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Abstract

The Shannon entropy and the logical entropy of fuzzy σ-algebras are well-known instances of entropy. In this paper,
we introduce and study the Tsallis entropy of order α of fuzzy σ−algebras on F−probability measure spaces, where
α ∈ (0, 1) ∪ (1,∞). Moreover, we study the conditional version of this entropy and examine its basic properties.
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1 Introduction

Entropy is a tool that allows us to measure the amount of uncertainty in random events. The classical approach
in information theory is based on the Shannon entropy [25]. The Shannon entropy of a probability distribution was
studied in [15]. Kolmogorov and Sinai used the Shannon entropy to define the entropy of measurable partitions [26].
The Kolmogorov–Sinai entropy is a useful tool for the study of isomorphisms of dynamical systems.

Markechova [17, 18] studied the Shannon entropy of complete partitions and the entropy of an F−dynamical
system. In [5], Dumitrescu used methods different from triangular norms and their resulting entropies to develop
fuzzy partition theory (see [11]). In [14], Klement defined the notion of F−probability measure space by defining the
notions of fuzzy σ−algebra and F−measure. M. Khare, A. Ebrahimzadeh and J. Jamalzadeh introduced the notions
of Shannon entropy and logical entropy of fuzzy σ−algebras having finitely many atoms on an F−probability measure
space, and obtained some results concerning these measures [6, 12, 13].

The Tsallis entropy plays a significant role in the non-extensive statistical mechanics of complex systems [31]. The
number q is the so-called entropic index; it characterizes the degree of non-extensivity of the system. Some applications
of the Tsallis entropy have been found in a wide range of phenomena in diverse disciplines such as chemistry, physics,
geophysics, biology, economics, medicine, etc. We refer the reader to [1, 2, 4, 3, 7, 9, 10, 19, 22, 24, 29, 32, 34]. Also,
the entropy has been applied to large domains in communication systems [16]; its applications in image processing
through information theory can be found, for example, in [23]. For a full and regularly updated bibliography, see [20].

It is known that fuzzy logic outperforms the usual logic in the analysis of natural phenomena. As a result, logical
algebraic structures have been considered to describe such phenomena. It is natural to define and study the concepts
of dynamical structures, on fuzzy logical algebras. The notion of entropy is one of the most applicable concepts of
dynamical systems, which can be used to measure the amount the system under consideration is chaotic. In this
regard, M. Khare [12] and, A. Ebrahimzadeh and J. Jamalzadeh [6] defined and studied shannon entropy and logical
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entropy on fuzzy σ−algebras. In this paper, we introduce and study the Tsallis entropy of order α of fuzzy σ−algebras
on F−probability measure spaces, where α ∈ (0, 1) ∪ (1,∞) , which is more general compared to Shannon entropy.
Moreover, we study the conditional version of this entropy and examine its basic properties.

2 Preliminaries

Let X be a non-empty set, and IX denote the set of all functions from X to the closed unit interval I = [0, 1]. A
fuzzy σ-algebra M on X [14] is a subfamily of IX which satisfies the following conditions.

(i) 1 ∈ M.

(ii) If λ ∈ M, then 1− λ ∈ M.

(iii) If {λ}∞i=1 ⊆ M, then
∨∞

i=1 λi = supi λi ∈ M.

If N1 and N2 are fuzzy σ-algebras on X, then N1 ∨N2 is the smallest fuzzy σ-algebra on X that contains N1 ∪N2.

An F -probability measure m on M is a function m : M → I which satisfies the following conditions.

(i) m(1) = 1.

(ii) m(1− λ) = 1−m(λ), λ ∈ M.

(iii) m(λ ∨ µ) +m(λ ∧ µ) = m(λ) +m(µ) for every λ, µ ∈ M.

(v) If {λ}∞i=1 ⊆ M and λi ↑ λ, then m(λ) = supi m(λi).

The triple (X,M,m) is called an F -probability measure space.

Definition 2.1. [28] Let (X,M,m) be an F−probability measure space. We define a relation on M, denoted by = (
mod m), via

λ = µ ( mod m) ⇐⇒ m(λ) = m(µ) = m(λ ∨ µ).

