
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,723 |
تعداد دریافت فایل اصل مقاله | 7,656,153 |
Existence of multiple solutions for nonlinear fractional Schrödinger-Poisson system involving new fractional operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 5، دوره 15، شماره 11، بهمن 2024، صفحه 83-92 اصل مقاله (418.63 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.28823.3999 | ||
نویسندگان | ||
Hamza Boutebba* ؛ Hakim Lakhal؛ Kamel Slimani | ||
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS), Department of Mathematics, University of 20 August 1955, P.O. Box 26-21000, Skikda, Algeria | ||
تاریخ دریافت: 04 آبان 1401، تاریخ بازنگری: 06 آبان 1402، تاریخ پذیرش: 09 آبان 1402 | ||
چکیده | ||
In this paper, we prove the existence of multiple solutions in the Bessel Potential space for a new class of nonlinear fractional Schrödinger-Poisson systems involving the distributional Riesz fractional derivative. To reach our goal, we use the symmetric mountain pass theorem under some suitable assumptions on nonlinearity $f(x,u)$ and potential $V(x)$. | ||
کلیدواژهها | ||
Fractional Schrödinger-Poisson system؛ Symmetric mountain pass theorem؛ Palais-Smale condition؛ Distributional Riesz fractional derivative؛ Bessel potential space | ||
مراجع | ||
[1] D. Baleanu, A.K. Golmankhaneh, A.K. Golmankhaneh, and M.C. Baleanu, Fractional electromagnetic equations using fractional forms, Int. J. Theor. Phys. 48 (2009), 3114–3123. [2] A.M. Batista and M.F. Furtado, Positive and nodal solutions for a nonlinear Schrodinger-Poisson system with sign-changing potentials, Nonlinear Anal.: Real World Appl. 39 (2018), 142–156. [3] V. Benci and D. Fortunato, An eigenvalue problem for the Schrodinger-Maxwell equations, Topol. Meth. Nonlinear Anal. 11 (1998), 283–293. [4] B. Zhang, G.M. Bisci, and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), 2247. [5] H. Boutebba, H. Lakhal, K. Slimani, and T. Belhadi, The nontrivial solutions for nonlinear fractional Schrodinger-Poisson system involving new fractional operator, Adv. Nonlinear Anal. Appl. 7 (2023), no. 1, 121–132. [6] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Cham, Springer, 2016. [7] G. Che and H. Chen, Multiplicity and concentration of solutions for a fractional Schrodinger-Poisson system with sign-changing potential, Appl. Anal. 102 (2023), no. 1, 253–274. [8] L. Chen, A. Li, and C. Wei, Multiple Solutions for a Class of Fractional Schrodinger-Poisson System, J. Funct. Spaces 2019 (2019). [9] P. d’Avenia, G. Siciliano, and M. Squassina, On fractional Choquard equations, Math. Mod. Meth. App. Sci. 25 (2015), 1447–1476. [10] M. D’Elia, M. Gulian, H. Olson, and G.E. Karniadakis, Towards a unified theory of fractional and nonlocal vector calculus, Frac. Calc. Appl. Anal. 24 (2021), 1301–1355. [11] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573. [12] J.J. GadElkarim, R.L. Magin, M.M. Meerschaert, S. Capuani, M. Palombo, A. Kumar, and A.D. Leow, Fractional order generalization of anomalous diffusion as a multidimensional extension of the transmission line equation, IEEE J. Emerg. Selec. Topic Circ. Syst. 3 (2013), 432–441. [13] Z. Gao, X. Tang, and S. Chen, Existence of ground state solutions of Nehari-Pohozaev type for fractional Schrodinger-Poisson systems with a general potential, Comp. Mat. Appl. 75 (2018), 614–631. [14] J.M. Kim and J.H. Bae, Infinitely many solutions of fractional Schrodinger-Maxwell equations, J. Math. Phys. 62 (2021), 031508. [15] K. Li, Existence of non-trivial solutions for nonlinear fractional Schrodinger-Poisson equations, Appl. Math. Lett. 72 (2017), 1–9. [16] C.W. Lo and J.F. Rodrigues, On a class of fractional obstacle type problems related to the distributional Riesz derivative, arXiv preprint arXiv:2101.06863 (2021). [17] S. Masaki, Energy solution to a Schrodinger-Poisson system in the two-dimensional whole space SIAM J. Math. Anal. 43 (2011), 2719–2731. [18] E.G. Murcia and G. Siciliano, Least energy radial sign-changing solution for the Schrodinger-Poisson system in R3 under an asymptotically cubic nonlinearity, J. Math. Anal. Appl. 474 (2019), 544–571. [19] M. Ostoja-Starzewski, Electromagnetism on anisotropic fractal media, Z. angew. Math. Phys. 64 (2013), 381–390. [20] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, 65. American Math. Soc., 1986. [21] E.M. Stein, Singular Integrals and Differentiability Properties of Functions (PMS-30), Princeton University Press, 2016. [22] T.T. Shieh and D.E. Spector, On a new class of fractional partial differential equations, Adv. Calc. Vari. 8 (2015), 321–336. [23] T.T. Shieh and D.E. Spector, On a new class of fractional partial differential equations II, Adv. Calc. Vari. 11 (2018), 289–307. [24] M. Silhavy, Fractional vector analysis based on invariance requirements (critique of coordinate approaches), Cont. Mech. Thermo. 32 (2020), 207–228. [25] K. Teng, Multiple solutions for a class of fractional Schrodinger equations in RN, Nonlinear Anal.: Real World Appl. 21 (2015), 76–86. [26] Z. Yang, W. Zhang, and F. Zhao, Existence and concentration results for fractional Schrodinger-Poisson system via penalization method, Elect. J. Diff. Equ. 14 (2021), 1–31. [27] J. Zhang, Existence and multiplicity results for the fractional Schrodinger-Poisson systems, arXiv preprint arXiv:1507.01205 (2015). [28] J. Zhang, Ground state and multiple solutions for Schrodinger-Poisson equations with critical nonlinearity, J. Math. Anal. Appl. 440 (2016), 466–482. | ||
آمار تعداد مشاهده مقاله: 859 تعداد دریافت فایل اصل مقاله: 137 |