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Abstract

Fuzzy fractional pantograph stochastic differential equations (FFPSDEs) is investigated here. The initial objective is
to show the existence and uniqueness of solutions using Banach fixed point theorem. The second objective is discussing
averaging principle of FFPSDEs, precisely, we will prove that the solutions of FFPSDEs can be approximated in the
sense of mean square by the solutions of averaged fuzzy fractional stochastic system.
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1 Introduction

Pantograph equations are a sort of delay differential equation that may be encountered in physics, medicine, biology,
and other domains. The word pantograph come from the work of Taylor and Ockendon [28]. Many academics have
recently explored pantograph differential equations (PDEs) of fractional order, for example, we recommend the reader
to [3, 14, 15, 17, 18, 20]. Furthermore, multiple writers have demonstrated the existence and uniqueness of solutions
for various fractional pantograph differential equations (FPDEs) with distinct fractional derivatives, for example see
[2, 13, 19, 32, 33]. Recently, PDEs have also been extended to pantograph stochastic differential equations (PSDEs),
see [27, 24], in this context, Priyadharsini et al [30], extended PSDEs to fuzzy setting, they proposed a new type of
equation nemely fuzzy fractional stochastic pantograph differential equations (FFSPDEs). On the other hand, the
notion of averaging principle has a long history. It’s a great way to look at the qualitative properties of a dynamical
system. Then, the study of this method for stochastic differential equations (SDEs) has received a lot of attention as
theory has progressed [4, 13, 16, 22, 25, 29, 34]. Arhrrabi et al [5] initiated the study of averaging principle of fuzzy
SDEs, also, Arhrrabi et al [6, 7, 8, 9, 10, 11, 12] studied the existence and stability of solutions for fuzzy fractional SDEs
(FFSDEs) with Brownian motions, existence and uniqueness results of FFSDEs with impulsive and Fuzzy fractional
boundary value problem and other types of FFDEs. To our knowledge, no publication has looked at the averaging
principle of fuzzy fractional PSDEs, instead, numerous studies have looked at the averaging principle of fractional
PSDEs in a crisp case. To close this gap, we will investigate the existence, uniqueness, and averaging principle of
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solutions for a class of fuzzy fractional PSDEs defined by CDγz(u) = f
(
u, z(u), z(λt)

)
+

〈∫ u

0

g
(
s, z(s), z(λs)

)
dw(s)

〉
, u ∈ I := [0, T ].

z(0) = z0,
(1.1)

where CDγ is the Caputo fractional derivative of order γ ∈ (0, 1), w(u) is standard Brownian motion with m-
dimensional and λ ∈ (0, 1). The functions f : I × F2

Rn −→ FRn and g : I × F2
Rn −→ Rn×m are continuous on I.

The following are the innovations and main contributions of this paper:

• In the fuzzy stochastic setting, fuzzy fractional PSDEs are a novel concept.

• Under Lipschitz conditions, the averaging notion is employed to investigate the property of solution for a class
of fuzzy fractional PSDEs.

The remainder of this work is structured as follows: Section 2 has some fundamental definitions, premises, and
notes on fuzzy fractional PSDEs that will be useful later. Some relevant criteria for the existence and uniqueness of
solutions for system (1.1) are derived in Section 3. We expand the averaging technique for system (1.1) in Section
4 under certain conditions. Section 5 includes an example to demonstrate the usefulness of our findings. The last
section is where you come to a conclusion.

2 Preliminaries

Let FRn indicates the fuzzy subsets on Rn, defined as ζ : Rn −→ [0, 1], which satisfies:

(1) ζ is normal, i.e ∃z0 ∈ Rn such that ζ(z0) = 1,

(2) ζ is a convex fuzzy set, i.e for 0 ≤ β ≤ 1

min {ζ(z1), ζ(z2)} ≤ ζ
(
βz1 + (1− β)z2

)
,∀z1, z2 ∈ Rn,

(3) ζ is upper semicontinous on Rn,

(4) [ζ]0 = cl{z ∈ Rn : ζ(z) > 0} is compact, where cl represents the closure of a set.