The relation = ( mod m) is an equivalence relation on M. The set of all equivalence classes induced by this
relation is denoted by M̃, and µ̃ denotes the equivalence class determined by µ.

We say that λ, µ ∈ M are m-disjoint if λ ∧ µ = 0 ( mod m), that is, m(λ ∧ µ) = 0.

Definition 2.2. [28] Let (X,M,m) be an F−probability measure space, and N be a fuzzy sub-σ-algebra of M. An
element µ̃ of Ñ is called an atom of N if m(µ) > 0 and for any λ̃ ∈ Ñ ,

m(λ ∧ µ) = m(λ) ̸= m(µ) ⇒ m(λ) = 0.

The set of all atoms of N is denoted by Ñ . Also, F(M) denotes the collection of fuzzy sub-σ-algebras of M having
finitely many atoms.

Definition 2.3. [28] Let (X,M,m) be an F−probability measure space, and N1,N2 be fuzzy sub-σ-algebras of M.
Then, N2 is called an m−refinement of N1, written as N1 ≤m N2, if for µ ∈ N̄2 there exists λ ∈ N̄1 such that
m(λ ∧ µ) = m(µ).

The fuzzy sub-σ-algebras N1,N2 are called m−equivalent, denoted by N1
∼=m N2, if

m
(
λ ∧

(∨
{µ : µ ∈ N̄2}

))
= m(λ)

for each λ ∈ N̄1, and

m
(
µ ∧

(∨
{λ : λ ∈ N̄1}

))
= m(µ)

for each µ ∈ N̄2.

The relation of m−equivalence is an equivalence relation on F(M), and [N ] denotes the set of all m−equivalent
fuzzy sub-σ-algebras in F(M).
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Theorem 2.4. [28] Let (X,M,m) be an F−probability measure space and N1,N2,N3 be elements of F(M). If
N1 ≤m N2, then N1 ∨N3 ≤m N2 ∨N3.

Definition 2.5. [27] Define a relation ∼ on F(M) by

N1 ∼ N2 ⇐⇒ N1 ≤m N2 and N2 ≤m N1.

Then, ∼ is an equivalence relation on F(M). This relation is called equivalence modulo 0.

3 The Tsallis entropy and the conditional Tsallis entropy

In this section, we define the Tsallis entropy and the conditional Tsallis entropy of fuzzy σ-algebras on an F -
probability measure space.

Definition 3.1. Let (X,M,m) be an F−probability measure space and N ∈ F(M), where N̄ = {λi : i = 1, . . . , s}
and α ∈ (0, 1) ∪ (1,∞). We define the Tsallis entropy Tα(N ) by

Tα(N ) =
1

α− 1
(1−

s∑
i=1

m(λi)
α). (3.1)

Definition 3.2. Let (X,M,m) be an F−probability measure space, N1,N2 ∈ F(M), and let N̄1 = {λi : i = 1, . . . , s},
N̄2 = {µj : j = 1, . . . , t}. We define the conditional Tsallis entropy Tα(N1|N2) by

Tα(N1|N2) =
1

α− 1

 t∑
j=1

m(µj)
α −

s∑
i=1

t∑
j=1

m(λi ∧ µj)
α

 . (3.2)

Remark 3.3. If N1,N2 ∈ F(M), then Tα(N1|N2) ≥ 0 and Tα(N1|N1) = 0.

Theorem 3.4. Let (X,M,m) be an F−probability measure space and N1,N2,N3 be elements of F(M). If N1
∼=m

N2
∼=m N3, then the following statements are true.

(i) Tα(N1 ∨N2|N3) = Tα(N1|N3) + Tα(N2|N1 ∨N3).

(ii) Tα(N1 ∨N2) = Tα(N1) + Tα(N2|N1).

(iii) Tα(N1|N2) = Tα(N1) + (1− α)Tα(N1)Tα(N2).

(iv) Tα(N1|N2) ≤ Tα(N1).

(v) Tα(N1 ∨N2) ≤ Tα(N1) + Tα(N2).

