ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2023.30115.4336

Fekete-Szegö problem for two new subclasses of bi-univalent functions defined by Bernoulli polynomial

Yunus Korkmaz, İbrahim Aktaş*

Karamanoğlu Mehmetbey University, Kamil Özdağ Science Faculty, Department of Mathematics, Karaman, Türkiye

(Communicated by Mugur Alexandru Acu)

Abstract

This investigation deals with two new subclasses of analytic and bi-univalent functions defined by Bernoulli polynomial. In this paper, coefficient estimation and Fekete-Szegö problems are solved for these newly defined function subclasses. In addition, certain remarks are indicated for the subclasses of bi-starlike and bi-convex functions.

Keywords: Bi-univalent function, coefficient estimates, Fekete-Szegő functional, Bernoulli polynomials

2020 MSC: Primary 30C45; Secondary 11B68

1 Introduction

Let A denote the class of all analytic functions in the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, which are of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \qquad (z \in \Delta).$$

$$(1.1)$$

It is clear that the function f of the form (1.1) satisfy normalization conditions f(0) = 0 and f'(0) = 1. By \mathcal{S} we show the subclass of \mathcal{A} consisting of all functions, which are univalent in Δ . It is well-known that the familiar Koebe- $\frac{1}{4}$ theorem [9] makes sure that the image of Δ under every function $f \in \mathcal{S}$ contains a disk with radius $\frac{1}{4}$. Thus, every function $f \in \mathcal{S}$ has an inverse f^{-1} satisfying

$$f^{-1}(f(z)) = z, (z \in \Delta)$$

and

$$f(f^{-1}(w)) = w,$$
 $(|w| < r_0(f), r_0(f) \ge \frac{1}{4}).$

It is emphasize here that every inverse function f^{-1} need not to be univalent in Δ . If f and f^{-1} are univalent in Δ , then $f \in \mathcal{S}$ is said to be bi-univalent in Δ , and the class of all analytic and bi-univalent functions defined in the unit disk Δ is donated by Σ . By using series expression of the function f of the form (1.1) one can see that inverse function f^{-1} may be expressed as below:

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4 + \dots = g(w).$$
(1.2)

 $Email\ addresses:\ \mathtt{yunuskorkmaz581@gmail.com}\ (\mathrm{Yunus\ Korkmaz}),\ \mathtt{aktasibrahim38@gmail.com}\ (\mathrm{\ddot{I}brahim\ Aktas})$

Received: March 2023 Accepted: October 2023

^{*}Corresponding author

It is known that the functions

$$l_1(z) = \frac{z}{1-z}$$
 and $l_2(z) = \frac{1}{2} \log \frac{1+z}{1-z}$

are in the function class \mathcal{S} . Moreover, the inverses of these functions are, respectively,

$$l_1^{-1}(w) = \frac{w}{1+w}$$
 and $l_2^{-1}(w) = \frac{e^{2w}-1}{e^{2w}+1}$.

Also, the functions $l_1^{-1}(w)$ and $l_2^{-1}(w)$ are in the class S. So, these functions are in the function class Σ and the function class Σ is a non-empty set. In addition, the familiar Koebe function $k(z) = \frac{z}{(1-z)^2} \notin \Sigma$, since the third coefficient of the function $k^{-1}(z)$ is -5 and it does not satisfy Bieberbach conjecture.

There are a wide literature on some properties of analytic and bi-univalent functions. In the recent years, numerious papers have been published on this topic. For the recent developments in this field the interested readers can refer to the papers [1, 8, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26] and references therein.

If the functions f and $F \in \mathcal{A}$, then f is said to be subordinate to F if there exists a Schwarz function w such that

$$w(0)=0, |w(z)|<1 \text{ and } f(z)=F\left(w(z)\right) \qquad \quad (z\in\Delta).$$

This subordination is shown by

$$f \prec F$$
 or $f(z) \prec F(z)$ $(z \in \Delta)$.

If F is univalent function in Δ , then this subordination is equivalent to

$$f(0) = F(0), \quad f(\Delta) \subset F(\Delta).$$

There are comprehensive information about the subordination notion in Monographs written by Miller and Mocanu (see [15]).

In univalent function theory, one of the most attractive problems is known as the Fekete-Szegö problem [11, 14]. This problem is related to coefficients of the functions in the class S and it is expressed below:

$$\left| a_3 - \mu a_2^2 \right| \le 1 + 2 \exp\left(\frac{-2\mu}{1-\mu}\right), \text{ for } 0 \le \mu < 1.$$

The fundamental inequality $|a_3 - \mu a_2^2| \le 1$ is obtained as $\mu \to 1$. The coefficient functional

$$F_{\mu}(f) = a_3 - \mu a_2^2$$

on the normalized analytic functions f in the open unit disk Δ has a significant impact on univalent function theory. The Fekete-Szegö problem is known as the maximization problem for functional $|F_{\mu}(f)|$.

