
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,816 |
تعداد دریافت فایل اصل مقاله | 7,656,334 |
معرفی ساختارهای نامتجانس دوبعدی XMoSiP2/BP (X= S, Se) به عنوان کاتالیست نوریِ مناسب برای جداسازیِ کامل آب | ||
مدل سازی در مهندسی | ||
دوره 22، شماره 78، آبان 1403، صفحه 123-140 اصل مقاله (3.77 M) | ||
نوع مقاله: مقاله برق | ||
شناسه دیجیتال (DOI): 10.22075/jme.2024.32114.2549 | ||
نویسندگان | ||
سمیه غلامی1؛ نیره قبادی2؛ سمانه سلیمانی* 3 | ||
1استادیار، گروه مهندسی برق، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران | ||
2دانشیار، دانشکده مهندسی برق، دانشگاه زنجان، زنجان، ایران | ||
3استادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران | ||
تاریخ دریافت: 30 مهر 1402، تاریخ بازنگری: 10 بهمن 1402، تاریخ پذیرش: 23 بهمن 1402 | ||
چکیده | ||
در این مقاله با استفاده از نظریه تابع چگالی خواص ساختاری، الکترونیکی و نورکاتالیستیِ پیوندهای XMoSiP2/BP (X= S, Se) را بررسی میکنیم. پایداریِ این ساختارها توسط پراکندگی فونون و انرژی تشکیل اثبات میشود. توزیع پتانسیل و اختلاف چگالی بارِ محاسبه شده برای ساختارهای نامتجانسِ XMoSiP2/BP حاکی از وجودِ یک میدانِ خودساخته در این پیوندهاست. دیاگرام نوار انرژی نشان میدهد این پیوندها دارای شکاف انرژی مستقیم در محدوده 66/0 تا 27/1 الکترونولت هستند. با مشخص کردن سهم BP و XMoSiP2 در دیاگرام نوار انرژیِ XMoSiP2/BP نشان داده میشود که ساختارهای بررسی شده دارای همترازی نواریِ نوع II هستند که آنها را برای به کارگیری به عنوان کاتالیست نوری در جداسازی آب مناسب میسازد. قابلیت تحرک بالا )حداکثر cm2 V-1 s-1 9806 برای الکترونها و حداکثرcm2 V-1 s-1 53500 برای حفرهها) اختلافِ زیادِ قابلیت تحرک در جهات x و y و همچنین تفاوتِ قابل توجه در قابلیت تحرکِ الکترونها و حفرهها، کاراییِ این ساختارها را به عنوان کاتالیست نوری افزایش میدهد. محاسبات نوری نشان میدهد ضرایب جذب نوریِ ساختارهای نامتجانس XMoSiP2/BP در اغلبِ مناطق طیف خورشید از تکلایههای تشکیلدهنده خود بزرگتر بوده و مقادیرِ بالای ضرایب جذب در نواحی مرئی و ماوراء بنفش بیانگر قابلیتِ بسیار خوبِ ساختارهای نامتجانس پیشنهادی در استفاده از نور خورشید است. بررسی موقعیت لبههای نوار ظرفیت و هدایت نسبت به سطوح اکسایش و کاهش آب نشان میدهد که دو ساختار از چهار ساختار نامتجانسِ پیشنهادی میتوانند به عنوان کاتالیستهای نوریِ خوبی برای جداسازیِ کامل آب و تولید همزمانِ اکسیژن و هیدروژن مورد استفاده قرار گیرند. | ||
کلیدواژهها | ||
واژگان کلیدی: مواد دو بعدی؛ ساختارهای نامتجانس؛ جداسازی کامل آب؛ کاتالیست نوری؛ نظریه تابع چگالی | ||
عنوان مقاله [English] | ||
Two-dimensional XMoSiP2/BP (X= S, Se) Heterostructures as Efficient Photocatalysts for Overall Water Splitting | ||
نویسندگان [English] | ||
Somayeh Gholami Rudi1؛ Nayereh Ghobadi2؛ Samaneh Soleimani-Amiri3 | ||
1Assistant Professor, Department of Electrical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran | ||
2Associate Professor, Faculty of Electrical Engineering, University of Zanjan, Zanjan, Iran | ||
3Assistant Professor, Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, 484, Iran | ||
چکیده [English] | ||
In this article, we investigate the structural, electronic and photocatalytic properties of XMoSiP2/BP (X= S, Se) heterojunctions using density functional theory. The stability of these structures is verified by phonon scattering and formation energy. The potential distribution calculated for different stackings of XMoSiP2/BP heterojunctions indicate the existence of a built-in electric field in these structures. The band diagram shows that these structures have a direct band gap in the range of 0.66 to 1.27 eV. By determining the contribution of BP and XMoSiP2 in the energy band diagram of XMoSiP2/BP, it is shown that the investigated structures have type II band alignment, which renders them as suitable photocatalysts for water splitting. High carrier mobility (up to 9806 cm2 V-1 s-1 for electrons and up to 53500 cm2 V-1 s-1 for holes), anisotropic mobilities in x and y directions, as well as significant difference in mobility of electrons and holes increase the efficiency of these structures as photocatalysts. Optical calculations show that the optical absorption coefficients of XMoSiP2/BP heterostructures are greater than their constituent monolayers in most regions of the solar spectrum, and the high values of absorption coefficients in the visible and ultraviolet regions indicate the high capability of these heterostructures in utilizing the sunlight. Examining the position of the edges of the valence and conduction bands with respect to the redox levels of water shows that two of the proposed heterostructures can be used as good photocatalysts for overall water splitting and simultaneous production of oxygen and hydrogen. | ||