Proof . Let N̄1 = {λi : i = 1, . . . , s}, N̄2 = {µj : j = 1, . . . , t} and N̄3 = {γk : k = 1, . . . , l}. In [12], it is proved that
N1 ∨N2

∼= N3. Hence,

t∑
j=1

m(λi ∧ µj ∧ γk) = m

 t∨
j=1

(λi ∧ µj ∧ γk)


= m

(λi ∧ γk) ∧

 t∨
j=1

µj


= m(λi ∧ γk).
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Thus, using N1
∼= N2 we obtain

t∑
j=1

m(λi ∧ µj) = m

 t∨
j=1

(λi ∧ µj)


= m

λi ∧
t∨

j=1

µj


= m(λi).

(i)

Tα(N1 ∨N2|N3) =
1

α− 1

 l∑
k=1

m(γk)
α −

s∑
i=1

t∑
j=1

l∑
k=1

m(λi ∧ µj ∧ γk)
α


=

1

α− 1

(
l∑

k=1

m(γk)
α −

s∑
i=1

l∑
k=1

m(λi ∧ γk)
α

)

+
1

α− 1

 s∑
i=1

l∑
k=1

m(λi ∧ γk)
α −

s∑
i=1

t∑
j=1

l∑
k=1

m(λi ∧ µj ∧ γk)
α


= Tα(N1|N3) + Tα(N2|N1 ∨N3).

(ii) We know that N1 ∨ {1} = N1. Consequently,

Tα(N1|{1}) =
1

α− 1

 t∑
j=1

m({1})α −
s∑

i=1

t∑
j=1

m(λi ∧ {1})α


=
1

α− 1
(1−

s∑
i=1

m(λi)
α)

= Tα(N1).

Thus, according to the first part, we can write

Tα(N1 ∨N2) = Tα(N1 ∨N2|{1})
= Tα(N1|{1}) + Tα(N2|N1 ∨ {1})
= Tα(N1) + Tα(N2|N1).

(iii) By Definition 3.1,

(1− α)Tα(N1)Tα(N2) = (1− α)
1

α− 1

(
1−

s∑
i=1

m(λi)
α

)
1

α− 1

1−
t∑

j=1

m(µj)
α

 .

Thus, Definition 3.2 allows us to write

(1− α)Tα(N1)Tα(N2) = Tα(N1|N2)− Tα(N1).
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(iv) By Definition 3.2,

Tα(N1|N2) =
1

α− 1

 t∑
j=1

m(µj)
α −

s∑
i=1

t∑
j=1

m(λi ∧ µj)
α


=

1

α− 1

 t∑
j=1

m(µj)
α −

s∑
i=1

m(λi)
α


≤ 1

α− 1

(
1−

s∑
i=1

m(λi)
α

)
= Tα(N1).

(v) Letting N3 = {1} in (i) we obtain

Tα(N1 ∨N2|{1}) = Tα(N1|{1}) + Tα(N2|N1 ∨ {1}).

Therefore,

Tα(N1 ∨N2) = Tα(N1) + Tα(N2|N1).

Finally, by (iv),

Tα(N1 ∨N2) ≤ Tα(N1) + Tα(N2).

□

Theorem 3.5. Let (X,M,m) be an F−probability measure space and N1,N2,N3 be elements of F(M). If N1
∼=m

N2
∼=m N3, then the following statements are true.

(i) Tα(N1|N2) = 0 ⇐⇒ N1 ≤m N2.

(ii) Tα(N1 ∨N2) = Tα(N1) ⇐⇒ N1 ≤m N2.

(iii) If N1 ∼ N2, then Tα(N1) = Tα(N2).

(iv) If N1 ∼ N2, then Tα(N1|N3) = Tα(N2|N3).

(v) If N2 ∼ N3, then Tα(N1|N2) = Tα(N1|N3).

Proof . Let N̄1 = {λi : i = 1, . . . , s}, N̄2 = {µj : j = 1, . . . , t} and N̄3 = {γk : k = 1, . . . , l}.
(i) Suppose that N1 ≤m N2. Then, for any µj ∈ N2 there exists λi ∈ N1 such that m(λi ∧ µj) = m(µj).

