
تعداد نشریات | 21 |
تعداد شمارهها | 660 |
تعداد مقالات | 9,661 |
تعداد مشاهده مقاله | 68,770,247 |
تعداد دریافت فایل اصل مقاله | 48,281,493 |
بررسی اثر آبسزیک اسید بر تغییرات هیستوپاتولوژیک متعاقب آسیب نخاعی حاد در مدل موش صحرایی | ||
تحقیقات آزمایشگاهی دامپزشکی | ||
دوره 14، شماره 2 - شماره پیاپی 22، اسفند 1401، صفحه 151-161 اصل مقاله (585.89 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jvlr.2024.32532.1079 | ||
نویسندگان | ||
مریم رضایی زاده روکرد1؛ شهرزاد عزیزی2؛ ساحل متقی* 1 | ||
1کرمان دانشگاه شهید باهنر | ||
2گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
تاریخ دریافت: 14 خرداد 1401، تاریخ بازنگری: 01 شهریور 1401، تاریخ پذیرش: 21 بهمن 1401 | ||
چکیده | ||
بلافاصله پس از بروز ضایعه نخاعی، التهاب عصبی سبب درد نوروپاتیک و پیشرفت نقص حرکتی می شود. آبسزیک اسید به عنوان یک فیتوهورمون با نقش تعدیل کنندگی در گیاهان، دارای اثرات ضد التهابی در بافت های مختلف حیوانی است. در این پژوهش اثرات آبسزیک اسید به عنوان یک ماده ضد التهابی در مدل حاد ضایعه نخاعی مورد استفاده قرار گرفت. برای ایجاد مدل ضایعه نخاعی در موش صحرایی از روش پرتاب وزنه استفاده شد. برای این منظور تعداد 36 موش صحرایی بالغ نر استفاده شدگروهبندی حیوانات بصورت زیر بود گروه کنترل: فاقد آسیب و تجویز دارویی، گروه آسیب نخاعی فاقد تیمار دارویی، گروه آسیب نخاعی با تجویز بافرحلال داخل نخاعی، گروه آسیب نخاعی با تیمار آبسزیک اسید (μg/rat.IT 10(، گروه آسیب نخاعی با تیمار μg/rat.IT) 15)، گروه آسیب نخاعی با تیمار متیل پردنیزلونmg/kg. IP) 30). برای ارزیابی اثرات آبسزیک اسید بر تغییرات پاتولوژیک در فاز حاد ضایعه نخاعی, از بافت نخاع در محل ضایعه برش گیری شد و توسط پاتولوژیست مورد بررسی قرار گرفت. این مطالعه نشان داد که تجویز آبسزیک اسید سبب بهبودی در میزان ادم و خونریزی و نکروز در سطح پاتولوژیک در گروه های القا ضایعه نخاعی در مقایسه با گروه کنترل می گردد، اگرچه این تفاوت معنی دار نبود. یافته های هیستوپاتولوژیک حاصل از مطالعه حاضر نشان داد که آبسزیک اسید میتواند تنها تا حدودی در کاهش آثار پاتولوژیک در فاز حاد آسیب نخاعی عمل کند و مطالعات تکمیلی در این زمینه لازم است.. | ||
کلیدواژهها | ||
آبسزیک اسید؛ تغییرات پاتولوژیک؛ آسیب نخاعی | ||
عنوان مقاله [English] | ||
Investigating the effect of abscisic acid on histopathological changes following acute spinal cord injury in a rat model | ||
نویسندگان [English] | ||
Maryam Rezaeezadeh Roukerd1؛ Shahrzad Azizi2؛ ساحل متقی1 | ||
1Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran | ||
2Department of Pathobiology,, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده [English] | ||
Immediately after spinal cord injury, nerve inflammation causes neuropathic pain and motor impairment. As a phytohormone with a modulating role in plants, abscisic acid has anti-inflammatory effects in various animal tissues. In this study, the effects of abscisic acid as an anti-inflammatory agent were used in the acute model of spinal cord injury. The weight throwing method was used to create a model of spinal cord injury in rats. For this purpose, 36 adult male rats were used and the animals were grouped as follows: the control group: no injury and drug administration, spinal cord injury group without drug treatment, spinal cord injury group with intrathecal administration of fentanyl, spinal cord injury group with abscisic acid treatment (10μg /rat. IT), spinal cord injury group treated with 15μg/rat.IT), spinal cord injury group treated with methylprednisolone (30mg/kg. IP). To evaluate the effects of