Let γ ∈ (0, 1], we define [ζ]γ = {z ∈ Rn|ζ(z) ≥ γ} and [ζ]0 = {z ∈ Rn|ζ(z) > 0}. From the conditions (1) to (4).
The notation [ζ]γ = [ζ(γ), ζ(γ)], denote the γ-cut set of ζ, for γ ∈ [0, 1]. We denote by ζ and ζ as the left and right end

point of ζ, respectively. For ζ ∈ FRn , we define the lengh of the γ-cut set of ζ as len([ζ]γ) = ζ(γ)− ζ(γ). For addition
and scalar multiplication in fuzzy set space FRn , we have [ζ1 + ζ2]

γ = [ζ1]
γ + [ζ2]

γ , [βζ]γ = β[ζ]γ . The Hausdorff
distance is given by

D∞
(
ζ1, ζ2

)
= sup

0≤γ≤1

{
|ζ

1
(γ)− ζ

2
(γ)|, |ζ1(γ)− ζ2(γ)|

}
,

= sup
0≤γ≤1

DH

(
[ζ1]

γ , [ζ2]
γ
)
.

We know that (FRn ,D∞) is complet metric space and satisfies:

D∞
(
ζ1 + ζ3, ζ2 + ζ3

)
= D∞

(
ζ1, ζ2

)
,

D∞
(
aζ1, aζ2

)
= |a|D∞

(
ζ1, ζ2

)
,

D∞
(
ζ1, ζ2

)
≤ D∞

(
ζ1, ζ3

)
+D∞

(
ζ3, ζ2

)
,

for all ζ1, ζ2, ζ3 ∈ FRn and a ∈ Rn.
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Definition 2.1. [28] • The derivative v′(u) of v is given by

[v′(s)]
γ
= [(vγ)′(s), (vγ)′(s)] ,

as long as v′(s) ∈ FRn .

• The fuzzy integral
∫ d

c
v(s)ds, c, d ∈ I is given by[∫ d

c

v(s)ds

]γ

=

[∫ d

c

vγ(s)ds,

∫ d

c

vγ(s)ds

]
,

as long as the integral on the right hand side exist.

Definition 2.2. [31] Let f : I −→ FRn , the fuzzy Rieman-Liouville integral of f is defined by:

(J γf)(v) =
1

Γ(γ)

∫ u

0

(u− v)γ−1f(v)dv.

Definition 2.3. [31] Let Df ∈ C(I,FRn) ∩ L(I,FRn). The fuzzy fractional Caputo diffentiability of f is given by:

CDγf(u) = J 1−γ
c+ (Df)(u) =

1

Γ(1− γ)

∫ u

0

(Df)(v)

(u− v)γ
dv.

The set Rn can be embedded into FRn by using the following embedding
〈
.
〉
: Rn −→ FRn such that for u ∈ Rn we

have 〈
u
〉
(b) =

{
1 , b = u,
0 , b ̸= u.

Notations: Let (Ω,FRn) be the complete probability space and w(u) be a m-dimensional Brownian motion defined
on (Ω,FRn). Let L2(Ω,FRn) be the collection of all strongly measurable square integrable (Ω,FRn)-valued random
variable, which is a complete metric space equipped with the following metric

D2(ζ1, ζ2) = ED2
∞(ζ1, ζ2).

Let C
(
I, L2(Ω,FRn)

)
be the Banach space of all continuous process from I into L2(Ω,FRn) such that ED2

∞(ζ1, ζ2) <

∞. Denote by Bh := C
(
I, L2(Ω,FRn)

)
the closed bounded subspace of all continuous fuzzy process ζ in L2(Ω,FRn)

consists of Au-adapted measurable process {ζ(u), u ∈ I} equipped with the norm

ED2
∞(ζ1, ζ2) = sup

0≤a≤T
ED2

∞(ζ1(u), ζ2(u)).