Tα(N1|N2) =
1

α− 1

 t∑
j=1

m(µj)
α −

s∑
i=1

t∑
j=1

m(λi ∧ µj)
α


=

1

α− 1

 t∑
j=1

m(µj)
α −

s∑
i=1

t∑
j=1

m(µj)
α


= 0.

(ii) Suppose that N1 ≤m N2. Then,

Tα(N1 ∨N2) =
1

α− 1
(1−

s∑
i=1

t∑
j=1

m(λi ∧ µj)
α)

=
1

α− 1
(1−

s∑
i=1

t∑
j=1

m(µj)
α)

= Tα(N2).
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(iii) By Definition 2.5, N1 ≤m N2 and N2 ≤m N1. Since N1 ≤m N2, we obtain Tα(N1|N2) = 0 and Tα(N1∨N2) =
Tα(N2) + Tα(N1|N2). Thus, Tα(N2 ∨N1) = Tα(N2).

Similarly, from N2 ≤m N1 we deduce that Tα(N1|N2) = 0 and Tα(N1 ∨ N2) = Tα(N1) + Tα(N2|N1). Thus,
Tα(N1 ∨N2) = Tα(N1) and Tα(N1) = Tα(N2).

(iv) Since N1 ∼ N2, by Theorem 2.4, N1 ∨N3 ∼ N2 ∨N3. By Theorem 3.4 and (ii) we obtain

Tα(N1|N3) = Tα(N1 ∨N3)− Tα(N3)

= Tα(N2 ∨N3)− Tα(N3)

= Tα(N2|N3).

(v) Since N2 ∼ N3, by Theorem 2.4, N1 ∨N2 ∼ N1 ∨N3. By Theorem 3.4 and (ii),

Tα(N1|N2) = Tα(N1 ∨N2)− Tα(N2)

= Tα(N1 ∨N3)− Tα(N3)

= Tα(N1|N3).

□

In the following example, we discuss some results of Theorem 3.4.

Example 3.6. Let X = [0, 1], N1 = {λ1, λ2} and N2 = {µ1, µ2}, where λi : [0, 1] → [0, 1] and µj : [0, 1] → [0, 1] are
defined by λ1 = x, λ2 = 1− x and µ1 = x2, µ2 = 1− x2.

It is clear that N1 and N2 are fuzzy σ−algebras on X. Define m1 : N1 → [0, 1] by m(λi) =
∫ 1

0
λi(x)dx and

m2 : N2 → [0, 1] by m(µj) =
∫ 1

0
µj(x)dx.

Also, let ∨ and ∧ denote the supremum and infimum, respectively. It is easy to see that m1,m2 are F−probability
measure spaces on N1 and N2. So, (X,N1,m1) and (X,N2,m2) are F−probability measure spaces.

Since m(λ1) = m(λ2) =
1
2 , m(µ1) =

1
3 and m(µ2) =

2
3 , by Definition 3.1,

T2(N1) = 1− (m(λ1)
2 +m(λ2)

2) =
1

2
,

T2(N2) = 1− (m(µ1)
2 +m(µ2)

2) =
4

9
,

T3(N1) =
1

2
(1− (m(λ1)

3 +m(λ2)
3)) =

3

8
,

and

T3(N2) =
1

2
(1− (m(µ1)

3 +m(µ2)
3)) =

1

3
.

Thus, by using

Tα(N1 ∨N2) =
1

α− 1

1−
s∑

i=1

t∑
j=1

m(λi ∧ µj)
α


we obtain

N1 ∨N2 = {λ1 ∧ µ1, λ1 ∧ µ2, λ2 ∧ µ1, λ2 ∧ µ2}

and

m(λ1 ∧ µ1) = m(λ1 ∧ µ2) =
1

4
, m(λ2 ∧ µ1) =

1

12
, m(λ2 ∧ µ2) =

5

12
.
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Therefore,

T2(N1 ∨N2) = 1−
2∑

i=1

2∑
j=1

m(λi ∧ µj)
2 =

25

36

and

T3(N1 ∨N2) =
1

2
(1−

2∑
i=1

2∑
j=1

m(λi ∧ µj)
3) =

43

96
.

