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Abstract

In this work, we introduce the following quadratic-additive functional equation
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where n is a nonnegative integer in N — {0,1,2}, and we prove the Hyers-Ulam stability of the quadratic-additive
functional equation in non-Archimedean fuzzy -2-normed space by utilizing two different techniques.
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1 Introduction

Ulam [25] raised the question: When is it true that the solution of an equation contrasting marginally from a given
one, should of need be near the given equation solution? At the starting, the partial answer (on account of Cauchy’s
condition in Banach spaces) to Ulam’s inquiry was given by Hyers [I1]. The paper of Rassias [23] has essentially
affected the advancement of what we currently call the Hyers-Ulam-Rassias stability. From that point forward a
numerous stability issues for different functional equations have been explored in [IL 2| [5l [6 O] 12} T3], 14} 07, 26]. As
of late, the stability issues for different kind of functional equations were examined in [I6, [I9]. Separately, while the
possibility of intuitionistic fuzzy normed space was presented in [22] and further concentrated in [I8] [20] to manage
some summability issues.
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The functional equations f(a 4+ b) = f(a) + f(b) and f(a + b) + f(a —b) = 2f(a) + 2f(b) is called the additive
and quadratic functional equations, respectively. Especially, every solution of the additive and quadratic functional
equations are said to be an additive mapping and a quadratic mapping, respectively.

In 1897, Hensel [I0] presented a normed space that doesn’t have the Archimedean property. During the most
recent thirty years, the hypothesis of non-Archimedean spaces has acquired the interest of physicists for their research
specifically in issues coming from quantum physical science, p-adic strings and superstrings [I5]. Albeit numerous
outcomes in the traditional normed space hypothesis has a non-Archimedean counterpart, their confirmations are
basically unique and require a completely new sort of instinct 7, 8l 21 22} 27].

In this present work, we introduce the following quadratic-additive functional equation

(Zva>+2w —Vg + Z vw| = (n—-3) Z ¥ (va +vp) — (n _5n+22[w]

b=1;a#b 1<a<b<n a=1

— (n? —5n+4)§n: [w(”“)_‘ﬁ(_”“)] (1.1)

a=1

where n is a nonnegative integer in N—{0, 1,2}. We prove the Hyers-Ulam stability of the quadratic-additive functional
equation in non-Archimedean fuzzy ¢-2-normed space by using two different techniques. It is easy to see that the
mappings 1 (v) = av? + bv is a solution of the functional equation (1.1]).

2 Preliminaries

In this section, we recall some usual definitions, terminology and notions to achieve our main results.

Definition 2.1. [10] By a non-Archimedean field, we denote a field K equipped with a valuation |- | : K — [0, 00)
fulfills |p| = 0 < p =0, |pg| = |p|lg|, and |p+ ¢| < max{|p|, |¢|} for every p,q € K. Clearly, |1| =|—1|=1and |m| <1
for every m € N.

Let V' be a vector space over a scalar field K with a non-Archimedean nontrivial valuation |- |. A mapping
|||l : V= R is called as a non-Archimedean norm (valuation) if it holds the upcoming conditions:

(i) [l =0 & v=0;

(i) [lpoll = [plllvll, (veV,peK)
(iii) [jo1 + v2|] < max{|lv1]], |lv2ll} (vi,v2 € V) (called as ultrametric).

The pair (V.| - ||) is known as a non-Archimedean normed space.

We know that
vn = vinll < max{oz1 — vsllsm < j < n—1} (> m).

A sequence {v,} is called Cauchy if {v,+1 — v,} — 0 in a non-Archimedean normed space V. By a complete
non-Archimedean normed space, we mention one in which every Cauchy sequence is convergent.

Definition 2.2. [24] A ¢t-norm ¢ is a function ¢ : [0,1] x [0,1] — [0,1] which is commutative, associative, non
decreasing and satisfies A01 = A for every A € [0, 1].

Definition 2.3. [7,8][16] 18,19, 20] Let V be a real linear space with dimension greater than 1 and F : V2 x [0, 00) —
[0, 1] fulfilling the upcoming conditions: For every vy, vq,v3 € V and p,q € [0, 00),
NAFl) F(Ul, V2, 0) = 0'

NAF2 v1,v9,p) = 1, for all p > 0 iff vy, vy are linear dependent;

v1,V2,p) = N(va,v1,p) for every vi,ve € V, and p > 0;

(
( ) F(
( ) F(
(NAF4) F(v1 4 va,v3, max(p, q)) > min(F(v1,vs, p)OF (v2,v3,q));
( ) F(vy,v2,+) : [0,00) — [0,1] is left continuous.