Remark 2.4. Note that (Bh,D∞) is a complete metric space.

Proposition 2.5. [21] Let ψ : I −→ Rn, then for u ∈ I;

sup
u∈[0,t]

E
wwww∫ u

0

ψ(s)dw(s)

wwww2

≤ CT

∫ u

0

∥ψ(s)∥2ds.

Proposition 2.6. [26] Let z, z′ ∈ L2
(
I × Ω,N;Rn

)
. Then for all u ∈ I we have

D2
∞

(〈∫ u

0

z(s)dw(s)

〉
,

〈∫ u

0

z′(s)dw(s)

〉)
=

∫ u

0

D2
∞
(
⟨z(s)⟩, ⟨z′(s)⟩

)
ds.

3 Existence and uniqueness result

In this part, by using Banach’s contraction mapping principle, we will show the existence and uniqueness of solution
for FFPSDEs (1.1).
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Definition 3.1. We say that {z(u), u ∈ I} is a solution of problem (1.1) if

(i) z(·) ∈ C
(
I,FRn

)
,

(ii) z(0) = z0,

(iii) for 0 ≤ u ≤ T , we have

z(u) = z0 +
1

Γ(γ)

∫ u

0

(u− s)γ−1f
(
s, z(s), z(λs)

)
ds

+
1

Γ(γ)

∫ u

0

(u− s)γ−1

〈∫ s

0

g
(
v, z(v), z(λv)

)
dw(v)

〉
ds. (3.1)

The following assumptions are being prepared in order to get the primary conclusion in this section:

(A1) f is continuous and ∃L1 > 0 such that

ED2
∞
(
f(u, z,w), f(u, z′,w′)

)
≤ L1

(
ED2

∞(z, z′) + ED2
∞(w,w′)

)
.

(A2) g is continuous and ∃L2 > 0 such that

E
∥∥g(u, z,w)− g(u, z′,w′)

∥∥2 ≤ L2

(
ED2

∞(z, z′) + ED2
∞(w,w′)

)
.

(A3) We have
ED2

∞
(
f(u, 0̂, 0̂), 0̂

)
≤ q1 and E∥g(u, 0̂, 0̂)∥2 ≤ q2.

Theorem 3.2. Suppose that the assumptions (A1)-(A3) holds, then problem (1.1) has a unique solution provided
that

4L1T
2γ

(2γ − 1)(Γ(γ))2
+

2L2T
2γ+1

(2γ − 1)(Γ(γ))2
< 1.

Proof . We define the operator T : Bh −→ Bh by

(Tz)(u) = z0 +
1

Γ(γ)

∫ u

0

f
(
s, z(s), z(λs)

)
(u− s)1−γ

ds+
1

Γ(γ)

∫ u

0

〈 ∫ s

0
g
(
u, z(u), z(λu)

)
dw(u)

〉
(u− s)1−γ

ds.

For each positive number r, we define Br =
{
z ∈ Bh : ED2

∞
(
z, 0̂

)
≤ r

}
.

Step 1: We prove that T(Br) ⊆ Br. We choose

r ≥ 3ED2
∞(z0, 0̂) + J1
1− J2

.

