
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
ارزیابی میزان خرابی پل بتنی با پایههای فولادی تحت اثر بارهای انفجاری | ||
مدل سازی در مهندسی | ||
دوره 22، شماره 78، آبان 1403، صفحه 297-316 اصل مقاله (1.5 M) | ||
نوع مقاله: مقاله عمران | ||
شناسه دیجیتال (DOI): 10.22075/jme.2024.28278.2328 | ||
نویسندگان | ||
سهراب میراثی* 1؛ محمد مومنی2؛ احمد حسینی موردراز3 | ||
1استادیار، دانشکده مهندسی عمران، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران | ||
2استادیار، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فسا، فسا، ایران | ||
3دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران | ||
تاریخ دریافت: 12 شهریور 1401، تاریخ بازنگری: 19 بهمن 1402، تاریخ پذیرش: 28 بهمن 1402 | ||
چکیده | ||
زیربنای سیستم حملونقل در هر کشوری شامل راهها، بزرگراهها و پلها میباشد که از این بین پلها از اهمیت بسیار بالائی برخوردارند. هر سازه در طول عمر مفید خود تحت اثر بارگذاریهای متنوعی قرار میگیرد که میزان خطرپذیری آن در برابر بارهای وارده، بر طراحی و مقاومسازی آن تأثیرگذار است. تعیین رفتار پلهایی که در گذشته و بر اساس آئیننامههای قدیم طراحی و اجرا شدهاند و امروزه نیز بهعنوان راههای دسترسی از آنها استفاده میشوند بسیار حائز اهمیت است و باید مورد ارزیابی و قضاوت قرار گیرند. از نمونه این پلهای قدیمی میتوان به پلهایی اشاره کرد که دارای پایههای فولادی هستند که با توجه به گذشت زمان، ارزیابی رفتار و میزان خرابی آنها در برابر بارهای ورودی از جمله بارهای انفجاری بیشازپیش احساس میگردد تا در صورت نیاز راهکارهایی برای ایمنسازی و مقاومسازی آنها ارائه گردد. در این مقاله با استفاده از تحلیل اجزای محدود به مطالعه موردی بر روی یک پل ارتباطی با پایههای فولادی در شهر کازرون پرداخته شده است و رفتار پل مذکور تحت اثر بارهای مختلف انفجاری مورد بررسی قرار میگیرد. برای انجام تحلیلهای موردنیاز، از نرمافزار اجزا محدود LS-DYNA استفاده شده است و خرابی موضعی پایههای پل و خرابی کلی پل با استفاده از معیار چرخش تکیهگاهی مورد ارزیابی قرار گرفته است. همچنین، با افزایش میزان ماده منفجره، میزان تغییر مکان دائمی ایجادشده در دال بتنی پل بیشتر میگردد که منجر به تغییر میزان خرابی از سطح کم به سطح متوسط میشود. علاوه بر این، نتایج نشان داد که استفاده از تیرهای فولادی در راستای طول دال بتنی پل، میزان تغییر شکلهای ایجادشده تحت اثر بارهای انفجاری را کاهش میدهد و متعاقباً میزان خرابی ایجادشده نیز کاهش مییابد همچنین نتایج نشان داد که هر چقدر عضو موردنظر به کانون انفجار نزدیکتر باشد میزان خرابی موضعی بیشتر بوده که در نهایت از محلی که خرابی موضعی بیشتر است پایه فولادی پل دچار خرابی کلی و فروریزش میگردد. | ||
کلیدواژهها | ||
پل بتنی با پایههای فولادی؛ بارگذاری انفجار؛ تحلیل اجزا محدود؛ ارزیابی خرابی؛ چرخش تکیهگاهی | ||
عنوان مقاله [English] | ||
Damage Evaluation of Concrete Bridge with Steel Piers Subjected to Explosive Loads | ||
نویسندگان [English] | ||
Sohrab Mirassi1؛ Mohammad Momeni2؛ Ahmad Hosseini Moorderaz3 | ||
1Assistant Professor, Department of Civil Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran | ||
2Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Fasa University, Fasa, Iran | ||
3MSc Student, Department of Civil Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran | ||
چکیده [English] | ||
The transportation system infrastructure in any country encompasses roads, highways, and crucially, bridges. Among these components, bridges hold significant importance. Throughout their operational lifespan, structures endure various loadings that impact their design and necessitate strengthening measures. Evaluating and assessing the behavior of bridges designed and implemented decades ago, adhering to outdated regulations but still serving as access routes today, is vital. Notably, certain older bridges, particularly those with steel piers, require special attention due to the effects of aging on their behavior and susceptibility to various loads, including explosive ones. Finding solutions for ensuring their safety and implementing rehabilitation measures becomes