Orthogonal polynomials such as Hermite, Laguerre, Jacobi and Bernoulli polynomials are of great importance in applied sciences. In recent years, mathematicians have built a bridge between geometric function theory and orthogonal polynomials. In [2, 3, 4, 6, 7, 19] the authors defined some new subclasses of analytic and univalent functions by using some orthogonal polynomials and they investigated coefficient estimation and Fekete-Szegö problems for the functions belonging to these function classes. In this paper, we define two new subclasses of analytic and bi-univalent functions by using Bernoulli polynomial and investigate initial coefficient estimation and Fekete-Szegö problems for the functions belonging to new classes.

Bernoulli polynomials are defined the following generating functions (see [16]):

$$F(x,z) = \frac{ze^{xz}}{e^z - 1} = \sum_{k=0}^{\infty} \frac{B_k(x)}{k!} z^k, \quad |z| < 2\pi,$$
(1.3)

where $B_k(x)$ is the k-th Bernoulli polynomial in variable x.

2 The Class $\mathcal{Y}^{\mu}_{\Sigma}(\lambda, \delta)$

In this section we introduce a new function class $\mathcal{Y}^{\mu}_{\Sigma}(\lambda, \delta)$ and investigate initial coefficient bounds estimations and the Fekete-Szegö inequality for this class.

Definition 2.1. Let $\lambda \geq 1, \mu \geq 0$ and $\delta \geq 0$. If the function $f(z) \in \Sigma$ of the form (1.1) satisfies the following conditions, then it is called in the class $\mathcal{Y}^{\mu}_{\Sigma}(\lambda, \delta)$:

$$(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu} + \lambda f'(z)\left(\frac{f(z)}{z}\right)^{\mu-1} + \xi \delta z f''(z) \prec \frac{ze^{xz}}{e^z - 1} = F(x, z), \tag{2.1}$$

$$(1 - \lambda) \left(\frac{g(w)}{w}\right)^{\mu} + \lambda g'(w) \left(\frac{g(w)}{w}\right)^{\mu - 1} + \xi \delta w g''(w) \prec \frac{w e^{xw}}{e^w - 1} = F(x, w), \tag{2.2}$$

where $\xi = \frac{2\lambda + \mu}{2\lambda + 1}$ and the function g is of the form (1.2).

Remark 2.2. Taking $\lambda = 1$ and $\delta = \mu = 0$ in Definition 2.1 we obtain the class $\mathcal{Y}^0_{\Sigma}(1,0)$ of bi-starlike functions and it satisfies the following subordinations:

$$\frac{zf'(z)}{f(z)} \prec \frac{ze^{xz}}{e^z - 1} = F(x, z), \tag{2.3}$$

$$\frac{wg'(w)}{g(w)} \prec \frac{we^{xw}}{e^w - 1} = F(x, w).$$
 (2.4)

Theorem 2.3. Suppose that $\lambda \geq 1, \mu \geq 0$ and $\delta \geq 0$. If $f \in \mathcal{Y}^{\mu}_{\Sigma}(\lambda, \delta)$, then

$$|a_2| \le \frac{|B_1(x)|\sqrt{2|B_1(x)|}}{\sqrt{\left|B_1^2(x)(\mu+2\lambda)(\mu+1+\frac{12\delta}{2\lambda+1}) - B_2(x)(\lambda+\mu+2\xi\delta)^2\right|}},$$
(2.5)

$$|a_3| \le \frac{B_1^2(x)}{(\lambda + \mu + 2\xi\delta)^2} + \frac{|B_1(x)|}{\left|(\mu + 2\lambda)(1 + \frac{6\delta}{12\lambda + 1})\right|}$$
(2.6)

and for $\eta \in \mathbb{R}$

$$\left| a_3 - \eta a_2^2 \right| \le \begin{cases} \frac{|B_1(x)|}{(\mu + 2\lambda)(1 + \frac{6\delta}{12\lambda + 1})}, & |1 - \eta| \le T(x, \lambda, \mu, \delta) \\ \frac{2|B_1(x)|^3 |1 - \eta|}{|B_1^2(x)(\mu + 2\lambda)(\mu + 1 + \frac{12\delta}{2\lambda + 1}) - B_2(x)(\lambda + \mu + 2\xi\delta)^2|}, |1 - \eta| \ge T(x, \lambda, \mu, \delta) \end{cases}, \tag{2.7}$$

where $T(x, \lambda, \mu, \delta) = \frac{\left|B_1^2(x)(\mu + 2\lambda)(\mu + 1 + \frac{12\delta}{2\lambda + 1}) - B_2(x)(\lambda + \mu + 2\xi\delta)^2\right|}{2B_1^2(x)(\mu + 2\lambda)(1 + \frac{6\delta}{12\lambda + 1})}$.