(NAF6) F(

Z,
>
!
=

avy,ve,p) = F (vl,vg, ﬁ) , aeR.
The triple (V, F, Q) will be called a non-Archimedean fuzzy ¢-2-normed space.
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Definition 2.4. [7, [8, [16] 18, 19, 20] Let (V, F, ) be a non-Archimedean fuzzy ¢-2-normed space and {v,} in V.
Then {v,} is called convergent if there is v € V satisfying

lim F(v, —v,w,e) =1, weV, e>0.

n—oQ

In this case, v is the limit of v,,. We denote it by

F— lim v, =v.
n—roo

Definition 2.5. A sequence {z,} € V is said to be Cauchy if for a given § > 0, there is an N € N such that
F(vpyq —vp,w,e) <l—¢foralweV,qg>0,e>0andn > N.

Every convergent sequence in a non-Archimedean fuzzy p-2-normed space is a Cauchy sequence.

Definition 2.6. A non-Archimedean fuzzy ¢-2-normed space is said to be a non-Archimedean fuzzy ¢-2-Banach
space if every Cauchy sequence is convergent.

Theorem 2.7. [3,[4] If (V,d) is a complete generalized metric space and a mapping ® : V' — V is strictly contractive
with L (Lipschitz constant). Then, for each given element v € V, either

(B1) d(®"v,®"1v) = o for every v > 0,
or

(B2) there is ng € N satisfies
(i) d(®"v, ®"1v) < oo for every n > ng;
(ii) the sequence {®"v} is convergent to a fixed point w* of ®;
(iii) w* is the unique fixed point of ® in the set A ={w eV : d(@”ofu w) < 00}k;
(iv) d(w*,w) < 27 d(w, Pw) for every w € A.

3 Solution of the functional equation ([1.1])

In this section, let V' and W are two real vector spaces.
Theorem 3.1. If an odd mapping ¢ : V' — W fulfills the functional equation (1.1]), then v is additive.
Proof . Since ¢(—v) = —(v), v € V, the functional equation (1.1)) reduces as
(Zva> +Zw et Y w) = @8 Y vletw)
b=1;a#b 1<a<b<n

—(n? = 5n+4) Y () (3.1)
a=1

for all vy,ve,---,v, € V. Now, replacing (vi,vs, - ,v,) by (0,0---,0) in , we get (0) = 0. Letting
(v1,v2,+ ,vp) = (v,0,0,---,0) in (B.1)), we get
P(20) = 2¢(v), veV.
So for a nonnegative integer n, we get
P(2™) =2"P(v), veV.
Finally, replacing (vy,va, -+ ,v,) by (v1,v2,0,---,0) in , we have
Yo+ v2) = P(v1) + ¥(v2), vi,v2 €V

Hence the mapping 1 is additive. [
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Theorem 3.2. If an even mapping ¢ : V — W fulfills the functional equation (|1.1]), then % is quadratic.

Proof . Since ¢(—v) = ¢(v), v € V, the functional equation (1.1]) reduces as

¢<Zva>+zw —Vq + Z vw|l= (n-3) Z Y (v + vp)

b=1;a#b 1<a<b<n

—(n*=5n+2) ) ¥(va) (3.2)

for all vy,v9,-+-,v, € V. Now, letting (vi,v2,---,v,) = (0,0,---,0) in (3.2)), we obtain ¥(0) = 0. Letting
(v1,v2, -+ ,up) = (v,0,0,---,0) in (3.2)), we obtain

P(2v) = 2%p(v), veV.

So for a nonnegative integer n, we have

B(@M0) = Prp(e), v eV,
Finally, replacing (v1,va, -+ ,v,) by (v1,v2,0,---,0) in (3.2), we obtain

vy + v2) + P(vg — vg) = 2h(v1) + 2h(v2), v1,v2 € V.
Hence the mapping v is quadratic. [

Theorem 3.3. A mapping ¢ : V — W fulfills ¢(0) = 0 and (1.1)) for all v, ve, - ,v, € V if and only if there exist a
mapping @ : V x V. — W, which is symmetric bi-additive, and a mapping A : V — W, which is additive, such that
Y(v) = Q(v,v) + A(v) for all v € V.