By using the assumptions above, Propositions 2.5-2.6, Hölder inequality and Itô isometric, that for z ∈ Br, we get
ED2

∞
(
(T z)(u), 0̂

)
≤ 3ED2

∞
(
z0, 0̂

)
+ 3ED2

∞

(
1

Γ(γ)

∫ u

0
(u− s)γ−1f

(
s, z(s), z(λs)

)
ds, 0̂

)
+ 3ED2

∞

(
1

Γ(γ)

∫ u

0

〈∫ s

0
(u− s)γ−1g

(
u, z(u), z(λu)

)
dw(u)

〉
ds, 0̂

)
,

≤ 3ED2
∞
(
z0, 0̂

)
+

6T 2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0
ED2

∞

(
f
(
s, z(s), z(λs)

)
, f

(
s, 0̂, 0̂

))
ds+

6T 2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0
ED2

∞

(
f
(
s, 0̂, 0̂

)
, 0̂

)
ds

+
6T 2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0

(∫ s

0
E
wwwwg

(
u, z(u), z(λu)

)
− g

(
u, 0̂, 0̂

)wwww2

du

)
ds+

6CTT 2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0

(∫ s

0
E
wwwwg

(
u, 0̂, 0̂

)wwww2

du

)
ds,

≤ 3ED2
∞
(
z0, 0̂

)
+

6L1T 2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0

[
ED2

∞(z(s), 0̂) + ED2
∞(z(λs), 0̂)

]
ds+

6q1T 2γ

(2γ − 1)(Γ(γ))2

+
6T 2γ−1L2

(2γ − 1)(Γ(γ))2

∫ u

0

(∫ s

0

[
ED2

∞(z(u), 0̂) + ED2
∞(z(λu), 0̂)

]
du

)
ds+

3CTT 2γ+1q2

(2γ − 1)(Γ(γ))2

≤ 3ED2
∞
(
z0, 0̂

)
+

12L1T 2γr

(2γ − 1)(Γ(γ))2
+

6q1T 2γ

(2γ − 1)(Γ(γ))2
+

6T 2γ+1L2r

(2γ − 1)(Γ(γ))2
+

3CTT 2γ+1q2

(2γ − 1)(Γ(γ))2

≤ 3ED2
∞
(
z0, 0̂

)
+ J1 + J2r,
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where

J1 =
6q1T

2γ

(2γ − 1)(Γ(γ))2
+

3CTT
2γ+1q2

(2γ − 1)(Γ(γ))2
and J2 =

12L1T
2γ

(2γ − 1)(Γ(γ))2
+

6T 2γ+1L2

(2γ − 1)(Γ(γ))2
.

Finally, we have
ED2

∞
(
(Tz)(u), 0̂

)
≤ r,

which implies that T(Br) ⊆ Br.

Step 2: In this step, we will prove thatT is a contraction operator. Using the assumptions (A1)−(A3), Proposition
2.6, Hölder inequality and Itô isometric, we have for z, z′ ∈ Br and u ∈ I

ED2
∞
(
(Tz)(u), (Tz′)(u)

)
≤ 2ED2

∞

(
1

Γ(γ)

∫ u

0

(u− s)γ−1f
(
s, z(s), z(λs)

)
ds,

1

Γ(γ)

∫ u

0

(u− s)γ−1f
(
s, z′(s), z′(λs)

)
ds

)
+ 2ED2

∞

(
1

Γ(γ)

∫ u

0

(u− s)γ−1

〈∫ s

0

g
(
u, z(u), z(λu)

)
dw(u)

〉
ds,

1

Γ(γ)

∫ u

0

(u− s)γ−1

〈∫ s

0

g
(
u, z′(u), z′(λu)

)
dw(u)

〉
ds

)
,

≤ 2T 2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0

ED2
∞

(
f
(
s, z(s), z(λs)

)
, f

(
s, z′(s), z′(λs)

))
ds

+
2T 2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0

(∫ s

0

E
wwwwg(u, z(u), z(λu))− g

(
u, z′(u), z′(λu)

)wwww2

du

)
ds,

≤ 2L1T
2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0

(
ED2

∞
(
z(s), z′(s)

)
+ ED2

∞
(
z(λs), z′(λs)

))
ds

+
2L2T

2γ−1

(2γ − 1)(Γ(γ))2

∫ u

0

(∫ s

0

[
ED2

∞
(
z(s), z′(s)

)
+ ED2

∞
(
z(λs), z′(λs)

)]
du

)
ds,

≤ 4L1T
2γ

(2γ − 1)(Γ(γ))2
ED2

∞
(
z, z′

)
+

2L2T
2γ+1

(2γ − 1)(Γ(γ))2
ED2

∞
(
z, z′

)
,

≤
(

4L1T
2γ

(2γ − 1)(Γ(γ))2
+

2L2T
2γ+1

(2γ − 1)(Γ(γ))2

)
ED2

∞
(
z, z′

)
.