imperative. This paper delves into a case study on a communication bridge in Kazerun city, focusing on bridges with steel piers. The investigation explores the bridge's behavior under the influence of different explosive loads through finite element analysis. The LS-DYNA finite element software was employed for the necessary analysis, evaluating both the local failure of the bridge piers and the overall failure of the entire bridge using the support rotation criterion. The study reveals that, as the explosive charge weight increases, the permanent displacement in the concrete slab of the bridge rises, leading to a shift in damage levels from low to medium. Furthermore, incorporating steel beams in the longitudinal direction of the concrete slab proves effective in reducing deformation caused by explosive loads, subsequently minimizing damage. The proximity of a specific bridge member to the explosion center correlates with a higher local failure rate. Ultimately, the areas experiencing greater local failure witness a subsequent general failure of the steel piers, bringing the bridge closer to collapse. | ||
کلیدواژهها [English] | ||
Concrete bridge with steel piers, Blast loading, Finite element analysis, Damage assessment, Support rotation | ||
مراجع | ||
[1] S. Fujikura, M. Bruneau, and D. Lopez-Garcia. "Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading." Journal of Bridge Engineering 13, no. 6 (2008): 586-594. [2] G.D. Williams, and E.B. Williamson. "Response of reinforced concrete bridge columns subjected to blast loads." Journal of Structural Engineering 137, no. 9 (2011): 903-913. [3] Z. Yi, A. Agrawal, M. Ettouney, and S. Alampalli. "Blast load effects on highway bridges. I: Modeling and blast load effects." Journal of Bridge Engineering 19, no. 4 (2014): 04013023. [4] A.A. Islam, and N. Yazdani. "Performance of AASHTO girder bridges under blast loading." Engineering Structures 30, no. 7 (2008):1922-1937. [5] E.K. Tang, and H. Hao. "Numerical simulation of a cable-stayed bridge response to blast loads, Part I: Model development and response calculations." Engineering Structures 32, no. 10 (2010): 3180-3192. [6] H. Hao, and E.K. Tang. "Numerical simulation of a cable-stayed bridge response to blast loads, Part II: Damage prediction and FRP strengthening." Engineering Structures 32, no. 10 (2010): 3193-3205. [7] M. Foglar, and M. Kovar. "Conclusions from experimental testing of blast resistance of FRC and RC bridge decks." International Journal of Impact Engineering 59 (2013): 18-28. [8] M. Li, Z. Zong, L. Liu, and F. Lou. "Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion." Engineering Structures 159 (2018): 265-276. [9] Y. Pan, C.E. Ventura, and M.M. Cheung. "Performance of highway bridges subjected to blast loads." Engineering Structures 151 (2017): 788-801. [10] S. Hashemi, M. Bradford, and H. Valipour. "Dynamic response of cable-stayed bridge under blast load." Engineering Structures 127 (2016): 719-736, [11] K. Hacıefendioğlu, S. Banerjee, K. Soyluk, and O. Köksal. "Multi-point response spectrum analysis of a historical bridge to blast ground motion." Structural Engineering and Mechanics 53, no. 5 (2015): 897-919. [12] C.D. Tetougueni, P. Zampieri, and C. Pellegrino, "Structural performance of a steel cable-stayed bridge under blast loading considering different stay patterns." Engineering Structures 219 (2020): 110739. [13] E. Maiorana, C.D. Tetougueni, and P. Zampieri. "Effect of blast load on the structural integrity of steel arch bridge slab." Engineering Failure Analysis 139 (2022): 106498. [14] C. Lv, Q. Yan, L. Li, and S. Li. "Field test and probabilistic vulnerability assessment of a reinforced concrete bridge pier subjected to blast loads." Engineering Failure Analysis 143 (2023): 