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Abstract

Using fixed point methods, we prove the stability of orthogonally quintic functional equation on C*-algebras for the
functional equation

Df(x,y) = fBe+y) —5f2z +y) + f2z —y) + 10f(x +y) = 5f(x —y) — 10f(y) — f(3z) + 3/ (2z) + 27/ ().
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1 Introduction

The stability problem of functional equations has originally been formulated by Ulam [26] in 1940: Under what
condition does there exist a homomorphism near an approximate homomorphism? In following year, Hyers [I8] answers
the problem of Ulam under the assumption that the groups are Banach spaces. For more details about the result
concerning such problems, we refer the reader to ([I5] [16] 17, 25]). In 2003, Cadariu and Radu [7] applied the fixed
point method to investigate the Jensen functional equation. The various problems of the stability of derivations and
homomorphism have been studied during last few years (see also [8, @ 1T} 19, 27]).

The stability and hyperstability problems for various functional equations have been iintroduced by several author
and they obtained many interesting results concerning the Hyers—Ulam stability (see for example [4, [6, 20, 23]).
Moghimi and Najat investigated hyperstability and stability results for the Cauchy and Jensen functional equations
on restricted domains [22]. El-Hady and Ogrekei studied stability problem of some fractional differential equations
in the sense of Hyers-Ulam and Hyers-Ulam-Rassias based on some fixed point techniques [12]. Eshaghi and et al.
introduced orthogonally sets and proved the real generalization of Banach fixed point theorem on this sets [I3]. We
start our work with the following definition, which can be consider the main definition of our paper [II, B} [10, [14] 21].

Definition 1.1. Let X # () and 1. € X x X be an binary relation. If L satisfies the following condition
Fzo; (Vy;yLazo) or (Vy;zoly),
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it is called an orthogonally set (briefly O-set). We denote this O-set by (X, L1).

Definition 1.2. Let (X, L) be an O-set. A sequence {z, },en is called orthogonally sequence (briefly O-sequence) if

(Yn;zpLa,11) or (Vn;xpp1lay,).

Definition 1.3. Let (X, L,d) be an orthogonally metric space ((X, L) is an O-set and (X,d) is a metric space).
Then f: X — X is L—continuous in a € X if for each O-sequence {ay, }nen in X if a,, — a, then f(ay,) — f(a). Also
f is L—continuous on X if f is L —continuous on each a € X.

It is easy to see that every continuous mapping is 1 —continuous.

Definition 1.4. Let (X, 1, d) be an orthogonally metric space, then X is orthogonally complete (briefly O-complete)
if every Cauchy O-sequence is convergent.

It is easy to see that every complete metric space is O-complete and the converse is not true.

Definition 1.5. Let (X, L, d) be an orthogonally metric space and 0 < A < 1. A mapping f : X — X is said to be
orthogonality contraction with Lipschitz constant A if

d(fz, fy) < Md(x,y) if vLly.

Let H be a Hilbert space. Suppose that f: H — C is a mapping satisfying

fx) = |? (1.1)

for all z € X. It is natural that this equation is a quadratic functional equation. On the other hand by considering
rly with < z,y >= 0 for z,y € H, it is easy to see that the above function f : H — C is an orthogonally additive
functional equation, that is f(z +y) = f(x) + f(y) if zLy. This means that orthogonality may change a functional
equation. Recently, Bahraini et al. [2] proved a fixed point theorem in O-sets as follows:

Theorem 1.6. Let (X,d, L) be an O-complete generalized metric space. Let T : X — X be a L-preserving, |-
continuous and |-A-contraction. Let xy € X satisfies for all y € X, 9 L y or for all y € X, y L xg, and consider the
“O-sequence of successive approzimations with initial element xo”: xo, T(x0), T*(x0), ..., T"(x0), ... . Then, either
d(T™ (o), T" 1 (20)) = oo for all n > 0, or there exists a positive integer ng such that d(T™(x¢), 7" (o)) < oo for
all n > ng. If the second alternative holds, then

(i) the O-sequence of {T™(z¢)} is convergent to a fixed point z* of T.

(ii) «* is the unique fixed point of T in X* = {y € X : d(T"(x¢),y) < 0o}.

(iii) If y € X, then

d(y,z*) <

ﬁd(y,T(y))'

In this paper, we apply the fixed point method to prove the stability problem for orthogonally *-quintic on C*-
algebras.

2 Main results

Throughout this section, assume that (A, ||.||1,L1) with al;b if ab* = b*a = 0 and (B, ||.||2, L2) with algb if
ab* = b*a = 0 be two C*-algebras. For a given mapping f : A — B, we define

Df(z,y) == fBr+y) —=5f2z +y) + f(2x —y) + 10f(z +y) = 5f(x —y) — 10f(y) — f(3z) + 3f(2z) + 27 f(x)

for all z,y € A with x Ly [0, [24]. We deal with the stability problem for the orthogonally *-quintic functional equation
Df(x,y) =0 in C*-algebras.
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Theorem 2.1. Let f: A — B be a mapping satisfying f(0) = 0 and for which there exist a function ¢ : A2 — [0, 00)

such that
[Df(z,y)ll2 < (2, y),

||f($*) - f(x)*||2 < SOnL(xvx)
for all x,y € A with x 1,y. If there exists a constant 0 < L < 1 such that

z oy
y) < 32L (f,f)
pla,y) < 32Le( 5, 5

for all x,y € A with 11y, then there exists a unique orthogonally #-quintic mapping @ : A — B such that

17@) = Q@) < 7 om(w,0)
for all x € A.