Proof . Let ¢ with ¢(0) = 0 fulfills the functional equation (I.1)). We divide v into the odd part and even part as

O R O R G

Po(v) = B

respectively. Clearly, 1 (v) = . (v) + ¥,(v), v € V. It is easy to prove that ¥, and 1, fulfill the functional equation
(1.1). Hence by Theorems and we conclude that ¢, and . are additive and quadratic, respectively. So there
exist a symmetric bi-additive mapping @ : V x V. — W which satisfies ¥.(v) = Q(v,v) and an additive mapping
AV — W which satisfies ,(v) = A(v), v € V. Hence ¢(v) = Q(v,v) + A(v) for all v € V.

Conversely, suppose that there exist a mapping @ : V x V. — W which is symmetric bi-additive and a mapping
AV — W which is additive such that ¥ (v) = Q(v,v) + A(v) for all v € V. Easily, we can show that the mappings
v Q(v,v) and A : V — W fulfill the functional equation (1.1)). Thus the mapping ¢ : V' — W fulfills the functionaql

equation (1.1). O

For notational accessibility, we define a mapping ¥ : V' — W by

Diy(vi,ve,- -+ ,vn) = ¢<Zva>+z¢ —vq + Z vp | —(n—3) Z Y (va + vp)
a=1 a=1

b=1;a#b 1<a<b<n

+(n2—5n+2)§[W] +(n2—5n+4)i[W]

a a=1

for all vy,vq,-+- ,v, € V.

4 Hyers-Ulam stability in non-Archimedean fuzzy ¢-2-normed spaces

In the upcoming subsections, assume that V', (W, F, ) and (Z, F /, Q) are a lear vector space, real non-Archimedean
fuzzy ¢-2-Banach space and real non-Archimedean fuzzy -2-normed space, respectively.
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4.1 Stability results for the even case: Direct method

In this subsection, we investigate the Hyers-Ulam stability of (1.1)) for the even case by utilizing direct method.

J
Theorem 4.1. Let j € {—1,1} be fixed and x : V" — Z be a mapping such that for some o with 0 < (%) <1,

F (X (2%,2%,0,--- ,O) 7w,e) > ([@(a)]jx(v,v,0,~-~ ,0) ,w,e) (4.1)

for all v,w € V and all € > 0, and

3 ! jS jS PR jS 2s j =
gllg)lOF (X (2 vy, 27509, 2 vn) , W, [(p (2 )} e) 1 (4.2)
for all v1,vg, - , vy, w € V and all € > 0. Suppose that an even mapping ¢ : V — W fulfills
F (D¢(U1,U2, o avn)a w, 6) > F/ (X(UlaUQa o 7U7L)a w, 6) ) (43)
for all v1,ve,--+ ,v,,w € V and all € > 0. Then the limit
)
QQ(/U) =F- .sll>nolo 92js (44)
exists for each v € V and Q5 : V — W is a unique quadratic mapping fulfilling and
F (w(v) - QQ(U)v w, 6) 2 F/ (X(Ua v, 07 e 70)7 w, 2¢ ‘90(22) - Qp(a)|) (45)
for all v,w € V and all € > 0.
Proof . Consider j = 1. Replacing (vy,va, - ,v,) by (v,v,0,---,0) in (4.3), we get
F (2¢(2v) — 8¢ (v),w,€) > F (x(v,v,0,---,0),w,¢€) (4.6)
for all v,w € V and all € > 0. From (4.6)), we obtain
F ’(/}(21])—1/}(’1})11); >F,( (v,v,0 0), w,e) (4.7)
22 b ) 2@(22) — X ) ) b ) b 76 -
for all v,w € V and all € > 0. Replacing v by 2°v in(4.7]), we get
w(z‘s—‘rlv) ’(/}(261)) € ! S S
F ( 22(s+1) o 922s , W, 2()0 (22(S+1)) > F (X(2 v, 2 v, 07 to 70)7 w, 6) (48)
for all v,w € V and all € > 0. Utilizing (4.1), (NAF6) in (4.8), we get
B () ‘ / ‘
F ( SPCESURR Prak 2 (22D > F | x(v,v,0,---,0),w, ) (4.9)
for all v,w € V and all € > 0. Replacing € by ¢(a®)e in (4.9), we obtain
BEHY) ) plad)e ,
F ( 2GiD 93 W g2 2 F (x(v,,0,,0),w,€) (4.10)

for all v,w € V and all € > 0. Since

s op(oi+t 91
— () = Z w2(2(1+11)}) - 1/1(22;)) (4.11)