106802. [15] W. Kong, S. Yang, S. Wang, Z. Liu, R. Zhang, W. Zhong, and X. Yao. "On dynamic response and damage evaluation of bridge piers under far-field explosion loads." In Structures, vol. 51, pp. 985-1003. Elsevier, 2023. [16] A. Nassr, A. Razaqpur, M. Tait, M. Campidelli, and S. Foo. "Measured versus predicted response of steel beams under blast load." in Proc., 1st Int. Conf. of Protective Structures, Armour & Protection Science & Technology Centre, Defence Science and Technology Laboratory (DSTL), Ministry of Defence Wiltshire, UK (2010). [17] A. Nassr, A. Razaqpur, M. Tait, M. Campidelli, and S. Foo. "Evaluation of Nonlinear Response of Steel Members under Blast Loading." in 2nd Specialty Conference on Disaster Mitigation, CSCE, (2010): 9-12. [18] A.A. Nassr, A.G. Razaqpur, M.J. Tait, M. Campidelli, and S. Foo. "Dynamic response of steel columns subjected to blast loading." Journal of Structural Engineering 140, no. 7 (2013): 04014036. [19] A.A. Nassr, A.G. Razaqpur, M.J. Tait, M. Campidelli, and S. Foo, "Strength and stability of steel beam columns under blast load." International Journal of Impact Engineering 55 (2013): 34-48. [20] A.A. Nassr, A.G. Razaqpur, M.J. Tait, M. Campidelli, and S. Foo. "Experimental performance of steel beams under blast loading." Journal of Performance of Constructed Facilities 26, no. 5 (2012): 600-619. [21] A.A. Nassr, A.G. Razaqpur, M.J. Tait, M. Campidelli, and S. Foo. "Single and multi degree of freedom analysis of steel beams under blast loading." Nuclear Engineering and Design 242 (2012): 63-77. [22] B. Li, A. Nair, and Q. Kai, "Residual axial capacity of reinforced concrete columns with simulated blast damage." Journal of Performance of Constructed Facilities 26, no. 3 (2012): 287-299. [23] H. Al-Thairy. "A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load." International Journal of Impact Engineering 94 (2016): 120-133. [24] M.A. Hadianfard, A. Nemati, and A. Johari. "Investigation of Steel Column Behavior with Different Cross Section under Blast Loading." Modares Civil Engineering Journal 16, no. 4 (2016): 265-278. [25] L. Mazurkiewicz, J. Malachowski, and P. Baranowski. "Blast loading influence on load carrying capacity of I-column." Engineering Structures 104 (2015): 107-115. [26] D. Kelliher and K. Sutton-Swaby. "Stochastic representation of blast load damage in a reinforced concrete building." Structural Safety 34, no. 1 (2012): 407-417. [27] M. Momeni, M.A. Hadianfard, C. Bedon, and A. Baghlani. "Damage evaluation of H-section steel columns under impulsive blast loads via gene expression programming." Engineering Structures 219 (2020): 110909. [28] M. Momeni. "Damage evaluation of steel beam-columns subjected to impulsive loads using reliability approach." Ph.D. Thesis (In Persian), Shiraz University of Technology, Shiraz, Iran, (2021). [29] M. Momeni , M.A. Hadianfard , and A. Baghlani. "Implementation of Weighted Uniform SimulationMethod in Failure Probability Analysisof Steel Columns under Blast Load." Presented at the 11th International Congress on Civil Engineering, University of Tehran, Iran, (2018). [30] M. Momeni, M.A. Hadianfard, C. Bedon, and A. Baghlani. "Numerical damage evaluation assessment of blast loaded steel columns with similar section properties." Structures 20 (2019): 189-203. [31] S. Mohitpour, M. Momeni, and M.A. Hadianfard. "Numerical Study of Fiber Concrete Panels Behavior under Blast Loading." In 11th International Congress on Civil Engineering, University of Tehran, Iran (2018). [32] M.A. Hadianfard, S. Malekpour, and M. Momeni, "Reliability analysis of H-section steel columns under blast loading." Structural Safety 75 (2018): 45-56. [33] M. Momeni, C. Bedon, and M.A. Hadianfard. "Probabilistic Evaluation of Steel Column Damage under Blast Loading via Simulation