Finally, we can get

ED2
∞
(
(Tz)(u), (Tz′)(u)

)
≤

(
4L1T

2γ

(2γ − 1)(Γ(γ))2
+

2L2T
2γ+1

(2γ − 1)(Γ(γ))2

)
ED2

∞
(
z, z′

)
.

Therefore, since 4L1T
2γ

(2γ−1)(Γ(γ))2 + 2L2T
2γ+1

(2γ−1)(Γ(γ))2 < 1, T is a contraction operator. Consequently, using Banach’s

contraction mapping principle, we get to the conclusion that T has a fixed point, which is the unique solution to (1.1).
□

4 Averaging Principle result

The construction of an averaging concept for FFPSDEs is the focus of this section. First, we look at the standard
form of Eq. (3.1).

zϵ(u) = z0 +
ϵ

Γ(γ)

∫ u

0

(u− s)γ−1f
(
s, zϵ(s), zϵ(λs)

)
ds

+

√
ϵ

Γ(γ)

∫ u

0

(u− s)γ−1

〈∫ s

0

g
(
u, zϵ(u), zϵ(λu)

)
dw(u)

〉
ds, (4.1)

where 0 < ϵ < ϵ0 and ϵ0 is a fixed integer. Moreover z0, f and g have the same requirements as in Eq. (3.1). For every
fixed 0 < ϵ < ϵ0 and u ∈ I, according to the existence and uniqueness findings, the Eq. (4.1) has a unique solution
zϵ(u). In order to determine if zϵ(u) can be approximated by a small process to a simple process, we make certain
assumptions about the coefficients. Let f̃ : FRn ×FRn −→ FRn and g̃ : FRn ×FRn −→ Rn×m be measurable functions
satisfying (A1)-(A3) and the other inequalities:
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(A4) For K ∈ I and z,w ∈ FRn , we have

1

K

∫ K

0

D2
∞

(
f(s, z,w), f̃(z,w)

)
ds ≤ γ1(K)

(
1 +D2

∞(z, 0̂) +D2
∞(w, 0̂)

)
,

1

K

∫ K

0

wwg(s, z,w)− g̃(z,w)
ww2
ds ≤ γ2(K)

(
1 +D2

∞(z, 0̂) +D2
∞(w, 0̂)

)
,

where lim
K−→∞

γi(K) = 0, i = 1, 2. After making the necessary preparations, we will demonstrate that zϵ converge as

ϵ −→ 0, to solution of the following averaged FFSPDEs

wϵ(u) = z0 +
ϵ

Γ(γ)

∫ u

0

(u− s)γ−1f
(
wϵ(s),wϵ(λs)

)
ds+

√
ϵ

Γ(γ)

∫ u

0

(u− s)γ−1

〈∫ s

0

g
(
wϵ(u),wϵ(λu)

)
dw(u)

〉
ds. (4.2)

Under the same presumptions as Eq. (4.1), it is obvious that Eq. (4.2) likewise has a unique solution wϵ. As the
main outcome of this section, we now examine the connections between the processes zϵ and wϵ.

Theorem 4.1. If the conditions (A1)-(A4) are verified. Then, for a given random tiny number δ > 0 and a constant
k > 0, 0 < γ < 1, there exist 0 < ϵ1 ≤ ϵ0 | ∀ϵ ∈ (0, ϵ1], we have

sup
u∈[0,kϵ−γ ]

ED2
∞
(
zϵ(u),wϵ(u)

)
≤ δ.