کلیدواژهها [English] | ||
Two-dimensional materials, Heterostructures, Overall water splitting, Photocatalyst, Density functional theory | ||
مراجع | ||
[1] Y. Zhang, J. Wan, C. Zhang, and X. Cao. "MoS2 and Fe2O3 co-modify g-C3N4 to improve the performance of photocatalytic hydrogen production." Scientific Reports 12, no. 1 (2022): 3261. [2] Z. Wang, X. Huang, and X. Wang. "Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting." Catalysis Today 335 (2019): 31-38. [3] R. Zhang, L. Zhang, Q. Zheng, P. Gao, J. Zhao, and J. Yang. "Direct Z-scheme water splitting photocatalyst based on two-dimensional Van Der Waals heterostructures." The Journal of Physical Chemistry Letters 9, no. 18 (2018): 5419-5424. [4] S. Ye, R. Wang, M.Z. Wu, and Y.P. Yuan. "A review on g-C3N4 for photocatalytic water splitting and CO2 reduction." Applied Surface Science 358 (2015): 15-27. [5] A. Slassi. "Band offset engineering at C 2 N/MSe 2 (M= Mo, W) interfaces." RSC advances 12, no. 19 (2022): 12068-12077. [6] S. Chen, T. Takata, and K. Domen. "Particulate photocatalysts for overall water splitting." Nature Reviews Materials 2, no. 10 (2017): 1-17. [7] S. Vinoth and A. Pandikumar. "Ni integrated S-gC3N4/BiOBr based Type-II heterojunction as a durable catalyst for photoelectrochemical water splitting." Renewable Energy 173 (2021): 507-519. [8] M. Liu, M.B. Johnston, and H.J. Snaith. "Efficient planar heterojunction perovskite solar cells by vapour deposition." Nature 501, no. 7467 (2013): 395-398. [9] M. Idrees, H. Din, S. Khan, I. Ahmad, L.Y. Gan, C.V. Nguyen, and B. Amin. "Van der Waals heterostructures of P, BSe, and SiC monolayers." Journal of Applied Physics 125, no. 9 (2019). [10] N. Ghobadi, A. Rezavand, S. Soleimani-Amiri, and S.G. Rudi. "Surface-functionalization induced spintronic and photocatalytic features in group-III monochalcogenide monolayers: A first-principles study." Applied Surface Science 639 (2023): 158278. [11] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov. "Electric field effect in atomically thin carbon films." Science 306, no. 5696 (2004): 666-669. [12] S. Wang, F. Pratama, M.S. Ukhtary, and R. Saito. "Independent degrees of freedom in two-dimensional materials." Physical Review B 101, no. 8 (2020): 081414. [13] R.S. Hosseini Almadvari, M. Nayeri, and S. Fotoohi. "Study of the electronic and optical properties of doped gallium sulfide monolayer by first principles calculations." journal of Modeling in Engineering 20, no. 68 (2021): 47-58. (in Persian) [14] N. Ghobadi. "Investigation of Electronic Properties and Interlayer Current Characteristics of Janus two-dimensional MoSi2PmAsn and MoSi2AsmSbn." journal of Modeling in Engineering 20, no. 71 (2022): 43-60. (in Persian) [15] B.J. Wang, X.H. Li, R. Zhao, X.L. Cai, W.Y. Yu, W.B. Li, Z.S. Liu, L.W. Zhang, and S.H. Ke. "Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures." Journal of Materials Chemistry A 6, no. 19 (2018): 8923-8929. [16] J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, and J. Yu. "A review of direct Z‐scheme photocatalysts." Small Methods 1, no. 5 (2017): 1700080. [17] R. Kumar, D. Das, and A.K. Singh. "C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst." Journal of Catalysis 359 (2018): 143-150. [18] B. You, X. Wang, Z. Zheng, and W. Mi. "Black phosphorene/monolayer transition-metal dichalcogenides as two-dimensional van der Waals heterostructures: a first-principles study." Physical Chemistry Chemical Physics 18, no. 10 (2016): 7381-7388. [19] S. Gao, L. Yang, and C.D. Spataru. "Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures." Nano Letters 17, no. 12 (2017): 7809-7813. [20] C. Zhang, Y. Nie, T. Liao, L. Kou, and