes.

Bernoulli polynomials are defined the following generating functions (see [16]):

ze®? . By(z)
Flo,2)=—— = > o 2F 2] < 2m, (1.3)
k=0

where By (x) is the k-th Bernoulli polynomial in variable z.
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2 The Class Y5(, )

In this section we introduce a new function class Y4 (A, §) and investigate initial coefficient bounds estimations and
the Fekete-Szego inequality for this class.

Definition 2.1. Let A > 1,4 > 0 and ¢

> 0. If the function f(z) € ¥ of the form (1.1]) satisfies the following
conditions, then it is called in the class Y4(A, d):

(1= <fiz))u FAf(2) (f(;)y_l +E62f"(2) < ejejzl Pz, 2), (2.1)

03 (L) g (L) vt < 27 Fe ), 22)

where & = gii‘l‘ and the function g is of the form (|1.2]).

Remark 2.2. Taking A =1 and 6 = ¢ = 0 in Definition we obtain the class Y2(1,0) of bi-starlike functions and
it satisfies the following subordinations:

z2f'(2) ze®* s
f(Z) e — 1 _F( ’ )’ (23)
g'(w)  we™ — Pz, w). (2.4)

g(w) ev —1
Theorem 2.3. Suppose that A > 1,4 >0and § > 0. If f € YE(N,0), then

las]| < |B1(2)| v2|B1(2)] 2.5)

B0+ 200+ 1+ 25— Bao)(3+ 267

B} (x) |B1 ()]

las| < . (2.6)
26007 G 200+ )
and for n € R
_ Bi@) 11— 5| < T(z,\ p10)
( +2/\)(1+ 60 )7 77 — ’ ,,U,
Jas —na3| < { B Pl : (2.7)

—p| >
[Br@ (e 14525 - BemOrrzene] 1~ 1 2 T@ A w1, 0)

_ [ BE@) (422 (et 14 555 ) — Ba (2) (A 4+266)°

where T'(x, A, i, ) 282 (2) (1 20) (1+ 157

Proof . Let f(z) € YE(N,0), A > 1,1 >0 and § > 0. By Deﬁnition there are two Schwarz functions p,r : A — A,

p(z) = priz+pe®+ps2® 4o, (2.8)
r(w) = mnw+ row? + raw’ + - - - (2.9)
such that y i
(1-X) (f(;)) +Af(2) (ﬂj)> +&52f"(2) = F(z,p(2)) (2.10)
and
(1—-X) (g(ww)) + Mg (w) <g(ww)> + &dwg” (w) = F(z, r(w)), (2.11)

where z,w € A. It is well-known the definition of Schwarz function that |p;| < 1 and |r;| < 1 for Vi € N. A basic
calculation yields that right hand sides of the equations (2.10) and (2.11)) are, respectively,

By (x) Bs()

) ) P24 (212)

F(z,p(2)) = Bo(z) + [Bi(z)p1]z + [Bi(2)p2 +

P12 + [Bl(x)p?, + By (z)pip2 +
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and

Ba )7’2]11)2 + |:B1(l‘)’l"3 + By(z)rire + Bs(z) rf] w4, (2.13)

F(z,r(w)) = Bo(z) + [Bi(2)r]w + [Bi(z)rs + —5 =71 3l

where By(z) = 1. In addition, left hand sides of the equations (2.10]) and (2.11]) are, respectively,

1-N\) (f(;)y F A (2) <f(;)>#1 FE82f"(2) =

+ (A + p+268)azz + (u +2/\)[ 5 ! 2+( + 2A6frl>a3] 224 (2.14)
and
-1
=N (B2) +ae) (57) st =
1— A+ p+258)asw + (1 +2X) [(;12—&—3_'_ 2){2—:—51> a3 — (1—1—2/\(55;'_1) ag] w? 4 (2.15)

Here, by comparing the coefficients of the equations (2.12]) and ( we obtain

(A+ p+268)az = Bi(z)p (2.16)

-1
(i +2)) [“a§+(1+

5 )ag} = Bi(x)p2 + BZ(x)p%. (2.17)

220 +1 2!

Also, by similar point of view from the equations ([2.13)) and ( we have

—(A+ p+ 268)as = By(x)ry (2.18)
p+3 128 Ba(z)
2\ — S w— =B —=ry. 2.19
(1 + >[ R (14 g a| = By + P (219)
Now, from the equations (2.16)) and -, it follows that
p1 = —T1, (2.20)
2\ + p 4 206)%a2 = B (x)(p? +1r?) (2.21)
and B2 s
a2 = i(z)(p1 + 7"1)2. (2.22)
2\ + 1+ 26€)
Summation of the expressions (2.17)) and (2.19) imply that
126 B
(423 (p+1+ @ = Bi(@)(p2 +r2) + 2 (52 402, (2:23)
22 +1 2
Using equation (2.22)) in (2.23) one can easily see that
B3
a = (2)(p2 +72) (2.24)

B3 (@) (i +2)) (1 1+ 25 ) = Ba(@)(A + p + 26€)*

Since |p;] < 1,|r;] <1 for Vi € N, by using triangle inequality in (2.24) we can write that

las| < [Br(@)l v2151(2)] . (2.25)