Proof . Let $f(z) \in \mathcal{Y}^{\mu}_{\Sigma}(\lambda, \delta), \lambda \geq 1, \mu \geq 0$ and $\delta \geq 0$. By Definition 2.1, there are two Schwarz functions $p, r: \Delta \to \Delta$,

$$p(z) = p_1 z + p_2 z^2 + p_3 z^3 + \cdots, (2.8)$$

$$r(w) = r_1 w + r_2 w^2 + r_3 w^3 + \cdots (2.9)$$

such that

$$(1 - \lambda) \left(\frac{f(z)}{z}\right)^{\mu} + \lambda f'(z) \left(\frac{f(z)}{z}\right)^{\mu - 1} + \xi \delta z f''(z) = F(x, p(z))$$
 (2.10)

and

$$(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu} + \lambda g'(w)\left(\frac{g(w)}{w}\right)^{\mu-1} + \xi \delta w g''(w) = F(x, r(w)), \tag{2.11}$$

where $z, w \in \Delta$. It is well-known the definition of Schwarz function that $|p_i| \leq 1$ and $|r_i| \leq 1$ for $\forall i \in \mathbb{N}$. A basic calculation yields that right hand sides of the equations (2.10) and (2.11) are, respectively,

$$F(x,p(z)) = B_0(x) + [B_1(x)p_1]z + [B_1(x)p_2 + \frac{B_2(x)}{2!}p_1^2]z^2 + \left[B_1(x)p_3 + B_2(x)p_1p_2 + \frac{B_3(x)}{3!}p_1^3\right]z^3 + \cdots$$
 (2.12)

and

$$F(x,r(w)) = B_0(x) + \left[B_1(x)r_1\right]w + \left[B_1(x)r_2 + \frac{B_2(x)}{2!}r_1^2\right]w^2 + \left[B_1(x)r_3 + B_2(x)r_1r_2 + \frac{B_3(x)}{3!}r_1^3\right]w^3 + \cdots, (2.13)$$

where $B_0(x) = 1$. In addition, left hand sides of the equations (2.10) and (2.11) are, respectively,

$$(1 - \lambda) \left(\frac{f(z)}{z}\right)^{\mu} + \lambda f'(z) \left(\frac{f(z)}{z}\right)^{\mu - 1} + \xi \delta z f''(z) = 1 + (\lambda + \mu + 2\delta \xi) a_2 z + (\mu + 2\lambda) \left[\frac{\mu - 1}{2} a_2^2 + \left(1 + \frac{6\delta}{2\lambda + 1}\right) a_3\right] z^2 + \cdots$$
(2.14)

and

$$(1 - \lambda) \left(\frac{g(w)}{w}\right)^{\mu} + \lambda g'(w) \left(\frac{g(w)}{w}\right)^{\mu - 1} + \xi \delta w g''(w) = 1 - (\lambda + \mu + 2\delta \xi) a_2 w + (\mu + 2\lambda) \left[\left(\frac{\mu + 3}{2} + \frac{12\delta}{2\lambda + 1}\right) a_2^2 - \left(1 + \frac{6\delta}{2\lambda + 1}\right) a_3\right] w^2 + \cdots$$
(2.15)

Here, by comparing the coefficients of the equations (2.12) and (2.14) we obtain

$$(\lambda + \mu + 2\delta\xi)a_2 = B_1(x)p_1 \tag{2.16}$$

$$(\mu + 2\lambda) \left[\frac{\mu - 1}{2} a_2^2 + \left(1 + \frac{6\delta}{2\lambda + 1}\right) a_3 \right] = B_1(x) p_2 + \frac{B_2(x)}{2!} p_1^2.$$
 (2.17)

Also, by similar point of view from the equations (2.13) and (2.15) we have

$$-(\lambda + \mu + 2\delta\xi)a_2 = B_1(x)r_1 \tag{2.18}$$

$$(\mu + 2\lambda) \left[\frac{\mu + 3}{2} + \frac{12\delta}{2\lambda + 1} a_2^2 - (1 + \frac{6\delta}{2\lambda + 1}) a_3 \right] = B_1(x) r_2 + \frac{B_2(x)}{2!} r_1^2.$$
 (2.19)

Now, from the equations (2.16) and (2.18), it follows that

$$p_1 = -r_1, (2.20)$$

$$2(\lambda + \mu + 2\delta\xi)^2 a_2^2 = B_1^2(x)(p_1^2 + r_1^2)$$
(2.21)

and

$$a_2^2 = \frac{B_1^2(x)(p_1^2 + r_1^2)}{2(\lambda + \mu + 2\delta\xi)^2}. (2.22)$$

Summation of the expressions (2.17) and (2.19) imply that

$$(\mu + 2\lambda) \left(\mu + 1 + \frac{12\delta}{2\lambda + 1}\right) a_2^2 = B_1(x)(p_2 + r_2) + \frac{B_2(x)}{2}(p_1^2 + r_1^2). \tag{2.23}$$

