
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,814 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
Ulam stability of $\wp$-mild solutions for $\psi$-Caputo-type fractional semilinear differential equations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 1، دوره 16، شماره 3، خرداد 2025، صفحه 1-17 اصل مقاله (469.9 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.32857.4886 | ||
نویسندگان | ||
Asmaa Baihi* ؛ Ahmed Kajouni؛ Khalid Hilal | ||
LMACS Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco | ||
تاریخ دریافت: 10 آذر 1402، تاریخ بازنگری: 24 دی 1402، تاریخ پذیرش: 25 دی 1402 | ||
چکیده | ||
We study in this paper the existence and uniqueness of solutions to initial value problems for semilinear differential equations involving $\psi$-Caputo differential derivatives of an arbitrary $l\in (0,1),$ using the fixed theorem. We do analyse further the M-L-U-H stability and the M-L-U-H-R stability. Then we conclude with an example to illustrate the result. | ||
کلیدواژهها | ||
Semilinear differential equations؛ $\psi$-Caputo differential derivatives؛ Mittag-Leffler-Ulam-Hyers stability | ||
مراجع | ||
[1] M.S. Abdo, S.K. Panchal, and A.M. Saeed, Fractional boundary value problem with ψ-Caputo fractional derivative, Proc. Math. Sci. 129 (2019), no. 5, 65. [2] M.R. Abdollahpour and M.T. Rassias, Hyers-Ulam stability of hypergeometric differential equations, Aequ. Math. 93 (2019), no. 4, 691–698. [3] M.R. Abdollahpour, R. Aghayari, and M.T. Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl. 437 (2016), 605–612. [4] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989. [5] Y. Adjabi, F. Jarad, and T. Abdeljawad, On generalized fractional operators and a Gronwall-type inequality with applications, Filomat 31 (2017), no. 17, 5457–5473. [6] R.P. Agarwal, H. Zhou, and Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1095–1100. [7] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460-481. [8] R. Almeida, A.B. Malinowska, and M.T.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci. 41 (2018), 336–352. [9] R. Almeida, M. Jleli, and B. Samet, A numerical study of fractional relaxation– oscillation equations involving ψ-Caputo fractional derivative, Rev. Real Acad. Cien. Exact. Fis. Natur. Ser. A. Mate. 113 (2019), no. 3, 1873–1891. [10] S. Asawasamrit, A. Kijjathanakorn, S.K. Ntouya, and J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc. 55 (2018), 1639–1657. [11] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237. [12] L. Cadariu, Stabilitatea Ulam–Hyers–Bourgin Pentru Ecuatii Functionale, Ed. Univ. Vest Timisoara, Timisara, 2007. [13] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, 2002. [14] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. [15] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179 (1993), 630–637. [16] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, New York, NY, USA, 2010. [17] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 431–434. [18] L. Gaul, P. Klein, and S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal Process 5 (1991), 81–88. [19] K. Hilal and A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ. 2015 (2015), 1–19. [20] D.H. Hyers, G. Isac, and T.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998. [21] D.H. Hyers and T.M. Rassias, Approximate homomorphisms, Aeque. Math. 44 (1992), 125–153. [22] F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S 13 (2019), no. 3, 709–722. [23] O.K. Jaradat, A. Al-Omari, and S. Momani, Existence of the mild solution for fractional semilinear initial value problems, Nonlinear Anal. 69 (2008), 3153–3159. [24] S.M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001. [25] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, 2011. [26] S.-M. Jung, M.T. Rassias, and C. Mortici, On a functional equation of trigonometric type, Appl. Math. Comput. 252 (2015), 294–303. [27] S.-M. Jung and M.T. Rassias, A linear functional equation of third order associated to the Fibonacci numbers, Abstr. Appl. Anal. 2014 (2014), Article ID 137468. [28] S.