Proof . For 0 < u ≤ v, we have

sup
u∈[0,v]

ED2
∞
(
zϵ(u),wϵ(u)

)
≤ 2ϵ2

(Γ(γ))2
sup

u∈[0,v]

ED2
∞

(∫ u

0

(u− s)γ−1f(s, zϵ(s), zϵ(λs))ds,

∫ u

0

(u− s)γ−1f̃(wϵ(s),wϵ(λs))ds

)
+

2ϵ

(Γ(γ))2
sup

u∈[0,v]

ED2
∞

( ∫ u

0

(u− s)γ−1
〈 ∫ s

0

g(s, zϵ(s), zϵ(λs))dw(s)

〉
ds,

∫ u

0

(u− s)γ−1
〈 ∫ s

0

g(wϵ(s),wϵ(λs))dw(s)

〉
ds

)
.

Denote by

J1 =
2ϵ2

(Γ(γ))2
sup

u∈[0,v]
ED2

∞

(∫ u

0
(u− s)γ−1f(s, zϵ(s), zϵ(λs))ds,

∫ u

0
(u− s)γ−1f̃(wϵ(s),wϵ(λs))ds

)
,

J2 =
2ϵ

(Γ(γ))2
sup

u∈[0,v]
ED2

∞

(∫ u

0
(u− s)γ−1

〈∫ s

0
g(s, zϵ(s), zϵ(λs))dw(s)

〉
ds,

∫ u

0
(u− s)γ−1

〈∫ s

0
g(wϵ(s),wϵ(λs))dw(s)

〉
ds

)
.

Then, by utilizing the attributes of the metric D∞, we obtain

J1 ≤ 4ϵ2

(Γ(γ))2
sup

u∈[0,v]

ED2
∞

(∫ u

0

(u− s)γ−1f(s, zϵ(s), zϵ(λs))ds,

∫ u

0

(u− s)γ−1f(s,wϵ(s),wϵ(λs))ds

)
+

4ϵ2

(Γ(γ))2
sup

u∈[0,v]

ED2
∞

(∫ u

0

(u− s)γ−1f(s,wϵ(s),wϵ(λs))ds,

∫ u

0

(u− s)γ−1f̃(wϵ(s),wϵ(λs))ds,

)
,

:= J11 + J12.

By using Hôlder inequality and assumption (A1), we get

J11 ≤ 4ϵ2v2γ−1

(2γ − 1)(Γ(γ))2
sup

u∈[0,v]

(∫ u

0

ED2
∞

(
f(s, zϵ(s), zϵ(λs)), f(s,wϵ(s),wϵ(λs))

)
ds

)
,

≤ 4ϵ2L1v
2γ−1

(2γ − 1)(Γ(γ))2

∫ v

0

(
ED2

∞
(
zϵ(s),wϵ(s)

)
+ ED2

∞
(
zϵ(λs),wϵ(λs)

))
ds,

≤ 8ϵ2L1v
2γ−1

(2γ − 1)(Γ(γ))2

∫ v

0

ED2
∞
(
zϵ(s),wϵ(s)

)
ds.
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For J12, we use Hôlder inequality and assumption (A4), we obtain

J12 ≤ 4ϵ2v2γ−1

(2γ − 1)(Γ(γ))2
sup

u∈[0,v]

(∫ u

0

ED2
∞

(
f(s,wϵ(s),wϵ(λs)), f̃(wϵ(s),wϵ(λs))

)
ds

)
,

≤ 4ϵ2v2γ

(2γ − 1)(Γ(γ))2
γ1(v)

[
1 + sup

u∈[0,v]

ED2
∞
(
wϵ(u), 0̂

)
+ sup

u∈[0,v]