Using equation (2.22) in (2.23) one can easily see that

$$a_2^2 = \frac{B_1^3(x)(p_2 + r_2)}{B_1^2(x)(\mu + 2\lambda)\left(\mu + 1 + \frac{12\delta}{2\lambda + 1}\right) - B_2(x)(\lambda + \mu + 2\delta\xi)^2}.$$
 (2.24)

Since $|p_i| \le 1, |r_i| \le 1$ for $\forall i \in \mathbb{N}$, by using triangle inequality in (2.24) we can write that

$$|a_2| \le \frac{|B_1(x)|\sqrt{2|B_1(x)|}}{\sqrt{\left|B_1^2(x)(\mu+2\lambda)\left(\mu+1+\frac{12\delta}{2\lambda+1}\right) - B_2(x)(\lambda+\mu+2\delta\xi)^2\right|}}.$$
(2.25)

On the other hand, if we subtract (2.17) from (2.19), then we get

$$a_3 = a_2^2 + \frac{B_1(x)(p_2 - r_2)}{2(\mu + 2\lambda)\left(1 + \frac{6\delta}{12\lambda + 1}\right)}.$$
(2.26)

If we replace (2.22) in (2.26), then we can write that

$$a_3 = \frac{B_1^2(x)(p_1^2 + r_1^2)}{2(\lambda + \mu + 2\delta\xi)^2} + \frac{B_1(x)(p_2 - r_2)}{2(\mu + 2\lambda)\left(1 + \frac{6\delta}{12\lambda + 1}\right)}.$$
 (2.27)

Now, using triangle inequality in the last equality we deduce

$$|a_3| \le \frac{B_1^2(x)}{(\lambda + \mu + 2\delta\xi)^2} + \frac{|B_1(x)|}{\left|(\mu + 2\lambda)\left(1 + \frac{6\delta}{12\lambda + 1}\right)\right|}$$
(2.28)

Finally, taking into account the equations (2.24) and (2.26), we can write that

$$\begin{split} a_3 - \eta a_2^2 &= \frac{(1 - \eta) B_1^3(x) (p_2 + r_2)}{B_1^2(x) (\mu + 2\lambda) (\mu + 1 + \frac{12\delta}{2\lambda + 1}) - B_2(x) (\lambda + \mu + 2\delta \xi)^2} + \frac{B_1(x) (p_2 - r_2)}{2(\mu + 2\lambda) \left(1 + \frac{6\delta}{12\lambda + 1}\right)} \\ &= \left[\frac{(1 - \eta) B_1^3(x)}{B_1^2(x) (\mu + 2\lambda) (\mu + 1 + \frac{12\delta}{2\lambda + 1}) - B_2(x) (\lambda + \mu + 2\delta \xi)^2} + \frac{B_1(x)}{2(\mu + 2\lambda) \left(1 + \frac{6\delta}{12\lambda + 1}\right)} \right] p_2 \\ &+ \left[\frac{(1 - \eta) B_1^3(x)}{B_1^2(x) (\mu + 2\lambda) (\mu + 1 + \frac{12\delta}{2\lambda + 1}) - B_2(x) (\lambda + \mu + 2\delta \xi)^2} - \frac{B_1(x)}{2(\mu + 2\lambda) \left(1 + \frac{6\delta}{12\lambda + 1}\right)} \right] r_2 \\ &= B_1(x) \left\{ \left[t(\eta) + \frac{1}{2(\mu + 2\lambda) \left(1 + \frac{6\delta}{12\lambda + 1}\right)} \right] p_2 + \left[t(\eta) - \frac{1}{2(\mu + 2\lambda) \left(1 + \frac{6\delta}{12\lambda + 1}\right)} \right] r_2 \right\} \end{split}$$

for $\eta \in \mathbb{R}$, where $t(\eta) = \frac{(1-\eta)B_1^2(x)}{B_1^2(x)(\mu+2\lambda)(\mu+1+\frac{12\delta}{2\lambda+1})-B_2(x)(\lambda+\mu+2\delta\xi)^2}$. A straightforward calculation implies here that

$$\begin{aligned} \left| a_3 - \eta a_2^2 \right| &\leq |B_1(x)| \left\{ \left| t(\eta) - \frac{1}{2(\mu + 2\lambda) \left(1 + \frac{6\delta}{12\lambda + 1} \right)} \right| + \left| t(\eta) + \frac{1}{2(\mu + 2\lambda) \left(1 + \frac{6\delta}{12\lambda + 1} \right)} \right| \right\} \\ &= \left\{ \frac{\frac{|B_1(x)|}{(\mu + 2\lambda) \left(1 + \frac{6\delta}{12\lambda + 1} \right)}, \quad |1 - \eta| \leq T(x, \lambda, \mu, \delta)}{\frac{2|B_1(x)|^3 |1 - \eta|}{|B_1^2(x) (\mu + 2\lambda) (\mu + 1 + \frac{12\delta}{2\lambda + 1}) - B_2(x) (\lambda + \mu + 2\delta\xi)^2} \right|, \quad |1 - \eta| \geq T(x, \lambda, \mu, \delta) \end{aligned} \right. .$$