-M. Jung, D. Popa, and M.T. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Glob. Optim. 59 (2014), 165–171. [29] P. Kannappan, Functional Equations and Inequalities with Applications, Springer, 2009. [30] R.A. Khan and K. Shah, Existence and uniqueness of solutions to fractional order multipoint boundary value problems, Commun. Appl. Anal. 19 (2015), 515–526. [31] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Academic Press, New York, 1969. [32] Y.-H. Lee, S. Jung, and M.T. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic additive equation, J. Math. Inequal. 12 (2018), no. 1, 43–61. [33] Y. -H. Lee, S. Jung, and M.T. Rassias, On an n-dimensional mixed type additive and quadratic functional equation, Appl. Math. Comput. 228 (2014), 13–16. [34] H. Liu and J.-Ch. Chang, Existence for a class of partial differential equations with nonlocal conditions, Nonlinear Anal.: Theory Meth. Appl. 70 (2009), no. 9, 3076–3083. [35] Z.H. Liu and J.H. Sun, Nonlinear boundary value problems of fractional differential systems, Comp. Math. Appl. 64 (2012), 463–475. [36] H. Lmou, K. Hilal, and A. Kajouni, A new result for ψ-Hilfer fractional Pantograph- Type Langevin equation and inclusions, J. Math. 2022 (2022). [37] F. Mainardi, Fractional diffusive waves in viscoelastic solids, J.L. Wegner, F.R. Norwood (Eds.), Nonlinear Waves in Solids, Fairfield, 1995. [38] F. Mainardi, P. Paraddisi, and R. Gorenflo, Probability distributions generated by fractional diffusion equations, Kertesz, J., Kondor, I. (eds.) Econophysics: An Emerging Science. Kluwer Academic, Dordrecht, 2000. [39] R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278 (2000), 107–125. [40] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, NY, USA, 1993. [41] C. Mortici, S. Jung, and M.T. Rassias, On the stability of a functional equation associated with the Fibonacci numbers, Abstr. Appl. Anal. 2014 (2014), Article ID 546046. [42] C. Park and M.T. Rassias, Additive functional equations and partial multipliers in C∗-algebras, Rev. Real Acad. Cien. Exactas, Ser. A. Mate. 113 (2019), no. 3, 2261–2275. [43] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. [44] Th. M. Rassias, Functional Equations and Inequalities, Kluwer Academic Publishers, 2000. [45] P.K. Sahoo and P. Kannappan, Introduction to Functional Equations, CRC Press, 2011. [46] B. Samet and H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving ψ-Caputo fractional derivative, J. Inequal. Appl. 2018 (2018), no. 1, 1–11. [47] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon Breach, Yverdon, 1993. [48] J. Sousa and E.C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equ. Appl. 11 (2019), 87–106. [49] A. Suechoei and P.S. Ngiamsunthorn, Existence uniqueness and stability of mild solutions for semilinear ψ-Caputo fractional evolution equations, Adv. Differ. Equ. 2020 (2020), 114. [50] W. Smajdor, Note on a Jensen type functional equation, Publ. Math. Debrecen 63 (2003), 703–714. [51] T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604–616. [52] J. Wang, Some further generalization of the Ulam-Hyers-Rassias stability of functional equations, J. Math. Anal. Appl. 263 (2001), 406–423. [53] J. Wang and Y. Zhou, Mittag-Leffler–Ulam stabilities of fractional evolution equations, Appl. Math. Lett. 25 (2012), no. 4, 723–728. [54] J. Wu, X. Zhang, L. Liu, Y. Wu, and Y. Cui, The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound. Value Probl. 2018 (2018), 1–15. [55] H. Yang, Existence of mild solutions for a class of fractional evolution equations with compact analytic semigroup, Abstr. Appl. Anal. 2012 (2012). [56] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comp. Math. Appl. 59 (2010), 1063–1077. [57] S. Zorlu and A. Gudaimat, Approximate controllability of fractional evolution equations with ψ-Caputo derivative, Symmetry 15 (2023), 1050. | ||
آمار تعداد مشاهده مقاله: 352 تعداد دریافت فایل اصل مقاله: 270 |