
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,972 |
تعداد دریافت فایل اصل مقاله | 7,656,409 |
Electrochemically grown superparamagnetic Co-Fe3O4 nanoparticles onto functionalized graphene oxide for biomedical aims | ||
Progress in Physics of Applied Materials | ||
دوره 4، شماره 1 - شماره پیاپی 6، شهریور 2024، صفحه 1-6 اصل مقاله (481.46 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2024.32630.1076 | ||
نویسندگان | ||
Mustafa Aghazadeh* 1؛ Isa Karimzadeh2 | ||
1Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran | ||
2Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran | ||
تاریخ دریافت: 19 آذر 1402، تاریخ بازنگری: 11 بهمن 1402، تاریخ پذیرش: 14 بهمن 1402 | ||
چکیده | ||
Herein, we report the structural, morphological, and chemical properties of the electrochemically grown Co2+-doped magnetite (Co-Fe3O4) nanoparticles onto functionalized graphene oxide layers (Co2+-doped iron oxide@f-GO composite). The deposition process is done at the galvanostatic mode in the two-electrode system by applying the constant current density of 5 mA cm-2. The fabricated Co2+-doped iron oxide@f-GO composite is characterized via Scanning Electron Microscopy, energy dispersive X-ray analysis, Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and X-Ray diffraction analysis. TEM observation revealed that Co-Fe3O4 has fine particle morphology with size of 5-10 nm. The FTIR data proved the graphene-based chemical nature of the fabricated composite. The superparamagnetic nature of the prepared composite is proved by vibrating sample magnetometer tests, which verified that the prepared metal-cation doped Fe3O4 nanoparticles grown onto functionalized GO layers could be an interesting candidate for further manipulations for biomedical aims such as drug delivery, magnetic resonance imaging, and hyperthermia. | ||
کلیدواژهها | ||
Bare Co-Fe3O4؛ Co2+-doping؛ Graphene Oxide؛ Nanocomposite | ||
مراجع | ||
[1] Kermanian, M., Sadighian, S., Ramazani, A., Naghibi, M., Khoshkam, M. and Ghezelbash, P. 2021. Inulin-Coated Iron Oxide Nanoparticles: A Theranostic Platform for Contrast-Enhanced MR Imaging of Acute Hepatic Failure. ACS Biomaterials Science and Engineering, 7(6), pp. 2701-2715.
[2] Senturk, F., Cakmak, S., Kocum, I. C., Gumusderelioglu, M. and Ozturk, G.G. 2021. GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles for the hyperthermia treatment of glioblastoma cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, p. 126648.
[3] Halevas, E., Mavroidi, B., Nday, C.M., Tang, J., Smith, G.C., Boukos, N., Litsardakis, G., Pelecanou, M. and Salifoglou, A. 2020. Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. Journal of Inorganic Biochemistry, 213, p. 111271.
[4] Aghazadeh, M., Karimzadeh, I., Ghannadi Maragheh, M., Ganajli, M.R. 2018. Gd3+ doped Fe3O4 nanoparticles with proper magnetic and supercapacitive characteristics: A novel synthesis platform and characterization. Korean Journal of Chemical Engineering, 35, pp. 1341-1347.
[5] Pucci, C., Degl'Innocenti, A., Belenli Gümüş, M. and Ciofani, G. 2022. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomaterials Science, 10, pp. 2103-2121.
[6] Gholizadeh, A. and Jafari, E. 2017. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere. Journal of Magnetism and Magnetic Materials, 422, pp. 328-336.
[7] Gholizadeh, A. 2018. A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere. Journal of Magnetism and Magnetic Materials, 452, pp. 389-397.
[8] Gholizadeh, A. 2017. A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods. Journal of the American Ceramic Society, 100 (8), pp. 3577-3588.
[9] Mojahed, M., Rezagholipour Dizaji, H. and Gholizadeh, A. 2022. Structural, magnetic, and dielectric properties of Ni/Zn co-substituted CuFe2O4 nanoparticles. Physica B: Condensed Matter, 646, p. 414337.
[10] Abharya, A. and Gholizadeh, A. 2020. Structural, Optical and Magnetic Feature of Core-Shell Nanostructured Fe3O4@GO in Photocatalytic Activity.” Iranian Journal of Chemistry and Chemical Engineering, 39 (2), pp. 49-58.
[11] Deka, B., Cho, J., Lee, Y.-W., Yoo, I.-R., Ahn, C.W. and Cho, K.-H. 2021. Cation distribution and magnetostrictive strain in CuFe2−xGaxO4 ceramics. Ceramic International, 47(9) pp. 11848-11855.
[12] Ran, F.Y., Tsunemaru, Y., Hasegawa, T., Takeichi, Y., Harasawa, A., Yaji, K. Kim, S. and Kakizaki, A., 2011. Valence band structure and magnetic properties of Co-doped Fe3O4(100) films. Journal of Applied Physics, 109 (12), p. 123919.
[13] Choupani, M. and Gholizadeh, A. 2023. Correlation between structural phase transition and physical properties of Co2+/Gd3+ co-substituted copper ferrite. Journal of Rare Earths, In press, https://doi.org/10.1016/j.jre.2023.06.011.
[14] Aghazadeh, M., Karimzadeh, I., Ganjali, M.R. and Behzad, A. 2017. Mn2+-doped Fe3O4 nanoparticles: a novel preparation method, structural, magnetic and electrochemical characterizations. Journal of Materials Science: Materials in Electronics, 28, pp. 18121–18129
[15] Aghazadeh, M. and Ganjali, M.R. 2018. One-pot electrochemical synthesis and assessment of super-capacitive and super-paramagnetic performances of Co2+ doped Fe3O4 ultra-fine particles. Journal of Materials Science: Materials in Electronics, 29, pp. 2291-2300.
[16] Aghazadeh, M., Forati-Rad, H., Yavari, K. and Mohammadzadeh, K. 2021. On-pot fabrication of binder-free composite of iron oxide grown onto porous N-doped graphene layers with outstanding charge storage performance for supercapacitors. Journal of Materials Science: Materials in Electronics, 32, pp. 13156-13176.
[17] Malek Barmi, A., Moosavian, M.A., Aghazadeh, M. and Golikand, A.N. 2020. One-pot EPD/ECD fabrication of high-performance binder-free nanocomposite based on the Fe3O4 nanoparticles/porous graphene sheets for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 31, pp. 19569-19586.
[18] Dehghanzad, B., Razavi, Aghjeh M. K., Rafeie, O., Tavakoli, A. and Oskooi, A.J. 2016. Synthesis and characterization of graphene and functionalized graphene via chemical and thermal treatment methods. RSC Advances, 6, pp. 3578-3585.
[19] Aziz, M., Abdul Halima, F. S. and Jaafar, J. 2014. Preparation and Characterization of Graphene Membrane Electrode Assembly. Jurnal Teknologi, 69(9), pp. 11-24.
[20] Naebe, M., Wang, J., Amini, A., Khayyam, H., Hameed, N., Li, L.H., Chen, Y. and Fox, B. 2014. Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites. Scientific Reports, 4, p. 4375.
[21] Wang, H., Wei, C., Zhu, K., Zhang, Y., Gong, C., Guo, J., Zhang, J., Yu, L. and Zhang, J. 2017. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors. ACS Applied Materials and Interfaces, 9(11), pp. 9763-9771. | ||
آمار تعداد مشاهده مقاله: 233 تعداد دریافت فایل اصل مقاله: 244 |