The proof is thus completed. \square

Remark 2.4. Taking $\lambda = 1$ and $\delta = \mu = 0$ in Theorem 2.3 we obtain some bounds for the class $\mathcal{Y}^0_{\Sigma}(1,0)$ of bi-starlike functions as below:

$$|a_2| \le \frac{B_1(x)\sqrt{2|B_1(x)|}}{\sqrt{|2B_1^2(x) - B_2(x)|}},$$
 (2.29)

$$|a_3| \le B_1^2(x) + \frac{|B_1(x)|}{2} \tag{2.30}$$

and for some $\eta \in \mathbb{R}$

$$\left| a_3 - \eta a_2^2 \right| \le \begin{cases} \frac{|B_1(x)|}{2}, & |1 - \eta| \le \frac{\left| 2B_1^2(x) - B_2(x) \right|}{4B_1^2(x)} \\ \frac{2|B_1(x)|^3|1 - \eta|}{\left| 2B_1^2(x) - B_2(x) \right|}, & |1 - \eta| \ge \frac{\left| 2B_1^2(x) - B_2(x) \right|}{4B_1^2(x)}. \end{cases}$$

$$(2.31)$$

3 The Class $\mathcal{Y}_{\Sigma}(\zeta, \gamma)$

In this section we define a new function class $\mathcal{Y}_{\Sigma}(\zeta, \gamma)$ and determine some bounds for initial coefficients and the Fekete-Szegö functional.

Definition 3.1. Let $\gamma > 0$ and $\zeta > 0$. If the function $f(z) \in \Sigma$ of the form (1.1) satisfies the following conditions, then it is called in the class $\mathcal{Y}_{\Sigma}(\zeta, \gamma)$:

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2 f''(z)}{(1 - \zeta)z + \zeta z f'(z)} - 1 \right) \prec \frac{ze^{xz}}{e^z - 1}, \tag{3.1}$$

$$1 + \frac{1}{\gamma} \left(\frac{wg'(w) + w^2 g''(w)}{(1 - \zeta)w + \zeta wg'(w)} - 1 \right) \prec \frac{we^{xw}}{e^w - 1}, \tag{3.2}$$

where the function g is of the form (1.2).

Remark 3.2. Taking $\zeta = \gamma = 1$ in Definition 3.1 we obtain the class $\mathcal{Y}_{\Sigma}(1,1)$ of bi-convex functions and it satisfies the following subordinations:

$$1 + \frac{zf''(z)}{f'(z)} \prec \frac{ze^{xz}}{e^z - 1} = F(x, z), \tag{3.3}$$

$$1 + \frac{wg''(w)}{g'(w)} \prec \frac{we^{xw}}{e^w - 1} = F(x, w). \tag{3.4}$$

Theorem 3.3. Suppose that $\zeta \neq 2$, $0 \leq \zeta < 3$, and $\gamma > 0$. If $f \in \mathcal{Y}_{\Sigma}(\zeta, \gamma)$, then

$$|a_2| \le \frac{\gamma |B_1(x)| \sqrt{|B_1(x)|}}{\sqrt{|(4\zeta^2 - 11\zeta + 9)B_1^2(x)\gamma - B_2(x)2(2 - \zeta)^2|}},\tag{3.5}$$

$$|a_3| \le \frac{B_1^2(x)\gamma^2}{4(2-\zeta)^2} + \frac{|B_1(x)|\gamma}{|3(3-\zeta)|}$$
(3.6)

and for $\eta \in \mathbb{R}$

$$|a_{3} - \eta a_{2}^{2}| \leq \begin{cases} \frac{\gamma^{2}|B_{1}(x)|}{3(3-\zeta)}, & |1 - \eta| \leq \frac{\left| [(4\zeta^{2} - 11\zeta + 9)B_{1}^{2}(x)\gamma^{2} - 2B_{2}(x)(2-\zeta)^{2}] \right|}{3\gamma^{2}B_{1}^{2}(x)(3-\zeta)} \\ \frac{\gamma^{2}|B_{1}(x)|^{3}|1 - \eta|}{\left| [(4\zeta^{2} - 11\zeta + 9)B_{1}^{2}(x)\gamma^{2} - 2B_{2}(x)(2-\zeta)^{2}] \right|}, |1 - \eta| \geq \frac{\left| [(4\zeta^{2} - 11\zeta + 9)B_{1}^{2}(x)\gamma^{2} - 2B_{2}(x)(2-\zeta)^{2}] \right|}{3\gamma^{2}B_{1}^{2}(x)(3-\zeta)} \end{cases}$$
(3.7)