A. Du. "Predicting ultrafast Dirac transport channel at the one-dimensional interface of the two-dimensional coplanar ZnO/Mo S 2 heterostructure." Physical Review B 99, no. 3 (2019): 035424. [21] D. Huang, and E. Kaxiras. "Electric field tuning of band offsets in transition metal dichalcogenides." Physical Review B 94, no. 24 (2016): 241303. [22] Z. Guan, C.S. Lian, S. Hu, S. Ni, J. Li, and W. Duan. "Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der Waals heterostructure as photovoltaic material." The Journal of Physical Chemistry C 121, no. 6 (2017): 3654-3660. [23] S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun. "MoS 2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study." Physical Chemistry Chemical Physics 20, no. 19 (2018): 13394-13399. [24] H.J. Chuang, B. Chamlagain, M. Koehler, M.M. Perera, J. Yan, D. Mandrus, D. Tomanek, and Z. Zhou. "Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors." Nano Letters 16, no. 3 (2016): 1896-1902. [25] D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis. "Room-temperature electrical control of exciton flux in a van der Waals heterostructure." Nature 560, no. 7718 (2018): 340-344. [26] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, P.M. Ajayan. "Vertical and in-plane heterostructures from WS 2/MoS 2 monolayers." Nature Materials 13, no. 12 (2014): 1135-1142. [27] C. Jin, E.C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, and k. Watanabe. "Observation of moiré excitons in WSe2/WS2 heterostructure superlattices." Nature 567, no. 7746 (2019): 76-80. [28] V.O. Özcelik, J.G. Azadani, C. Yang, S.J. Koester, and T. Low. "Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching." Physical Review B 94, no. 3 (2016): 035125. [29] X. Huang, L. Xu, H. Li, S. Tang, Z. Ma, J. Zeng, F. Xiong, Z. Li, and L.L. Wang. "Two-dimensional PtSe2/hBN vdW heterojunction as photoelectrocatalyst for the solar-driven oxygen evolution reaction: a first principles study." Applied Surface Science 570 (2021): 151207. [30] Y. Luo, K. Ren, S. Wang, J.P. Chou, J. Yu, Z. Sun, and M. Sun. "First-principles study on transition-metal dichalcogenide/BSe van der Waals heterostructures: a promising water-splitting photocatalyst." The Journal of Physical Chemistry C 123, no. 37 (2019): 22742-22751. [31] W. Sheng, Y. Xu, M. Liu, G. Nie, J. Wang, and S. Gong. "The InSe/SiH type-II van der Waals heterostructure as a promising water splitting photocatalyst: a first-principles study." Physical Chemistry Chemical Physics 22, no. 37 (2020): 21436-21444. [32] Y.L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M.L. Chen, D.M. Sun, and X.Q. Chen. "Chemical vapor deposition of layered two-dimensional MoSi2N4 materials." Science 369, no. 6504 (2020): 670-674. [33] S. Li, W. Wu, X. Feng, S. Guan, W. Feng, Y. Yao, and S.A. Yang. "Valley-dependent properties of monolayer MoSi 2 N 4, WSi 2 N 4, and MoSi 2 As 4." Physical Review B 102, no. 23 (2020): 235435. [34] S.D. Guo, Y.T. Zhu, W.Q. Mu, L. Wang, and X.Q. Chen. "Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4 (M= Mo and W)." Computational Materials Science 188 (2021): 110223. [35] X. Liu, H. Zhang, Z. Yang, Z. Zhang, X. Fan, and H. Liu. "Structure and electronic properties of MoSi2P4 monolayer." Physics Letters A 420 (2021): 127751. [36] Y. Gao, J. Liao, H. Wang, Y. Wu, Y. Li, K. Wang, C. Ma, S. Gong, T. Wang, X. Dong, Z. Jiao, and Y. An. "Electronic transport properties and nanodevice designs for monolayer Mo Si 2 P 4." Physical Review Applied 18, no. 3 (2022): 034033. [37] H.T. Nguyen, C.Q. Nguyen, N.A. Poklonski, C. Duque, H.V. Phuc, D.V. Lu, and N.N. Hieu. "Structural, electronic, and transport properties of Janus XMoSiP2 (S, Se, Te) monolayers: a first-principles study." Journal of Physics D: Applied Physics 56, no. 38 (2023): 385306. [38] S.G. Rudi, S. Soleimani-Amiri, A. Rezavand, and N. Ghobadi. "Enhanced performance of Janus XMSiY2 (X= S, Se; M= Mo, W; and Y= N, P) monolayers for photocatalytic water splitting via strain engineering." Journal of Physics and Chemistry of Solids 181 (2023): 