Reliability Methods and Gene Expression Programming." Engineering Proceedings 53, no. 1 (2023): 20. [34] U. DoD. "Structures to Resist the Effects of Accidental Explosions. US DoD, Washington, DC, USA." UFC (2008): 320-340. [35] M. Mahboubi Niazmandi, S. Mirasi, M. Hashemi Jokar, and M. Momeni. "The effect of combined loading on the bearing capacity of strip footings located on two-layered clayey soils adjacent to geogrid-reinforced slopes." Amirkabir Journal of Civil Engineering 55, no. 9 (2023): 1825-1844. [36] M. Mahboubi Niazmandi, S. Mirassi, M. Momeni, M. Bakhshandeh, and H. Lotfi. "The effects of pulse-like motions of near-fault earthquakes with forward-directivity characteristic on the response of concrete structures." Journal of Structural and Construction Engineering 10, no. 6 (2023): 34-58. [37] H. Rahnema, and S. Mirassi. "Effect of frequency content of seismic source load on Rayleigh and P waves in soil media with cavity." Journal of Structural and Construction Engineering 8, no. 2 (2021): 280-300. [38] J. Sideri, C.L. Mullen, S. Gerasimidis, and G. Deodatis. "Distributed Column Damage Effect on Progressive Collapse Vulnerability in Steel Buildings Exposed to an External Blast Event." Journal of Performance of Constructed Facilities 31, no. 5 (2017): 04017077. [39] G.F. Kinney, and K.J. Graham. Explosive shocks in air, Springer Science & Business Media, 2013. [40] G. Mays, and P. Smith. "Blast effect on building: Design of buildings to optimize resistance to blast loading." Thos Telford, London, UK, (1995). [41] B. Hopkinson. "British ordnance board minutes." The National Archives, Kew, UK, (1915): 13565. [42] C. Cranz. "Lehrbuch der Ballistic." Textbook of ballistics, (1926). [43] J. Borgers, and J. Vantomme. "Improving the accuracy of blast parameters using a new Friedlander curvature α." in DoD Explosives Safety Seminar (2008). [44] M. Teich and N. Gebbeken. "The influence of the underpressure phase on the dynamic response of structures subjected to blast loads." International Journal of Protective Structures 1, no. 2 (2010): 219-233. [45] F. Beshara. "Modelling of blast loading on aboveground structures—I. General phenomenology and external blast." Computers & Structures 51, no. 5 (1994): 585-596. [46] S.S.S. Design. "Analysis Handbook." US Army Corps of Engineers, Huntsville Division, HNDM-1110-1-2, (1997). [47] V. Karlos, and G. Solomos. "Calculation of blast loads for application to structural components." Luxembourg: Publications Office of the European Union, (2013). [48] T. Krauthammer. "Blast effects and related threats." Penn State University, (1999). [49] W.L. Bounds. "Design of blast-resistant buildings in petrochemical facilities." ASCE Publications, (2010). [50] G.R. Cowper, and P.S. Symonds. "Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Providence (RI): Division of Applied Mathematics." C11 28 (1957). [51] S. Mirassi and H. Rahnema. "Improving the performance of absorbing layers with increasing damping in the numerical modeling of surface waves propagation using finite element method." Scientific Quarterly Journal of Iranian Association of Engineering Geology 13, no. 2 (2020): 13-26. [52] S. Mirassi, H. Rahnema, and A. Eshaghi. "Evaluation of surface wave components for identification of subsurface cavities using 2D and 3D finite element modeling method." Journal Of Research on Applied Geophysics 6, no. 2 (2020): 219-233. [53] A. Haufe, K. Schweizerhof, and P. DuBois. "Properties & limits: Review of shell element formulations." Livermore Software Technology Corporation, (2013). [54] B. Luccioni, R. Ambrosini, and R. Danesi. "Analysis of building collapse under blast loads." Engineering Structures 26, no. 1 (2004): 63-71.
| ||
آمار تعداد مشاهده مقاله: 349 تعداد دریافت فایل اصل مقاله: 151 |