1=0
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for all v € V, by (4.10) and (4.11)), we have

$(2°0) = plad)e e P(2H0)  P(20) p(al)e
F( 223 —¢(v),w, ar WW) = mani_(}{F< 22(i+1) - 221' , W, 2%0(22(’L+1)))}

/

Z F (X(U7Ua07"' ,0),’[1},6) (412)

\

for all v,w € V and all € > 0. Replacing v by 2*v in (4.12)) and utilizing ([&.1)) and (NAF6), we obtain

22(s+k) 22(k) ’

sty ky s+k—1 al)e ,
F(wz IRCOINS 2@%(1))) S F (30,00, 0) . €) (4.13)
=k

for all v,w € V, € > 0 and all s,k > 0. Replacing € by M in (4.13), we get
= 22400 1)

€

s+k—1 p(at)
Zi:k 2¢(22(i+1))

(4.14)

o (P2 (k)
22(s+k) 922(k)

_ w,e)>F/ x(v,v,0,---,0),w,

for all v,w € V, e > 0 and all s,k > 0. Since 0 < p(a) < ¢(2%) and > .2, (gf((;))> < o0, the Cauchy criterion for

convergence implies that {1[)(2221))} is a Cauchy sequence in (W, F' I,O). Since (W, F l,<>) is a non-Archimedean fuzzy
p-2-Banach space, this sequence converges to some point Q2(v) € W. So we can define Q2 : V — W by

Qa(v) = F — lim 22V

s—oo 228

for all v € V. Letting k = 0 in (4.14)), we get

€

P(2°0) /
F < o3 Y),w,e | > F | x(v,v,0,---,0),w, W (4.15)
=0 2p(22G+D)
for all v,w € V and all € > 0. Taking s — oo in (4.15)) and utilizing (NAF5), we get
F W(’U) - QZ(U),wv 6) 2 F/ (X(vava Oa e ,0),?1)7 2¢ (SD(QQ) - (p(a))) (416)

for all v,w € V and all ¢ > 0. To prove that Q. satisfies (1.1]), replacing (vy, v, -+ ,v,) by (2°v1,2%v9,--- ,2%0,) in
(4.3)), we obtain

1 S S S ! S S S S
F <223Dw(2 vy, 2%vg, -+, 2 vn),w,6> >F (X(Q v1,2%0, -+, 2%0,), w, (22 )e) (4.17)
for all v1,v9, -+ ,v,,w € V and all € > 0. Now,

F(Qg(Zva>+ZQ2 —vg + Z v | —(n—3) Z Qg(va+vb)+(n2—5n+2)ZQ2(va)7w,6)

b=1;a#b 1<a<b<n =

i (03 (30 < o () ) r (S (- 3

a=1 a=1 b=1;a#b

w3 ol2(-ut S w))wd)r(-0-n ¥ @

b=1;a#b 1<a<b<n
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+2i2 (n—3) Z Y (2 (va —&—vb)),w,g),F( (n® —5n+2) ZQQ(UQ)
a=1

1<a<b<n

_212(n2_5n+2)211/)(211a),w,;),F(2121/) (Z?w)ﬁzlw 2 vt 3w
a= a=1 a=

b=1;ab

,%(nf:s) 3 ¢(2(va+vb))+2i2(n2,5n+2)2¢(2%),w,§)} (4.18)

1<a<b<n a=1

for all v1,v9,-++ ,v,,w € V and all € > 0. Using (4.17) and (NAF5) in (4.18]), we get

F(DQQ(U17U27"' ,vn),w,e) > min{1717171aF1 (X (251}1723@2a"' ,251}.”)711),()0(225)6) }

> F (X (2°v1,2%v9, - -+, 2°0,) , w, @(225)6) (4.19)

for all v1,v9,-+ ,v,,w € V and all € > 0. Letting s — oo in (4.19) and using (4.2]), we obtain that
F(DQZ(U17U27 T ,”Un),'LU,G) =1

for all v1,v9,-++ ,v,,w € V and all € > 0. Hence @ fulfills the functional equation (L.1J).