Proof. Let $\zeta \neq 2$, $0 \leq \zeta < 3$, $\gamma > 0$ and $f(z) \in \mathcal{Y}_{\Sigma}(\zeta, \gamma)$. By Definition 3.1, there are two Schwarz functions $u, v : \Delta \to \Delta$,

$$u(z) = u_1 z + u_2 z^2 + u_3 z^3 + \dots, (3.8)$$

$$v(w) = v_1 w + v_2 w^2 + v_3 w^3 \dots ag{3.9}$$

such that

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2 f''(z)}{(1 - \zeta)z + \lambda z f'(z)} - 1 \right) = F(x, u(z))$$
(3.10)

and

$$1 + \frac{1}{\gamma} \left(\frac{wg'(w) + w^2 g''(w)}{(1 - \zeta)w + \zeta wg'(w)} - 1 \right) = F(x, v(w)), \tag{3.11}$$

where $z, w \in \Delta$. It is well-known the definition of Schwarz function that $|u_i| \leq 1$ and $|v_i| \leq 1$ for $\forall i \in \mathbb{N}$. A basic calculation yields that right hand sides of the equations (3.10) and (3.11) are, respectively,

$$F(x, u(z)) = B_0(x) + [B_1(x)u_1]z + [B_1(x)u_2 + \frac{B_2(x)}{2!}u_1^2]z^2 + \left[B_1(x)u_3 + B_2(x)u_1u_2 + \frac{B_3(x)}{3!}u_1^3\right]z^3 + \cdots$$
 (3.12)

and

$$F(x,v(w)) = B_0(x) + \left[B_1(x)v_1\right]w + \left[B_1(x)v_2 + \frac{B_2(x)}{2!}v_1^2\right]w^2 + \left[B_1(x)v_3 + B_2(x)v_1v_2 + \frac{B_3(x)}{3!}v_1^3\right]w^3 + \cdots, \quad (3.13)$$

where $B_0(x) = 1$. In addition, left hand sides of the equations (3.10) and (3.11) are, respectively,

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2 f''(z)}{(1 - \zeta)z + \zeta z f'(z)} - 1 \right) = 1 + \frac{2(2 - \zeta)}{\gamma} a_2 z + \frac{3(3 - \zeta)a_3 - 4\zeta(2 - \zeta)a_2^2}{\gamma} z^2 + \dots$$
 (3.14)

and

$$1 + \frac{1}{\gamma} \left(\frac{wg'(w) + w^2g''(w)}{(1 - \zeta)w + \zeta wg'(w)} - 1 \right) = 1 - \frac{2(2 - \zeta)}{\gamma} a_2 w + \frac{3(3 - \zeta)(2a_2^2 - a_3) - 4\zeta(2 - \zeta)a_2^2}{\gamma} w^2 + \cdots$$
 (3.15)

Here, by comparing the coefficients of the equations (3.12) and (3.14) we obtain

$$\frac{2(2-\zeta)}{\gamma}a_2 = B_1(x)u_1 \tag{3.16}$$

and

$$\frac{3(3-\zeta)a_3 - 4\zeta(2-\zeta)a_2^2}{\gamma} = B_1(x)u_2 + \frac{B_2(x)}{2!}u_1^2.$$
(3.17)

Also, by similar point of view from the equations (3.13) and (3.15) we have

$$-\frac{2(2-\zeta)}{\gamma}a_2 = B_1(x)v_1 \tag{3.18}$$

and

$$\frac{3(3-\zeta)(2a_2^2-a_3)-4\zeta(2-\zeta)a_2^2}{\gamma} = B_1(x)v_2 + \frac{B_2(x)}{2!}v_1^2.$$
(3.19)

Now, from the equations (3.16) and (3.18), it follows that

$$u_1 = -v_1, (3.20)$$

$$8(2-\zeta)^2 a_2^2 = B_1^2(x)(u_1^2 + v_1^2)\gamma^2$$
(3.21)

and

$$a_2^2 = \frac{B_1^2(x)(u_1^2 + v_1^2)\gamma^2}{8(2-\zeta)^2}. (3.22)$$

Summation of the expressions 3.17 and 3.19 imply that

$$\frac{(8\zeta^2 - 22\zeta + 18)}{\gamma}a_2^2 = B_1(x)(u_2 + v_2) + \frac{B_2(x)4(2 - \zeta)^2 a_2^2}{B_1^2(x)\gamma^2}.$$
(3.23)

Using equation (3.22) in (3.23) one can easily see that

$$a_2^2 = \frac{B_1^3(x)(u_2 + v_2)\gamma^2}{2[(4\zeta^2 - 11\zeta + 9)B_1^2(x)\gamma - B_2(x)2(2 - \zeta)^2]}.$$
(3.24)