\/)32 Y+ 22) (u t14 ;fjl) — Ba(a)(\ + 1 + 20¢€)?
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On the other hand, if we subtract (2.17)) from (2.19)), then we get

gy = a2+ — Dr@)p2 = TQ)(S . (2.26)
20 +23) (1+ )

If we replace (2.22)) in (2.26]), then we can write that

_ Bi(@)(pt +17) By (2)(p2 —12)
©2(A 4 p+ 266)2 2(p 4 2)) <1+ ' 220

65
122 +1 )
Now, using triangle inequality in the last equality we deduce

Bi(z) | B ()]

(A + 1+ 28)2 ‘(u+2k) (1+ mﬂ)‘ (2.28)

las| <

Finally, taking into account the equations (2.24) and (2.26)), we can write that

(1 —=n)B}(x)(p2 +12) By (2)(p2 —12)
BY () (4 20) (1 + 1+ 55507) — Ba(2)(A + 4+ 266)2 (4 4 2)) (1+

2
az —nag =

12?::—1)
(1-n)B}(z) N By (z)
B 20) (4 14 380) — Ba@) Ot i+ 200% 7 904 20) (14 o)

(1 - B (@) B .
B3(@)(i+ 20 ) (n + 1+ 5525) — Ba(2) A+ + 2682 24 1 2)) (1+ 12(;5“)
1 1
=Ba(z) § |t(n) + —— | P2t |t0) - S| 2
2(p +2X) (1 + m) 2(p+27) (1 + m)
for n € R, where t() = 32(z)(u+2/\)(u+(11+_qlff)(232(x)(A+u+26£)2' A straightforward calculation implies here that
1 22+1
2 1 1
|as —na3| < |Bi(z)| 4 |t(n) - — |+ [t + -
2(u+2X) (1+ m) 2(p +2X) (1+ m)
___Bi@)] _
(n+2)) (14857 ) 11— n| <T(x, A, p,0)
G 1=l = T, A 1,6)

| B2 () (u+2)) (u+ 1+ 5325 ) — Ba () A+p+256)2 |
The proof is thus completed. [

Remark 2.4. Taking A =1 and § = ¢ = 0 in Theorem we obtain some bounds for the class Y2 (1,0) of bi-starlike
functions as below:

LAENEIAE)
= B Bl (2.29)
las| < B¥(x) + M (2.30)

and for some n € R

|B1(2)] 11—yl < |2B7 ()= B2 (w)]
9 2 ) 4BQ(I)
az —na;| < 21 By ()1 1nl > |282(2)~ Bs ()| (2.31)
[2B3 (x)—Ba ()]’ 487 (z)
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3 The Class Y5 (¢,7)

In this section we define a new function class Vs (¢,v) and determine some bounds for initial coefficients and the
Fekete-Szego functional.

Definition 3.1. Let v > 0 and ¢ > 0. If the function f(z) € ¥ of the form (1.1) satisfies the following conditions,
then it is called in the class Ys(¢,7):

VoL (SO | e .

(e he ) <& )
1 < wy'(w) +w?g"(w) 1> L we™
7\ (1 = Qu + Cuwg'(w)

where the function g is of the form .

1+

Remark 3.2. Taking ( = v = 1 in Definition we obtain the class Vs (1,1) of bi-convex functions and it satisfies
the following subordinations:

Zf//( ) efEZ _
1+ e ) — = F(z,z), (3.3)
1+ 9" (w ) i F(z,w). (3.4)

Theorem 3.3. Suppose that ( #2,0< (<3, and v > 0. If f € Y»(¢,7), then

0] < 7 |Bi(2)| VB (x)
~ V142 = 11¢ + 9) B (2)y — Ba2(2)2(2 - ¢)?|

: (3.5)

B | i)y
ol < 150 e &9)

and for n € R
72| By (a)] [[(4¢>—11¢+9) B} (x)v* —2Ba2(z) (2—¢)?]]
_ e L=l =< 3252 () (3-0) 57
|as —na3] < 1B @)1 Ll > (46>~ 11649) B2 (2)1°~2Ba (2) (2-0)°) (37)

[[(4¢2—11¢+9) B3 (x)y2—2Ba(z)(2— ()2’ 372 B3 () (3—¢)

Proof . Let ¢ #2,0< ¢ <3, v >0 and f(z) € Y=(¢,v). By Definition there are two Schwarz functions
u,v: A — A,

u(z) = wrz+ug +us®+ ..., (3.8)
v(w) = viw+vew? + vgw? . .. (3.9)
such that

1+1<iW&Hz%Wd

1— Oz + A2 f'(2) - 1> = F(z,u(?)) (3.10)

" g'(w) + w'g(w)
1 + w=g
1—|—< —1):F$7vw , 3.11
3\~ G + Cug ) (et &1
where z,w € A. It is well-known the definition of Schwarz function that |u;| < 1 and |v;| < 1 for Vi € N. A basic
calculation yields that right hand sides of the equations (3.10) and (3.11)) are, respectively,

