
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,929 |
تعداد دریافت فایل اصل مقاله | 7,656,387 |
Stability of (1,2)-total pitchfork domination | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 20، دوره 16، شماره 4، تیر 2025، صفحه 233-240 اصل مقاله (541 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23235.2503 | ||
نویسندگان | ||
Lamees K. Alzaki؛ Mohammed Abdali Abdlhusein* ؛ Amenah Kareem Yousif | ||
Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq | ||
تاریخ دریافت: 06 اسفند 1399، تاریخ پذیرش: 05 اردیبهشت 1400 | ||
چکیده | ||
Let $G=(V, E)$ be a finite, simple, and undirected graph without an isolated vertex. We define a dominating $D$ of $V(G)$ as a total pitchfork dominating set if $1\leq|N(t)\cap V-D|\leq2$ for every $t \in D$ such that $G[D]$ has no isolated vertex. In this paper, the effects of adding or removing an edge and removing a vertex from a graph are studied on the order of minimum total pitchfork dominating set $\gamma_{pf}^{t} (G)$ and the order of minimum inverse total pitchfork dominating set $\gamma_{pf}^{-t} (G)$. Where $\gamma_{pf}^{t} (G)$ is proved here to be increasing by adding an edge and decreasing by removing an edge, which are impossible cases in the ordinary total domination number. | ||
کلیدواژهها | ||
total domination؛ stability of domination؛ pitchfork domination | ||
مراجع | ||
[1] M.A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algorithms Appl. 13 (2021), no. 2, 2150009. [2] M.A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 1009–1016. [3] M.A. Abdlhusein, Applying the (1,2)-pitchfork domination and its inverse on some special graphs, Bol. Soc. Paran. Mat. 41 (2023), 1–8. [4] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and it’s inverse for corona and join operations in graphs, Proc. Int. Math. Sci. 1 (2019), no. 2, 51–55. [5] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. IAM 9 (2020), no. 1, 13–17. [6] M.N. Al-Harere and M.A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algorithms Appl. 12 (2020), no. 2, 2050025. [7] M.A. Abdlhusein and M.N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. 52 (2021), no. 1, 281–288. [8] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algorithms Appl. 13 (2021), no. 4, 2150038. [9] M.A. Abdlhusein and M.N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. App. Eng. Math. 12 (2022), no. 1, 82. [10] M.A. Abdlhusein and M.N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Mat. 40 (2022), 1–9. [11] M.N. Al-Harere and A.T. Breesam, Variant types of domination in spinner graph, Al-Nahrain J. 2 (2019), 127–133. [12] M.N. Al-Harere and P.A. Khuda Bakhash, Changes of tadpole domination number upon changing of graphs, Sci. Int. 31 (2019), no. 2, 197–199. [13] M.N. Al-Harere and P.A. Khuda Bakhash, Tadpole domination in duplicated graphs, Discrete Math. Algorithms Appl. 13 (2021), no. 2, 2150003. [14] M. Amraee, N.J. Rad, and M. Maghasedi, Roman domination stability in graphs, Math. Rep. 21 (2019), no. 71, 193–204. [15] B.A. Atakul, Stability and domination exponentially in some graphs, AIMS Math. 5 (2020), no. 5, 5063–5075. [16] K. Attalah and M. Chellali, 2-Domination dot-stable and dot-critical graphs, Asian-Eur. J. Math. 21 (2021), no. 5, 2150010. [17] S. Balamurugan, Changing and unchanging isolate domination: edge removal, Discrete Math. Algorithms Appl. 9 (2017), no. 1, 1750003. [18] A. Das, R.C. Laskar, and N.J. Rad, On α-domination in graphs, Graphs Combin. 34 (2018), no. 1, 193–205. [19] W.J. Desormeaux, T.W. Haynes, and M.A. Henning, Total domination critical and stable graphs upon edge removal, Discrete Appl. Math. 158 (2010), 1587–1592. [20] W.J. Desormeaux, T.W. Haynes, and M.A. Henning, Total domination stable graphs upon edge addition, Discrete Math. 310 (2010), 3446–3454. [21] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1969. [22] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998. [23] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker Inc., 1998. [24] S.T. Hedetniemi and R. Laskar, Topics in domination in graphs, Discrete Math. 86 (1990), no. 1-3, 3–9. [25] M.A. Henning and M. Krzywkowski, Total domination stability in graphs, Discrete Appl. Math. 236 (2018), no. 19, 246–255. [26] A.A. Omran and T.A. Ibrahim, Fuzzy co-even domination of strong fuzzy graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 727–734. [27] O. Ore, Theory of Graphs, American Mathematical Society, Providence, R.I., 1962. [28] S.J. Radhi, M.A. Abdlhusein, and A.E. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 473–480. [29] V. Samodivkin, A note on Roman domination: Changing and unchanging, Austr. J. Combin. 71 (2018), no. 2, 303–11. | ||
آمار تعداد مشاهده مقاله: 87 تعداد دریافت فایل اصل مقاله: 68 |