Since $|u_i| \le 1, |v_i| \le 1$ for $\forall i \in \mathbb{N}$, by using triangle inequality in (3.24) we can write that

$$|a_2| \le \frac{\gamma |B_1(x)| \sqrt{2 |B_1(x)|}}{\sqrt{2 |(4\zeta^2 - 11\zeta + 9)B_1^2(x)\gamma - B_2(x)2(2 - \zeta)^2|}}.$$
(3.25)

On the other hand, if we subtract (3.17) from (3.19), then we get

$$a_3 = a_2^2 + \frac{B_1(x)(u_2 - v_2)\gamma}{6(3 - \zeta)}. (3.26)$$

If we replace (3.22) in (3.26), then we can write that

$$a_3 = \frac{B_1^2(x)(u_1^2 + v_1^2)\gamma^2}{8(2 - \zeta)^2} + \frac{B_1(x)(u_2 - v_2)\gamma}{6(3 - \zeta)}.$$
(3.27)

Now, using triangle inequality in the last equality we deduce

$$|a_3| \le \frac{B_1^2(x)\gamma^2}{4(2-\zeta)^2} + \frac{|B_1(x)|\gamma}{|3(3-\zeta)|}. (3.28)$$

Finally, taking into acount the equations (3.24) and (3.26), we can write that

$$a_{3} - \eta a_{2}^{2} = \frac{(1 - \eta)B_{1}^{3}(x)(u_{2} + v_{2})\gamma^{2}}{2[(4\zeta^{2} - 11\zeta + 9)B_{1}^{2}(x)\gamma - B_{2}(x)2(2 - \zeta)^{2}]} + \frac{B_{1}(x)(u_{2} - v_{2})\gamma}{6(3 - \zeta)}$$

$$= B_{1}(x)\gamma \left[\frac{(1 - \eta)B_{1}^{2}(x)\gamma}{2[(4\zeta^{2} - 11\zeta + 9)B_{1}^{2}(x)\gamma - B_{2}(x)2(2 - \zeta)^{2}]} + \frac{1}{6(3 - \zeta)} \right] u_{2}$$

$$+ B_{1}(x)\gamma \left[\frac{(1 - \eta)B_{1}^{2}(x)\gamma}{2[(4\zeta^{2} - 11\zeta + 9)B_{1}^{2}(x)\gamma - B_{2}(x)2(2 - \zeta)^{2}]} - \frac{1}{6(3 - \zeta)} \right] v_{2}$$

$$= B_{1}(x)\gamma \left\{ \left[\kappa(\eta) + \frac{1}{6(3 - \zeta)} \right] u_{2} + \left[\kappa(\eta) - \frac{1}{6(3 - \zeta)} \right] v_{2} \right\}$$

for $\eta \in \mathbb{R}$, where $\kappa(\eta) = \frac{(1-\eta)B_1^2(x)\gamma}{2[(4\zeta^2-11\zeta+9)B_1^2(x)\gamma-B_2(x)2(2-\zeta)^2]}$. A straightforward calculation implies here that

$$\begin{aligned} \left| a_3 - \eta a_2^2 \right| &\leq \left| B_1(x) \right| \gamma \left\{ \left| \kappa(\eta) + \frac{1}{6(3-\zeta)} \right| + \left| \kappa(\eta) - \frac{1}{6(3-\zeta)} \right| \right\} \\ &\leq \begin{cases} \frac{\gamma^2 |B_1(x)|}{3(3-\zeta)}, & |1 - \eta| \leq \frac{\left| \left[(4\zeta^2 - 11\zeta + 9)B_1^2(x)\gamma^2 - 2B_2(x)(2-\zeta)^2 \right] \right|}{3\gamma^2 B_1^2(x)(3-\zeta)}, \\ \frac{\gamma^2 |B_1(x)|^3 |1 - \eta|}{\left| \left[(4\zeta^2 - 11\zeta + 9)B_1^2(x)\gamma^2 - 2B_2(x)(2-\zeta)^2 \right] \right|}, |1 - \eta| \geq \frac{\left| \left[(4\zeta^2 - 11\zeta + 9)B_1^2(x)\gamma^2 - 2B_2(x)(2-\zeta)^2 \right] \right|}{3\gamma^2 B_1^2(x)(3-\zeta)}. \end{cases} \end{aligned}$$