Next, we will prove that Q2(v) is the unique mapping, and consider another mapping Q/Q (v) fulfilling (4.4) and
(4.5). Then

: @2(2°0) _ Qy(2°)
F(Q2(U)_Q2(U)vw76> = F( 2225 - 922s ,’LU,G)

. Q(2°v)  Y(2%) e Qy(2°v)  p(2v) e
= mm{F( 2228 YT “’§)F( 2228 DY ’w’§)}
. R <X @200, ,0), FEL ) - w(a))>
> F (x (0,00, ,0),w, LED ) = ‘p(o‘))>

2p(a®)

2s 2Y_o(a
for all v,w € V and all € > 0. Since limg_, (2*)(9(2%) —¢(@))

= 00, we obtain

2¢(a®)
/ 22%) (p(22) —
lim F (X(v,v,O,“' ,0),w, e (2) (p(2) @(a))> =1
s—oo 2p()
Thus F(Q2(v) — Qy(v), w,e) =1 for all v,w € V and all € > 0. Hence Q2(v) = Q4(v). Therefore, Q2(v) is unique.
In a similar manner, we can prove the other part of the proof for the case j = —1. This ends the proof of the theorem.
U

Corollary 4.2. If ¢ : V — W is an even mapping fulfilling the inequality

F (Dy(v1, 00, ,0n),w,€) > F (CZ ||vi|77w,e> (4.20)
i=1
for all vy,ve, - ,v,,w, € V and all € > 0, where ¢ and ~ are real constants with ¢ > 0 and v € (0,2) U (2, +00), then

there is a unique quadratic mapping Q2 : V — W fulfilling

F ((0) = Qa(v),w,e) = F' (c|lv]|”, w, e |(2%) — o(27)])

for all v,w € V and all € > 0.
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Corollary 4.3. If ¥ : V. — W an even mapping fulfilling the inequality

F (D(v1,va, - ,vp),w,€) > F' <C(Z loill™ + T ||vi||v),w, 6> , (4.21)
i=1 i=1
for all vy, va, -+ ,vp, w, € V and all € > 0, where ¢ and ~ are real constants with ¢ > 0 and ny € (0,2) U (2,400), then

there is a unique quadratic mapping Qs : V — W fulfilling
F (4 (v) = Q2(v),w,€) > F (c|lo]|",w, e|p(2?) — (2")])

for all v,w € V and all € > 0.

4.2 Stability results for the even case: Fixed point method
In this subsection, we scrutinize the Hyers-Ulam stability of (1.1)) for the even case by utilizing alternative fixed

point theorem.

Theorem 4.4. Assume that an even mapping ¢ : V' — W, for which there is a mapping x : V" — Z with

lim F, (X((vala 5;”23 e 7éfvn)7wa €<P(5128)) = 17 (422)

S§—00

where §; =2 if 1 =0 and §; = % if 1 = 1, fulfills

F(Dip(v1,v2, vn),w,€) 2 F (x(v1,02, ,vn),0,¢) (4.23)
for all v1,v9, -+ ,v,,w € V and all € > 0. If there exists L fulfilling
v o= S (L L0 o).
which has the property
F <61i2p(5i11),w,e) > F (Lp(v),w,e), v,weV, e>0, (4.24)
then there is a quadratic mapping Qo : V — W fulfilling and
e
F (o) = Quto).w.0) > F (= po0)wc) (4.25)

for all v,w € V and all € > 0.
Proof . Suppose the set A = {q/q: V — W,q(0) = 0} and define the generalized metric on A,

d(p, q) = inf {9 € (0,00)/F(p(v) — q(v),w,€) > F (0p(v), w,¢), v,w € V,e > o} .

Clearly, (A, d) is complete. Define T : A — A by Tp(v) = 5%p(5iv) for allv € V. One can show that d(Tp,Tq) <
Ld(p,q) for all p,q € A, ie., T is a strictly contractive mapping on A with Lipschitz constant L = §2. Setting

(1}1,1)27“' avn) = (U7U707"' 70) in ,We have

F (2’1/}(2@) - 81/)(1))’ w, 6) > F/ (X(va v, 0, e aO)a w, 6) . (426)

Utilizing (4.24]) for ¢ = 0 in (4.35), it becomes to

P(20) € + (1 x(v,v,0,---,0)

F' (Lp(v),w,e). (4.27)

Y
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That is,
d(p, T) < L= L' < .

Again, replacing v by % in (4.35), we get

(o203 g) 2 (e ha0) ). 129

Utilizing (4.24]) for ¢ = 1 in (4.28)), it becomes to

g),w, E) > F (p(v),w,e).

F () 2% (5) w5

That is, _
d(, T) <1=L'"" < cc.