Thus, we conclude that T2(N1 ∨ N2) ≤ T2(N1) + T2(N2) and T3(N1 ∨ N2) ≤ T3(N1) + T3(N2), which are consistent
with assertion (v) of Theorem 3.4.

By Definition 3.2 we obtain the conditional Tsallis entropies

T2(N1|N2) =

2∑
j=1

m(µj)
2 −

2∑
i=1

2∑
j=1

m(λi ∧ µj)
2 =

1

4

and

T2(N2|N1) =

2∑
i=1

m(λi)
2 −

2∑
i=1

2∑
j=1

m(λi ∧ µj)
2 =

7

36
.

Similarly, we get the conditional Tsallis entropies

T3(N1|N2) =
1

2

 2∑
j=1

m(µj)
3 −

2∑
i=1

2∑
j=1

m(λi ∧ µj)
3

 =
11

96

and

T3(N2|N1) =
1

2

 2∑
i=1

m(λi)
3 −

2∑
i=1

2∑
j=1

m(λi ∧ µj)
3

 =
7

96
.

Therefore, it can be seen that T2(N1|N2) ≤ T2(N1) and T2(N2|N1) ≤ T2(N2), and we conclude T3(N1|N2) ≤ T3(N1)
and T3(N2|N1) ≤ T3(N2).

Commuting N1 and N2, and using elementary calculations, we find that parts (ii) and (iii) of Theorem 3.4 can be
proved.

Definition 3.7. Let (X,M, s) be a fuzzy probability space. If a, b ∈ M, then we define:

s(a/b) =

{
s(a∩b)
s(b) if s(b) > 0

0 if s(b) = 0.
(3.3)

Let s : M → [0, 1] be a fuzzy P-measure, and let b ∈ M be such that s(b) > 0. Then, the map s(./b) : M → [0, 1]
defined by Equation 3.3 is a fuzzy P -measure. It plays the role of a conditional probability measure on the family M
of fuzzy events. The following definition of a fuzzy partition was introduced in [21].

Definition 3.8. [21] A fuzzy partition of a fuzzy probability space (X,M, s) is a family α = {a1, a2, ..., an} of pairwise
W-separated fuzzy sets from M with the property s(∪n

i=1ai) = 1.

In the class of all fuzzy partitions of a fuzzy probability space (X,M, s), we define the refinement partial order
as follows. If α = {a1, a2, . . . , ak} and β = {b1, b2, . . . , bl} are two fuzzy partitions of (X,M, s), then we say that β
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is a refinement of α (and we write α ≺ β), if there exists a partition {I1, I2, . . . , Ik} of the set {1, 2, . . . , l} such that
ai =

⋃
j∈li

bj , for i = 1, 2, . . . , k. Further, we set α ∨ β = {ai ∩ bj ; i = 1, 2, . . . , k, j = 1, 2, . . . , l}. One can easily verify
that the family α ∨ β is a family of pairwise W-separated fuzzy sets from M; moreover,

s
(
∪k
i=1 ∪l

j=1 (ai ∩ bj)
)
= s

(
(∪k

i=1ai) ∩ (∪l
j=1bj)

)
= s

(
∪k
i=1ai

)
= 1.

This means that α ∨ β is a fuzzy partition of (X,M, s) ; it represents a combined experiment consisting of a
realization of the experiments α and β. If α1, α2, . . . , αn are fuzzy paritions of (X,M, s), then we put

∨n
i=1 αi =

α1 ∨ α2 ∨ . . . ∨ αn.

In the following example, we study the Tsallis entropy of some fuzzy partitions.

Example 3.9. Consider the P-partitions P1 =
{
[0, 1

3 ), [
1
3 ,

2
3 ), [

2
3 , 1]

}
, P2 =

{
[0, 1

4 ), [
1
4 ,

1
2 ), [

1
2 ,

4
5 ), [

4
5 , 1]

}
, P3 =

{
[0, 1

5 )

, [ 15 ,
1
3 ), [

1
3 ,

3
4 ), [

3
4 , 1]

}
, and P4 =

{
[0, 1

8 ), [
1
8 ,

5
8 ), [

5
8 ,

3
4 ), [

3
4 ,

7
8 ), [

1
8 , 1]