ED2
∞
(
wϵ(λt), 0̂

)]
,

≤ 4ϵ2v2γ

(2γ − 1)(Γ(γ))2
γ1(v)

[
1 + 2 sup

u∈[0,v]

ED2
∞
(
wϵ(u), 0̂

)]
,

:= 4ϵ2v2γβ1,

where β1 = γ1(v)
(2γ−1)(Γ(γ))2

[
1 + 2 sup

u∈[0,v]

ED2
∞
(
wϵ(u), 0̂

)]
. Therefore

J1 ≤ 8ϵ2L1v
2γ−1

(2γ − 1)(Γ(γ))2

∫ v

0

ED2
∞
(
zϵ(s),wϵ(s)

)
ds+ 4ϵ2v2γβ1. (4.3)

For the second term J2, by using Proposition 2.6 and Hôlder inequality, we have

J2 ≤ 2ϵv2γ−1

(2γ − 1)(Γ(γ))2
sup

u∈[0,v]

∫ u

0

(∫ s

0

E
wwg(v′, zϵ(v′), zϵ(λv′))− g̃(wϵ(v

′),wϵ(λv
′))

ww2
dv′

)
ds,

≤ 4ϵv2γ−1

(2γ − 1)(Γ(γ))2
sup

u∈[0,v]

∫ u

0

(∫ s

0

E
wwg(v′, zϵ(v′), zϵ(λv′))− g(v′,wϵ(v

′),wϵ(λv
′))

ww2
dv′

)
ds

+
4ϵv2γ−1

(2γ − 1)(Γ(γ))2
sup

u∈[0,v]

∫ u

0

(∫ s

0

E
wwg(v′,wϵ(v

′),wϵ(λv
′))− g̃(wϵ(v

′),wϵ(λv
′))

ww2
dv′

)
ds,

:= J21 + J22.

Using assumption (A2), we get

J21 ≤ 4ϵL2v
2γ−1

(2γ − 1)(Γ(γ))2

∫ v

0

(∫ s

0

ED2
∞
(
zϵ(v

′),wϵ(v
′)
)
+ ED2

∞
(
zϵ(λv

′),wϵ(λv
′)
)
dv′

)
ds,

≤ 4ϵL2v
2γ

(2γ − 1)(Γ(γ))2

∫ v

0

Ed2∞
(
zϵ(s),wϵ(s)

)
ds.

Also, we use assumption (A4), we have

J22 ≤ 4ϵv2γ−1

(2γ − 1)(Γ(γ))2
sup

u∈[0,v]

(∫ u

0

(
s
1

s

∫ s

0

E
wwg(v′,wϵ(v

′),wϵ(λv
′))− g̃(wϵ(v

′),wϵ(λv
′))

ww2
dv′

)
ds,

≤ 4ϵv2γ+1

(2γ − 1)(Γ(γ))2
γ2(v)

[
1 + sup

u∈[0,v]

Ed2∞
(
wϵ(u), 0̂

)
+ sup

u∈[0,v]

Ed2∞
(
wϵ(λt), 0̂

)]
,

≤ 4ϵv2γ+1

(2γ − 1)(Γ(γ))2
γ2(v)

[
1 + 2 sup

u∈[0,v]

Ed2∞
(
wϵ(u), 0̂

)]
,

:= 4ϵv2γ+1β2,

where β2 = γ2(v)
(2γ−1)(Γ(γ))2

[
1 + 2 sup

u∈[0,u]

Ed2∞
(
wϵ(u), 0̂

)]
. Therefore

J2 ≤ 4ϵL2v
2γ

(2γ − 1)(Γ(γ))2

∫ v

0

Ed2∞
(
zϵ(s),wϵ(s)

)
ds+ 4ϵv2γ+1β2. (4.4)

Hence, combining (4.3) and (4.4) together, we get

sup
u∈[0,v]

Ed2∞
(
zϵ(u),wϵ(u)