In both cases, we have

(s, Tep) < L'

Thus (B2)(i) holds. By (B2)(ii), it arises that there is a fixed point Q2 of T"in A fulfilling

Qa(v) = F — 1im L0

s—»00 (53

Next, we will show that Qo fulfills (1.1)). Replacing (v1,vs,- - ,v,) by (6fv1,d5ve, -+, 05v,) in (4.23), we obtain
1 S S S / S S S S
F ((stDw(éivhéiv%"' ,5ivn),w7€) > F (X((Sivlvéiv%"' 751'1}7?:)711)790(61'2 )6) (429>

for all v1,vg, - ,up,w € V and all € > 0. Taking s — oo in and utilizing the definition of Q2(v), we obtain
that Q9 fulfills . Thus the mapping Q2 is quadratic.
By (B2)(iii), Q2 is the only one fixed point of T in A = {1/} eAN:d,Q9) < oo}, i.e., Q2 is the only one mapping
fulfilling
F(9(v) — Q2(v),w,€) > F (6p(v),w,e)
for all v,w € V and all € > 0, § > 0. Again by (B2)(iv), we obtain
1—i

1-L

A, Q2) < T Te) = d(, Qs) <

This yields
Ll —1
1-r”

F W) - Quo)w.d 2 F ({=ppt0)we) . vwe v e>o.
Hence the proof of the theorem is now completed. [

Corollary 4.5. If an even mapping ¢ : V — W fulfils

F/ (Czﬁ— HUZ'”’Yava)
F (Dt (v1,v2, -+ ,vn),w,€) >4, o N n (4.30)
! F (e iz loill™ 4+ Tz lvill?) s ws €)

for all v1,v9, -+ ,v,,w € V and all € > 0, where ¢ and  are constants with ¢ > 0, then there is only one quadratic
mapping Qo : V — W fulfilling

F' (clvll7, w,e]e(22) — 0(27)]) ; v #2

Fllw) = Qo) w,e) 2 {F' (cllvl™weo@) —p@m)); v 2

for all v,w € V and all € > 0.
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Proof . Set
iz il
X('Ul,UQ,"',’Un): ; n
{C(Z¢_1 llosl|™ 4+ TTi=y [losl”)
for all vy,vq,-+ ,v, € V. Now,
’ F (e, 165v, w, e)
F (X(afvlaéfv%"' ’5fvn)’w75i286) = 4 o ZS n s
F (e (23 163 vilI™ + TTiZy 150i)17) s w, €)

~J1,if (i=0 and y<2) or (i=1 and v>2),
)1, if (i=0 and yn<2) or (i=1 and yn > 2).

Let p(v) = 1y (%,%,0,---,0) . Next, we have

> F 5372p(v),w,6)
F 5;”_2p(v),w,e>

and

/ , F (2ol w.2
F (p(v),w,e) =F (X (E v 0, ’0) ,w,26> =7, (Q;CHUH 7;w, €),
F (55 ol w, 2e) -

Hence the inequality (4.24) holds either L = 2772 for v < 2if i = 0, L = 2277 for y > 2 if i = 1, L = 2"~ 2 for
y< 2ifi=0and L =227 for v > 2 if i = 1. From (4.25), we obtain our results. OJ

4.3 Stability results for the odd case: Direct method

In this subsection, we scrutinize the Hyers-Ulam stability of ((1.1)) for the odd case by utilizing direct method.

J
Theorem 4.6. Let j € {—1,1} be fixed and x : V"* — Z be a mapping such that for some « with 0 < (M) <1,

»(2)
(1) and
lim F/ (X (2jsv1’ 2jsv27 e 72jsvn) , W, [90 (28)]j 6) =1

Ehde el

for all v1,v9,-++ ,v,,w € V and all € > 0. If an odd mapping ¢ : V. — W fulfills (4.3)), then the limit

Ai(v) =F — lim (200

$—00 238

exists for each v € V' and the mapping A; : V — W is a unique additive mapping satisfying and
F ((v) = A1 (v),w,€) = F' (x(0,0,0,- -+ ,0),w,2¢|p(2) = p(a)])
for all v,w € V and all € > 0.
Proof . Consider j = 1. Replacing (vy,va, -+ ,v,) by (v,v,0,---,0) in , we get
F (2(20) — 49(v),w,€) > F (x(v,0,0,---,0),w,¢) (4.31)

for all v,w € V and all € > 0. From (4.31)), we obtain

F <¢(22U) — ’(/J(U),’U), 2;<2)) > F/ (X(’vavoa e 70)’w7 6) (432)
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for all v,w € V and all € > 0. Replacing v by 2°v in (4.32)), we get