BQ(QZ‘)
TG

F(z,u(z)) = Bo(z) + [B1(z)w]z + [Bi(z) + [Bl (x)ug + Ba2(x)ugug + Bs(z) uf| 224+ (3.12)

3!
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and

F(z,v(w)) = Bo(z) + [B1(z)v1]w + [Bi(x)vs + B22('x) v w? + | By(2)vs + Bo(x)vivs + B;;('x) Vw4, (3.13)

where By(z) = 1. In addition, left hand sides of the equations (3.10) and (3.11]) are, respectively,

L[ 2f'(z) +22f"(2) > 2(2-¢) 3(3 = Q)as —4¢(2 - ()a3 ,
1—|—< 1) =14+ —" a2z + 254 3.14
\T=0ercr® T 5 (314
and
1 / 2 1 22 — _ 2 2 _ —40(2 — 2
7\ (1= Quw + Cwg'(w) gl gl
Here, by comparing the coefficients of the equations (3.12)) and (3.14)) we obtain
2(2 —
( C) as = B1 (CC)’LLl (316)
and A ) B
3(3 — — 2 —
(3= Qas 5 CR= Qe = By(x)ug + ng)u% (3.17)
Also, by similar point of view from the equations (3.13)) and (3.15)) we have
2(2 —
— ( C) ag = Bl(x)vl (318)
Y
and ) ) B
3(3 —¢)(2a5 — —4¢(2 —
( C)( az (i’;) C( C)a’2 _ Bl(l')l)g + 22("%)”% (319)
Now, from the equations ((3.16) and (3.18)), it follows that
Uy = —01, (320)
8(2 — ¢)%a3 = Bi(z)(uf +v{)y” (3:21)
and BQ( )( 2 2) 2
2 1(z)(ug +vi)y
= .22
as 8(2 _ C)Q (3 )
Summation of the expressions [3.17] and imply that
(8¢2 — 22¢ +18) By(x)4(2 — ()*a3
- ‘a5 =B 3.23
v Qg 1(%)(112 + UQ) + B%(x)’yz ( )
Using equation (3.22)) in (3.23) one can easily see that
BB 2
a2 = 1(2)(us + va)y . (3.24)

2[(4¢2 — 11¢ + 9) By (x)y — Ba2()2(2 - ¢)?]
Since |u;| < 1, |v;] <1 for Vi € N, by using triangle inequality in (3.24)) we can write that

7 |B1(@)| V2] Bi(@)] 0.25)

= AT T 9Bl - B = Ol

On the other hand, if we subtract (3.17) from (3.19)), then we get

2, Bi(@)(uz —va)y

az = a3 + (3.26)
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If we replace (3.22)) in (3.26)), then we can write that

_ Bi(x)(uf +vi)y? + Bi(z)(uz —v2)y
8(2-¢)? 63-¢)

(3.27)

Now, using triangle inequality in the last equality we deduce

B@n? | B
RTINS e ¥ (8.28)

Finally, taking into acount the equations (3.24) and (3.26), we can write that

o (1 =) B} (2)(us + v2)7? | Bi@)(uz — va)y
1% Tl —11C + 9) B2 (w)y — Ba(2)2(2 — ()7 6(3—0)
~ (1—n)B2(x)y 1
=Bile)y { A 10T 9B ) - Ba@2c— 07 T 66— o} v
+ Byl { (1 —n)Bi(x)y 1 }
1073 (4C2 —11¢ + 9)B2(2)y — B2(2)2(2 - ¢)?]  6(3—C)

(1-n)B? (2)y

S[ACT—TICT9) B2 (2)7 = B3 (2)20=0)7] - A straightforward calculation implies here that

for n € R, where k(n) =

lag — a3 < |Bl<x>v{ w(n) + 6(31_0’ + "f(”) - 6(31—0’}

7*|Bi (2)] TS [[(4¢* =11¢+9) B} (2)7* —2Ba(2) (2—¢)?]]

33-0) M= 372 B3 () (3—C) ’

(4¢°—11¢+9) Bf (2)v* —2B2 () (2—¢)°]]
392 B3 (2)(3-C) :

<
- 7?|Bi(2)[*|1—n]

I
—nl >
|[(4¢2—11¢+9) B (z)v2 —2 B2 (z)(2—¢)?] | L=l =

O

Remark 3.4. Taking v = ¢ = 1 in Theorem we obtain some bounds for the class Vs (1, 1) of bi-convex functions
as below:

B1
|as| < (2) 1B (z) : (3.29)
V2|B}(z) — By(z)]
g < 212 11 (3.30)
and
IBléa:)l 1—n| < |Bf ””;2(13; )]
2 ’ 3
a3 = 1a3] <4 5 PRI £ RO (3.31)
2B} (z)—Ba(x)]’ 3B% ()

4 Conclusion

In the present investigation two new subclasses of analytic and bi-univalent functions are introduced by using
Bernoulli polynomial. Also, some coefficient bounds are estimated for certain coefficients of functions belonging to
these subclasses defined. In addition, the Fekete-Szeg6 problem are handled for the mentioned function subclasses.
Finally, a few remarks are indicated for the certain function subclasses which are related to bi-starlike and bi-convex
functions.
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