}
. Then,

P1 ∨ P2 =

{
[0,

1

4
), [

1

4
,
1

3
), [

1

3
,
1

2
), [

1

2
,
2

3
), [

2

3
,
4

5
), [

4

5
, 1]

}
,

P2 ∨ P3 =

{
[0,

1

5
), [

1

5
,
1

4
), [

1

4
,
1

3
), [

1

3
,
1

2
), [

1

2
,
3

4
), [

3

4
,
4

5
), [

4

5
, 1]

}
and

P1 ∨ P3 =

{
[0,

1

5
), [

1

5
,
1

3
), [

1

3
,
2

3
), [

2

3
,
3

4
), [

3

4
, 1]

}
are common refinements of P1 and P2, P2 and P3, P1 and P3 , respectively; common refinement of the (finite)
combinations of P-partitions may be obtained similarly. The Tsallis entropies of these P-partitions are

T2(P1) = 1−
(
(
1

3
)2 + (

1

3
)2 + (

1

3
)2
)

=
2

3
,

T2(P2) = 1−
(
(
1

4
)2 + (

1

4
)2 + (

3

10
)2 + (

1

5
)2
)

=
149

200
,

T2(P3) = 1−
(
(
1

5
)2 + (

2

15
)2 + (

5

12
)2 + (

1

4
)2
)

=
1271

1800
,

T3(P1) =
1

2

(
1−

(
(
1

3
)3 + (

1

3
)3 + (

1

3
)3
))

=
4

9
,

T3(P2) =
1

2

(
1−

(
(
1

4
)3 + (

1

4
)3 + (

3

10
)3 + (

1

5
)3
))

=
747

1600
,

T3(P3) =
1

2

(
1−

(
(
1

5
)3 + (

2

15
)3 + (

5

12
)3 + (

1

4
)3
))

=
541

1200

Therefore,

T2(P1 ∨ P2) =
1

2− 1

(
1−

(
(
1

4
)2 + (

1

12
)2 + (

1

6
)2 + (

1

6
)2 + (

2

15
)2 + (

1

5
)2
))

=
1471

1800
,

T2(P1 ∨ P3) = 1−
(
(
1

5
)2 + (

2

15
)2 + (

1

3
)2 + (

1

12
)2 + (

1

4
)2
)

=
457

600
,

T2(P2 ∨ P3) = 1−
(
(
1

5
)2 + (

1

20
)2 + (

1

12
)2 + (

1

6
)2 + (

1

4
)2 + (

1

20
)2 + (

1

5
)2
)

=
184

225

and,

T3(P1 ∨ P2) =
1

2

(
1−

(
(
1

4
)3 + (

1

12
)3 + (

1

6
)3 + (

1

6
)3 + (

2

15
)3 + (

1

5
)3
))

=
1157

2400
,
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T3(P1 ∨ P3) =
1

2

(
1−

(
(
1

5
)3 + (

1

15
)3 + (

1

3
)3 + (

1

12
)3 + (

1

4
)3
))

=
3371

7200
,

T3(P2 ∨ P3) =
1

2

(
1−

(
(
1

5
)3 + (

1

20
)3 + (

1

12
)3 + (

1

6
)3 + (

1

4
)3 + (

1

20
)3) + (

1

5
)3
))

=
2311

4800

Now, we obtain the conditional tsallis entropies

T2(P1|P2) =

(
(
1

4
)2 + (

1

4
)2 + (

3

10
)2 + (

1

5
)2
)
−
(
(
1

4
)2 + (

1

12
)2 + (

1

6
)2 + (

1

6
)2 + (

2

15
)2 + (

1

5
)2
)

=
13

180
,

T2(P2|P1) =

(
(
1

3
)2 + (

1

3
)2 + (

1

3
)2
)
−
(
(
1

4
)2 + (

1

12
)2 + (

1

6
)2 + (

1

6
)2 + (

2

15
)2 + (

1

5
)2
)

=
271

1800
,

T2(P1|P3) =

(
(
1

5
)2 + (

2

15
)2 + (

5

12
)2 + (

1

4
)2
)
−
(
(
1

5
)2 + (

2

15
)2 + (

1

3
)2 + (

1

12
)2 + (

1

4
)2
)