»(25T ) (290) € /
_ > S 98
F ( (1) 55 , W, % (2(s+1)) > F (x(2°v,2°0,0, ,0),w,€)
(4.33)
for all v,w € V and all € > 0. Utilizing (4.1]), (NAF6) in (4.33)), we get
$EFY) | P(2o) ‘ , ‘
F< oG+ 95 W 2p(2(s+1) 2 F {x(©v,0,--,0),w, o(a®)
(4.34)

for all v,w € V and all € > 0. Replacing € by p(a®)e in (4.34)), we obtain

Y2 ty)  P(2%) pla’)e /
F( 26+D 25 " ou26+) 2 F (x(v,0,0,--,0),w,€)

for all v,w € V and all € > 0. The remaining proof is the same as in the proof of Theorem O

Corollary 4.7. If ¢y : V. — W is an odd mapping which fulfills (4.20)) for all v1,va,- - ,v,,w, € V and all € > 0, where
¢ and +y are real constants with ¢ > 0 and v € (0,1) U (1, +00), then there is a unique additive mapping A; : V. — W,
which fulfills )

F(4(v) = Ar(v),w,€) = F (c[|v]|”,w, e|p(2) — (27)])

for all v,w € V and all € > 0.
Corollary 4.8. If ¢ : V. — W is an odd mapping which fulfils (4.21)) for every vy, va, - ,v,,w,€ V and all € > 0,

where ¢ and ~ are the real constants with ¢ > 0 and ny € (0,1) U (1,400), then there is an additive mapping
Ay 'V — W is unique which fulfils

F ($(v) — A1 (v),w,€) > F (cl|o]"",w, € |p(2) = o(2")])

for all v,w € V and all € > 0.

4.4 Stability results for the odd case: Fixed point method
In this subsection, we investigate the Hyers-Ulam stability of (1.1)) for the odd case by utilizing alternative fixed

point theorem.

Theorem 4.9. Assume that an odd mapping ¢ : V' — W, for which there is a mapping x : V" — Z with

lim F (x(85v1, 6809, , 650n), w, ep(67)) = 1

§—00
where §; =2 if i =0 and §; = % if i = 1, fulfills (4.23)). If there exists L satisfying

1 v v
U_>P(U)25X(§7570a 70>7

which has the property

F (;ip(&v),w,e) > F' (Lp(v), w,¢

for all v,w € V and all € > 0, then there is a unique additive mapping A; : V' — W fulfilling (1.1) and

F W) - A0 0.9 2 F (£ pt0) )

for all v,w € V and all € > 0.
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Proof . Suppose the set A = {q/q:V — W,q(0) = 0} and define the generalized metric on A,

A(p,q) = it {0 € (0,00)/F(p(v) — 4(0), w,€) > F' (Bp(0),w, ), v, € Ve >0}

Clearly, (A, d) is complete. Define T': A — A by Tp(v) = ép(@v) for all v € V. One can show that d(Tp, Tq) <
Ld(p,q) for all p,q € A, i.e., T is a strictly contractive mapping on A with Lipschitz constant L = 4;. Setting

(U17U27"' avn) = (U7U7Oa"' 70) in " we obtain

F(21/1(2U) - 4¢(U)7w,6) > F/ (X(’U,’U,O, e ,0)711),6) , VW E V7 e > 0.
The remaining proof is the same as in the proof of Theorem O

Corollary 4.10. If an odd mapping ¥ : V' — W fulfills (4.30) for all vy, v, -+ ,v,,w € V and all € > 0, where ¢ and
~ are constants with ¢ > 0, then there is only one additive mapping A; : V' — W fulfilling

F' (c|lv]]",w, e]o(2) — @(27)]) 5 v#1

Fw@*“%@““@>{F@Mmedﬂm—@@mm; 1#

for all v,w € V and all € > 0.

5 Conclusion

In this work, we have introduced the new quadratic-additive functional equation (1.1)). We investigated our needed
results of Hyers-Ulam stability of finite variable quadratic-additive functional equation (1.1)) for both even and odd
cases by utilizing the direct and fixed point methods in non-Archimedean fuzzy ¢-2-normed spaces.
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