abscisic acid on pathological changes in In the acute phase of spinal cord injury, the spinal cord tissues were cut at the lesion site and examined by a pathologist. This study showed that the administration of abscisic acid causes improvement in the amount of edema, bleeding, and necrosis at the pathological level in the spinal cord injury induction groups compared to the control group, although this difference was not significant. The histopathological findings from the present study showed that abscisic acid can reduce the pathological effects in the acute phase of spinal cord injury to some extend and further studies are necessary in this field. | ||
کلیدواژهها [English] | ||
Abscisic acid, pathological changes, spinal cord injury | ||
مراجع | ||
Adriaansen, J.J., Post, M.W., de Groot, S., van Asbeck, F.W., Stolwijk-Swuste, J.M., Tepper, M. and Lindeman, E. 2013. Secondary health conditions in persons with spinal cord injury: a longitudinal study from one to five years post-discharge. Journal of rehabilitation medicine. 45, 1016-1022. Amini, H., Heshmati, M. and Jalali, M. 2020. The Study of the Effect of Deprenyl on Gliosis after Spinal Cord Compression in Adult Rat. Daneshvar Medicine. 16, 27-36. Baliño, P., Gómez-Cadenas, A., López-Malo, D., Romero, F.J. and Muriach, M. 2019. Is there a role for abscisic acid, a proven anti-inflammatory agent, in the treatment of ischemic retinopathies?. Antioxidants. 8, 104. Bracken, M.B. and Holford, T.R. 1993. Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS. Journal of neurosurgery. 79, 500-50. Bruzzone, S., Moreschi, I., Usai, C., Guida, L., Damonte, G., Salis, A., Scarfi, S., Millo, E., De Flora, A. and Zocchi, E. 2007. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proceedings of the National Academy of Sciences. 104, 5759-5764. David, S., López-Vales, R. and Yong, V.W. 2012. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handbook of clinical neurology. 109, 485-502. Dimitrijevic, M.R., Danner, S.M. and Mayr, W. 2015. Neurocontrol of movement in humans with spinal cord injury. Artificial organs. 39, 823-833. Fehlings, M.G., Wilson, J.R., Harrop, J.S., Kwon, B.K., Tetreault, L.A., Arnold, P.M., Singh, J.M., Hawryluk, G. and Dettori, J.R. 2017. Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: a systematic review. Global spine journal. 7, 116S-137S. Freyermuth-Trujillo, X., Segura-Uribe, J.J., Salgado-Ceballos, H., Orozco-Barrios, C.E. and Coyoy-Salgado, A. 2022. Inflammation: a target for treatment in spinal cord injury. Cells. 11, 2692. Göritz, C., Dias, D.O., Tomilin, N., Barbacid, M., Shupliakov, O. and Frisén, J. 2011. A pericyte origin of spinal cord scar tissue. Science. 333, 238-242. Guri, A.J., Misyak, S.A., Hontecillas, R., Hasty, A., Liu, D., Si, H. and Bassaganya-Riera, J. 2010. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall. The Journal of nutritional biochemistry. 21, 1178-1185. Guri, A.J., Hontecillas, R., Ferrer, G., Casagran, O., Wankhade, U., Noble, A.M., Eizirik, D.L., Ortis, F., Cnop, M., Liu, D. and Si, H. 2008. Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. The Journal of nutritional biochemistry. 19, 216-228. Hoag, T., Baolian, L., Zhideng, L., Jinyan, Z., Jie, Y. and Juan, Z. 2006. New use of natural abscisic acid in developing" differentation inducer". drugs of tumor cells. 18, 578-589.