=
100

1800
,

T2(P3|P1) =

(
(
1

3
)2 + (

1

3
)2 + (

1

3
)2
)
−
(
(
1

5
)2 + (

2

15
)2 + (

1

3
)2 + (

1

12
)2 + (

1

4
)2
)

=
219

1800

T2(P2|P3) =

(
(
1

5
)2 + (

2

15
)2 + (

5

12
)2 + (

1

4
)2
)
−
(
(
1

5
)2 + (

1

20
)2 + (

1

12
)2 + (

1

6
)2 + (

1

4
)2 + (

1

20
)2 + (

1

5
)2
)

=
201

1800
,

T2(P3|P2) =

(
(
1

4
)2 + (

1

4
)2 + (

3

10
)2 + (

1

5
)2
)
−
(
(
1

5
)2 + (

1

20
)2 + (

1

12
)2 + (

1

6
)2 + (

1

4
)2 + (

1

20
)2 + (

1

5
)2
)

=
131

1800
,

T3(P1|P2) =
1

2

{(
(
1

4
)3 + (

1

4
)3 + (

3

10
)3 + (

1

5
)3
)
−
(
(
1

4
)3 + (

1

12
)3 + (

1

6
)3 + (

1

6
)3 + (

2

15
)3 + (

1

5
)3
)}

=
73

4800
,

T3(P2|P1) =
1

2

((
(
1

3
)3 + (

1

3
)3 + (

1

3
)3
)
−
(
(
1

4
)3 + (

1

12
)3 + (

1

6
)3 + (

1

6
)3 + (

2

15
)3 + (

1

5
)3
))

=
271

7200
,
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T3(P1|P3) =
1

2

((
(
1

5
)3 + (

2

15
)3 + (

5

12
)3 + (

1

4
)3
)
−
(
(
1

5
)3 + (

2

15
)3 + (

1

3
)3 + (

1

12
)3 + (

1

4
)3
))

=
5

288
,

T3(P3|P1) =
1

2

((
(
1

3
)3 + (

1

3
)3 + (

1

3
)3
)
−
(
(
1

5
)3 + (

2

15
)3 + (

1

3
)3 + (

1

12
)3 + (

1

4
)3
))

=
109

432

T3(P2|P3) =
1

2

{(
(
1

5
)3 + (

2

15
)3 + (

5

12
)3 + (

1

4
)3
)
−
(
(
1

5
)3 + (

1

20
)3 + (

1

12
)3 + (

1

6
)3 + (

1

4
)3 + (

1

20
)3 + (

1

5
)3
)}

=
49

1600
,

T3(P3|P2) =
1

2

{(
(
1

4
)3 + (

1

4
)3 + (

3

10
)3 + (

1

5
)3
)
−
(
(
1

5
)3 + (

1

20
)3 + (

1

12
)3 + (

1

6
)3 + (

1

4
)3 + (

1

20
)3 + (

1

5
)3
)}

=
7

240
.

Conclusion

Fuzzy sets provide a mathematical models for random experiments whose outcomes are unclear, inaccurately
defined events. M. Khare [12] and, A. Ebrahimzadeh and J. Jamalzadeh [6] introduced and studied the Shannon
entropy and the logical entropy of fuzzy σ-algebras on F−probability measure spaces. The Tsallis entropy plays a
significant role in the non-extensive statistical mechanics of complex systems. Some applications of the Tsallis entropy
have been found in a wide range of phenomena in diverse disciplines such as chemistry, physics, geophysics, biology,
economics,a medicine [1, 2, 4, 3, 7, 9, 10, 19, 22, 24, 29, 32, 34]. Also, the entropy has been applied to large domains
in communication systems. In this paper, we introduced and investigate the Tsallis entropy of order α of fuzzy σ-
algebras on F−probability measure spaces, where α ∈ (0, 1) ∪ (1,∞). Also, we introduced the conditional version of
this entropy and examine its properties. In future studies, we aim to investigated Renyi entropy on fuzzy σ-algebras.
Also, we will define and examine Renyi and Tsallis entropies of functions on fuzzy dynamical systems as a applicable
system.
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