111561. [39] H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci. "Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations." Physical Review B—Condensed Matter and Materials Physics 80, no. 15 (2009): 155453. [40] M. Xie, S. Zhang, B. Cai, Z. Zhu, Y. Zou, and H. Zeng. "Two-dimensional BX (X= P, As, Sb) semiconductors with mobilities approaching graphene." Nanoscale 8, no. 27 (2016): 13407-13413. [41] S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, and M.E. Lee. "QuantumATK: an integrated platform of electronic and atomic-scale modelling tools." Journal of Physics: Condensed Matter 32, no. 1 (2019): 015901. [42] J.P. Perdew, K. Burke, and M. Ernzerhof. "Generalized gradient approximation made simple." Physical Review Letters 77, no. 18 (1996): 3865. [43] M. Marsman, J. Paier, A. Stroppa, G. Kresse. "Hybrid functionals applied to extended systems." Journal of Physics: Condensed Matter 20, no. 6 (2008): 064201. [44] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu." The Journal of Chemical Physics 132, no. 15 (2010). [45] A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y. Yang. "Janus monolayers of transition metal dichalcogenides." Nature Nanotechnology 12, no. 8 (2017): 744-749. [46] C.Q. Nguyen, Y.S. Ang, S.T. Nguyen, N.V. Hoang, N.M. Hung, and C.V. Nguyen. "Tunable type-II band alignment and electronic structure of C 3 N 4/MoSi 2 N 4 heterostructure: Interlayer coupling and electric field." Physical Review B 105, no. 4 (2022): 045303. [47] J. Yu, and W.L. Guo. "Strain tunable electronic and magnetic properties of pristine and semihydrogenated hexagonal boron phosphide." Applied Physics Letters 106, no. 4 (2015). [48] S. Soleimani-Amiri, N. Ghobadi, A. Rezavand, and S. Gholami Rudi. "First-principles prediction of two-dimensional Janus XMInZ2 (X= Cl, Br, I; M= Mg, Ca; and Z= S, Se, and Te) with promising spintronic and photocatalytic properties." Applied Surface Science 623 (2023): 157020. [49] X.X. Li, Z.Y. Li, and J.L. Yang. "Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light." Physical Review Letters 112, no. 1 (2014): 018301. [50] K. Kaasbjerg, K.S. Thygesen, and A.P. Jauho. "Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS 2 from first principles." Physical Review B—Condensed Matter and Materials Physics 87, no. 23 (2013): 235312. [51] Y. Guo, J. Min, X. Cai, L. Zhang, C. Liu, and Y. Jia. "Two-dimensional type-II BP/MoSi2P4 vdW heterostructures for high-performance solar cells." The Journal of Physical Chemistry C 126, no. 9 (2022): 4677-4683. [52] M.K. Mohanta, A. Rawat, N. Jena, Dimple, R. Ahammed, and A. De Sarkar. "Interfacing boron monophosphide with molybdenum disulfide for an ultrahigh performance in thermoelectrics, two-dimensional excitonic solar cells, and nanopiezotronics." ACS Applied Materials & Interfaces 12, no. 2 (2019): 3114-3126. [53] X. Cai, Z. Zhang, Y. Zhu, L. Lin, W. Yu, Q. Wang, X. Yang, X. Jia, and Y. Jia. "A two-dimensional MoSe 2/MoSi 2 N 4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties." Journal of Materials Chemistry C 9, no. 31 (2021): 10073-10083. [54] S.G. Rudi, and S. Soleimani-Amiri. "Modulation of electronic and optical properties of line defected armchair MoS2 nanoribbon by vacancy passivation." Journal of Physics: Condensed Matter 33, no. 18 (2021): 185503. [55] Y.B. Wu, C. He, F.S. Han, and W.X. Zhang. "Construction of an arsenene/g-C3N4 hybrid heterostructure towards enhancing photocatalytic activity of overall water splitting: a first-principles study." Journal of Solid-State Chemistry 299 (2021): 122138. [56] K. Ren, J. Yu, and W. Tang. "First-principles study of two-dimensional van der Waals heterostructure based on ZnO and Mg (OH) 2: A potential photocatalyst for water splitting." Physics Letters A 383, no. 29 (2019): 125916. [57] K. Cheng, J. Xu, X. Guo, S. Guo, and Y. Su. "2D layered BP/InSe and BP/Janus In 2 SeX (X= S or Te) type-II van der Waals heterostructures for photovoltaics: insight from first-principles calculations." Physical Chemistry Chemical Physics 25, no. 26 (2023): 17360-17369. | ||
آمار تعداد مشاهده مقاله: 243 تعداد دریافت فایل اصل مقاله: 126 |