Jha, R.M., Kochanek, P.M. and Simard, J.M. 2019. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 145, 230-246. Kwon, B.K., Fisher, C.G., Dvorak, M.F. and Tetzlaff, W. 2005. Strategies to promote neural repair and regeneration after spinal cord injury. Spine. 30, S3-S13. Li, H.H., Hao, R.L., Wu, S.S., Guo, P.C., Chen, C.J., Pan, L.P. and Ni, H. 2011. Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochemical pharmacology. 82, 701-712. Lievens, L., Pollier, J., Goossens, A., Beyaert, R. and Staal, J. 2017. Abscisic acid as pathogen effector and immune regulator. Frontiers in plant science. 8, 587. Livingston, V.W., Livingston Virginia WC. 1976. Abscisic acid tablets and process. U.S. Patent 3,958,025. Lytle, J.M. and Wrathall, J.R. 2007. Glial cell loss, proliferation and replacement in the contused murine spinal cord. European Journal of Neuroscience. 25, 1711-1724. Magnone, M., Sturla, L., Jacchetti, E., Scarfì, S., Bruzzone, S., Usai, C., Guida, L., Salis, A., Damonte, G., De Flora, A. and Zocchi, E. 2012. Autocrine abscisic acid plays a key role in quartz‐induced macrophage activation. The FASEB Journal. 26, 1261-1271. Mollashahi, M., Abbasnejad, M. and Esmaeili-Mahani, S., 2018. Phytohormone abscisic acid elicits antinociceptive effects in rats through the activation of opioid and peroxisome proliferator-activated receptors β/δ. European Journal of Pharmacology, 832, 75-80. Morin-Richaud, C., Feldblum, S. and Privat, A. 1998. Astrocytes and oligodendrocytes reactions after a total section of the rat spinal cord. Brain research. 783, 85-101. Myers, R.R., Campana, W.M. and Shubayev, V.I. 2006. The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug discovery today. 11, 8-20. Popovich, P.G. and Longbrake, E.E. 2008. Can the immune system be harnessed to repair the CNS?. Nature Reviews Neuroscience. 9, 481-493. Rezaeezadeh Roukerd, M., Motaghi, S., Sadeghi, B. and Abbasnejad, M. 2022. Protective effect of abscisic Acid in a spinal cord injury model mediated by suppressed neuroinflammation. Iranian Journal of Veterinary Science and Technology. 14, 42-51. Sehitoglu, M.H., Guven, M., Yüksel, Y., Akman, T.A.R.I.K., Aras, A.B., Farooqi, A.A. and Cosar, M., 2016. The effect of glycyrrhizic acid on traumatic spinal cord injury in rats. Cellular and Molecular Biology, 62, 2-8. Sultan, I., Lamba, N., Liew, A., Doung, P., Tewarie, I., Amamoo, J.J., Gannu, L., Chawla, S., Doucette, J., Cerecedo-Lopez, C.D. and Papatheodorou, S. 2020. The safety and efficacy of steroid treatment for acute spinal cord injury: a systematic review and meta-analysis. Heliyon. 6, 03414. Taoka, Y. and Okajima, K. 1998. Spinal cord injury in the rat. Progress in neurobiology. 5, 341-358. Turtle, J.D., Henwood, M.K., Strain, M.M., Huang, Y.J., Miranda, R.C. and Grau, J.W. 2019. Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury. Experimental neurology. 311, 115-124. Vanzulli, I. and Butt, A.M. 2015. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter. Cell Calcium. 58, 423-430. Xiao, Y., Shan, K.R. and Guan, Z.Z. 2006. Effect of beta-amyloid peptides on alpha-7 nicotinic receptor status in astrocytes and neurons, and its relationship to pathogenesis of Alzheimer's disease. Zhonghua Bing li xue za zhi= Chinese Journal of Pathology. 35, 462-466. Zelenka, M., Schäfers, M. and Sommer, C. 2005. Intraneural injection of interleukin-1β and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain, 116,257-263. Zocchi, E., Hontecillas, R., Leber, A., Einerhand, A., Carbo, A., Bruzzone, S., Tubau-Juni, N., Philipson, N., Zoccoli-Rodriguez, V., Sturla, L. and Bassaganya-Riera, J. 2017. Abscisic acid: a novel nutraceutical for glycemic control. Frontiers in nutrition. 4, 24.
| ||
آمار تعداد مشاهده مقاله: 177 تعداد دریافت فایل اصل مقاله: 229 |