Remark 3.4. Taking $\gamma = \zeta = 1$ in Theorem 3.3 we obtain some bounds for the class $\mathcal{Y}_{\Sigma}(1,1)$ of bi-convex functions as below:

$$|a_2| \le \frac{B_1(x)\sqrt{|B_1(x)|}}{\sqrt{2|B_1^2(x) - B_2(x)|}},\tag{3.29}$$

$$|a_3| \le \frac{B_1^2(x)}{4} + \frac{|B_1(x)|}{6} \tag{3.30}$$

and

$$\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases} \frac{\left|B_{1}(x)\right|}{6}, & \left|1-\eta\right| \leq \frac{\left|B_{1}^{2}(x)-B_{2}(x)\right|}{3B_{1}^{2}(x)} \\ \frac{\left|B_{1}(x)\right|^{3}\left|1-\eta\right|}{2\left|B_{1}^{2}(x)-B_{2}(x)\right|}, & \left|1-\eta\right| \geq \frac{\left|B_{1}^{2}(x)-B_{2}(x)\right|}{3B_{1}^{2}(x)} \end{cases}$$

$$(3.31)$$

4 Conclusion

In the present investigation two new subclasses of analytic and bi-univalent functions are introduced by using Bernoulli polynomial. Also, some coefficient bounds are estimated for certain coefficients of functions belonging to these subclasses defined. In addition, the Fekete-Szegö problem are handled for the mentioned function subclasses. Finally, a few remarks are indicated for the certain function subclasses which are related to bi-starlike and bi-convex functions.

References

- [1] İ. Aktaş and N. Yılmaz, Initial coefficients estimate and Fekete-Szegö problems for two new subclasses of biunivalent functions, Konuralp J. Math. 10 (2022), no. 1, 138–148.
- [2] T. Al- Hawary, A. Amourah, and B.A. Frasin, Fekete-Szegö inequality for bi-univalent functions by means of Horadam polynomials, Bol. Soc. Mat. Mex. 27 (2021), 1–12.
- [3] A. Amourah, B.A. Frasin, and T. Abdeljawad, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials, J. Funct. Spaces **2021** (2021), 5574673.
- [4] A. Amourah, B.A. Frasin, M. Ahmad, and F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry 14 (2022), no 1, 147
- [5] D.A. Brannan and T.S. Taha On some classes of bi-univalent function, Stud.Univ. Babeş-Bolyai Math. 31 (1986), 70–77.
- [6] M. Buyankara and M. Çağlar, On Fekete-Szegö problem for a new subclass of bi-univalent functions defined by Bernoulli polynomials, Acta Univ. Apulensis Math. Inform. 71 (2022) 137–145.
- [7] M. Buyankara, M. Çağlar and LI. Cotîrlă, New subclasses of bi-univalent functions with respect to the symmetric points defined by Bernoulli polynomials, Axioms 11 (2022), 652.
- [8] L.I. Cotîrlă, New classes of analytic and bi-univalent functions, AIMS Math. 6 (2021), 10642–10651.
- [9] P.L. Duren, Univalent Functions, Springer Science and Business Media, 2001.
- [10] J. Dziok, A general solution of the Fekete-Szegö problem, Bound. Value Probl. 2013 (2013), no. 1, 1–13.
- [11] M. Fekete and G. Szegö Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc. 1 (1933), no. 2, 85–89.
- [12] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573.
- [13] H.Ö. Güney, G. Murugusundaramoorthy, and J. Sokoł, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae Math. 10 (2018), no. 1, 70–84.
- [14] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
- [15] S.S. Miller and P.T. Mocanu, *Differential Subordinations*, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, 2000.
- [16] P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. 2003 (2003), no 3, 155–163.
- [17] H. Orhan, İ. Aktaş, and H. Arıkan, On new subclasses of bi-univalent functions associated with the (p,q)-Lucas polynomials and bi-Bazilevič type functions of order $\rho + \xi$, Turk. J. Math. 47 (2023), no. 1, 98–109.
- [18] GI. Oros and LI. Cotîrlă, Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions, Mathematics 10 (2022), 129.
- [19] H.M. Srivastava, Ş. Altınkaya, and S. Yalçın, Certain Subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 1873–1879.
- [20] H.M. Srivastava, S. Gaboury, and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2017), 693–706.
- [21] H.M. Srivastava, A.K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.
- [22] H.M. Srivastava, G. Murugusundaramoorthy, and K. Vijaya, Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal. 2 (2013), no. 2, 167–181.
- [23] A.K. Wanas and L.I. Cotîrlă, Initial coefficient estimates and Fekete-Szegö inequalities for new families of biunivalent functions governed by (p-q) Wanas operator, Symmetry 13 (2021), no. 11, 2118.
- [24] A.K. Wanas and L.I. Cotîrlă, New applications of Gegenbauer polynomials on a new family of bi-Bazilevič functions

- $governed\ by\ the\ q\text{-}Srivastava\text{-}Attiya\ Operator,\ Mathematics\ 10\ (2022),\ no.\ 8,\ 1309.$
- [25] N. Yılmaz and İ. Aktaş, On some new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci polynomial, Afr. Mat. 33 (2022), no. 2, 59.

[26] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 1, 169–178.