Proof . It follows that (2.3)), we get

for all z,y € A with x1,y. Putting y = 0 in (2.1)), we get

[32f(2) — f(2z)2 < ¢(,0)
for all x € A. So

15) ~ 55 F2a)ll2 < g50(a,0) < p(a,0)

for all x € A. Consider the set

Q:={g: g: X =Y, g(x)J_gig(Qx) or

% (2z) Lag(x), Va € A}.

€
327
For every g, h € €, define

d(g,h) = nf{K € (0,00) : |lg(z) — h(z)|2 < K¢(z,0), Vo e A}

Now, we put the L relation orthogonal on ) as follows: for all g,h € Q

hlg < h(z) L2 g(x) or g(z)Ll2h(zx)

(2.5)

(2.6)

for all z € A. Tt is easy to show that (2,d, L) is an O-complete generalized metric space. Now, we consider the

mapping T : Q — Q defined by Tg(x)

d(g,h) < K = |lg(z) — h(z)[]2 < K¢(z,0)

1 1 K
_ _ < =
= llg59(20) - 55h2a)l2 < 5 9(22,0)
1 1
— - — <
= llg59(20) — 35h20)l2 < L K p(a,0)

= d(Tg,Th) <L K.

Hence we see that
d(Tg,Th) < L d(g,h)

3—129(2x) for all z € A and g € Q). For all g,h € Q with ¢ L h and = € A,

for all g,h € Q, that is, T is a strictly self-mapping of Q with the Lipschitz constant L. Now, we show that 7" is a
1-continuous. To this end, let {gn }nen be an O-sequence with g, 1 g, 41 Or gny1-Lg, in (,d, L) which convergent to

g € Q and let € > 0 be given. Then there exists N € N and K € RT with K < e such that

1gn(2) = g(z)l]2 < Ke(,0,)

for all z € A and n > N and so
1

1 K
— _ < =
I 3590(20) = 539(20) 2 < 55 #(20,0)
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for all z € A and n > N. By inequality (2.3) and the define of T, we get

IT(gn)(x) = T(g)(x)[l2 < LKp(,0)

for all x € A and n > N. Hence
d(T(gn),T(g9)) < LK <

for all n > N. It follows that T is L-continuous. By definition Q, we have fL1oT(f) or T(f)Laf, by applying the
inequality (2.6]), we see that d(T'(f), f) < 1. It follows from Theorem [1.6| that T has a unique fixed point Q : X — Y
in the set A : {g € Q:d(g,h) < oo}, where @ is defined by

. n L 1 n
Q(z) = lim T"g(z) = lim —=-g(2"x) (2.7)
for all x € A. By Theorem
1
d < —.
@) <

It follows from (2.1)), (2.5) and (2.7) that
. 1 ,
1Dyl = Jim o |Df(2"r, 2"

1
< lim p(2"z,2"y) =0

 n—oo 321

for all x,y € A with x1,y. So
Df(r,y) =0

for all z,y € A with xLyy. It follows from (2.2)), (2.5) and (2.7) that

1Q@) - Q@) lla = lim [ f(2"2%) = F(2"2)" ]2 = 0

n—oo 32™

for all x € A. Hence Q : A — B is an orthogonally #-quintic mapping. (]

Corollary 2.2. Let 6 be a positive real numbers and p a real numbers with 0 < p < 5. Let f: A — B be a mapping
IDf(z,y)ll2 < O(llzllF + llyll7),
1f (") = f(@)"[l2 < 20|}
for all z,y € A with x11y. Then there exists a unique orthogonally *-quintic mapping @) : A — B such that

2P0
17(z) = Q@)ll2 < 55—=5 l=l1¥

for all z € A.

Proof . Set o(z,y) = e(||z|]] + [Jy||}) for all z,y € A with 1,y and let L = 2P~> in Theorem Then we get the
desired result. UJ

Theorem 2.3. Let f : A — B be a mapping satisfying (2.1, (2.2) and f(0) = 0 and for which there exist function
¢ : A% — [0, 00) such that
L
pla,y) < 550(22, 2y) (2.8)
for all z,y € A with x11y. Then there exists a unique orthogonally *-quintic mapping @ : A — B such that

1 (2) = Q@)ll2 < 55 p(x,0) (2.9)

1
(1-1)
for all z € A.

Proof . The proof is similar to the proof Theorem 2.1} [J
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Corollary 2.4. Let 6 be a positive real numbers and p a real numbers with p > 5. Let f: A — B be a mapping

IDf(z, y)ll2 < O(ll<lF + IylD),

1f(z7) = f()"[l2 < 20]]}

for all z,y € A with x11y. Then there exists a unique orthogonally *-quintic mapping @ : A — B such that

0
17 (z) = Q@)ll2 < o—5 ll=I1¥

for all x € A.
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