)
≤4ϵv2γ

(
ϵβ1 + vβ2

)
+

4ϵv2γ
(
ϵL1v

−1 + L2

)
(2γ − 1)(Γ(γ))2

∫ v

0

Ed2∞
(
zϵ(s),wϵ(s)

)
ds,

≤4ϵv2γ
(
ϵβ1 + vβ2

)
+

4ϵv2γ
(
ϵL1v

−1 + L2

)
(2γ − 1)(Γ(γ))2

∫ v

0

sup
v′∈[0,s]

Ed2∞
(
zϵ(v

′),wϵ(v
′)
)
dv′.
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Thus, using Gronwall inequality, we obtain

sup
u∈[0,v]

Ed2∞
(
zϵ(u),wϵ(u)

)
≤ 4ϵv2γ

(
ϵβ1 + vβ2

))
exp

(
4ϵv2γ

(
ϵL1v

−1 + L2

)
(2γ − 1)(Γ(γ))2

)
.

Choose 0 < γ < 1 and L > 0 such that for every u ∈ [0, Lϵ−γ ] ⊆ I, we get

sup
u∈[0,Lϵ−γ ]

Ed2∞
(
zϵ(u),wϵ(u)

)
≤ kϵ1−γ ,

where

k = 4L2γϵ1−2γγ
(
ϵβ1 + Lϵ−γβ2

)
exp

(
4L2γϵ1−2γγ(L1L

−1ϵ1+γ + L2

(2γ − 1)(Γ(γ))2

)
is a constant. Therefore, for any given number δ, ∃ϵ1 ∈ (0, ϵ0] such that for each ϵ ∈ (0, ϵ1] and u ∈ [0, Lϵ−γ ], we get

sup
u∈[0,Lϵ−γ ]

ED2
∞
(
zϵ(u),wϵ(u)

)
≤ δ.

□

5 Example

We give an example to illustrate our findings in this section. Consider the following FFPSDEs
CDγz(u) = z(u) + z(u)(u2 − 1)2 +

〈
z(u)dw(u)

〉
, 0 ≤ u ≤ 1, 1

2 < γ < 1.

z(0) = 0,
(5.1)

Thus, the appropriate standard form of the FFPSDEs mentioned above is

CDγzϵ = zϵ + zϵ(
u

2
− 1)2 +

〈
zϵdw(u)

〉
.

Then, f(u, zϵ(u), zϵ(λu)) = zϵ + zϵ(u2 − 1)2 and g(u, zϵ(u), zϵ(λu)) = zϵ. Hence

f̃(zϵ(u), zϵ(λu)) =

∫ 1

0

f(s, zϵ(s), zϵ(λs))ds,

=
19zϵ

12
,

and

g̃(zϵ(u), zϵ(λu)) =

∫ 1

0

g(s, zϵ(s), zϵ(λs))ds = zϵ.

As a result, the average form of (5.1) may be expressed as

CDγwϵ =
19zϵ

12
du+

√
ϵ
〈
zϵdw(u)

〉
. (5.2)

We can see that the coefficients f and g satisfy the assumptions (A1)-(A3). Then, according to Theorem 3.2 the
FFPSDEs (5.1) has a unique fuzzy solution. On the other hand, we can naturally see that the coefficient f̃ and g̃
satisfy the assumption (A4), then, according to Theorem 4.1, as ϵ −→ 0, the solution zϵ and wϵ to Eqs. (5.1) and
(5.2) are equivalent in the sense of mean square. Clearly, the reduced system (5.2) is much easier to understand than
the standard system (5.1). Even better, Theorem 4.1 ensures that just a minor mistake is introduced throughout the
substitution procedure.

6 Conclusion

In this work, we have proved the existence and uniqueness results for FFPSDEs via Banach fixed point analysis.
Also, the averaging principle for this type of equation is studied. Precisely, we proved that the solution of the simplified
system converges to the solution of the original system in the mean square sense.
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