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Abstract

In this study, we examine the inverse problem for the differential equation of the Sturm-Liouville type with the spectral
boundary condition in the finite interval. Using Lieberman-Hochstadt’s method, we show that if p(x) is prescribed
on the half interval

(
π
2 , π

)
then a single spectrum suffices to determine p(x) on (0, π). Moreover, applying Gesztesy-

Simon’s method, we demonstrate that if p(x) is assumed over the given segment [π/2(1 − θ), π] where θ ∈ (0, 1), a
finite number of the spectrum is enough to give p(x) on (0, π).
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1 Introduction

Inverse spectral problems (ISPs) are recovering the coefficient of the problem from its spectral data. Such problems
often rise in electronics, quantum mechanics, geophysics, mathematical physics, etc [2, 13, 14]. ISPs for Sturm-Liouville
equations (SLEs) have been firstly studied by Ambarzumyan in 1929 [1] and secondly by Borg in 1946 [3]. The inverse
problems for SLEs are investigated in the next years in [10, 15, 19, 23]. In this article, we study the boundary value
problem L(p),

−u′′(x) + p(x)u(x) = λu(x), x ∈ (0, π), (1.1)

U(u) := u′(0) = 0, (1.2)

V (u) :=
sin(ϱπ)

ϱ
u′(π) + cos(ϱπ)u(π) = 0, (1.3)

where the real function p(x) ∈ L2(0, π). The parameter λ = ϱ2 is a spectral parameter.

The initial findings regarding the half inverse problems for Sturm-Liouville operators have also been examined by
Lieberman and Hochstadt in 1978 [8]. They have shown that the potential q(x) on ( 12 , 1) and one spectrum of

−u′′(x) + q(x)u(x) = λu(x), x ∈ (0, 1),

u′(0)− hu(0) = 0 = u′(1) +Hu(1) = 0,
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uniquely identify q(x) on [0, 1]. Then, Hald continued this technique considering impulse conditions inside the interval
[7] and these works have been adapted to different types of Sturm-Liouville problems (SLPs) [4, 11, 12, 21, 24]. In
the following and with more studies in this field, Gesztesy and Simon have firstly proved that the incomplete data
regarding the spectrum and the coefficients of the problem can uniquely establish the problem on all interval [6]. In
next years, the authors have applied this technique to survey of the inverse SLPs [9, 10, 18, 23]. Studying these papers,
it has made us interested to survey the ISP of the Sturm-Liouville operator (1.1)-(1.3) by these methods. To the best
of our knowledge, this problem has not been previously considered. In this work, we would like to discuss on L and
prove the uniqueness of the inverse problem from one spectrum plus understanding the potential within the half of
the internal by Hochstadt-Lieberman’s method. Moreover we study the uniqueness of the inverse problem of L taking
the incomplete data on the spectrum and the coefficients of the problem by Gesztesy-Simon’s method.

In this paper, we investigate two inverse problems for the SLP (1.1)-(1.3). We give some preliminaries and results
in Sec. 2. In Sec. 3, the proof of two uniqueness theorems for (1.1)-(1.3) has been brought.

2 Preliminaries and Results

For every fixed x ∈ (0, π), the given equation (1.1) has an entire solution S(x, ϱ) in ϱ that satisfies certain conditions
S(0, ϱ) = 1 and S′(0, ϱ) = 0. The characteristic function of L denoted by

∆(ϱ) =
sin(ϱπ)

ϱ
S′(π, ϱ) + cos(ϱπ)S(π, ϱ), (2.1)

has the same zeros as the eigenvalues ϱn of L [5]. From [16, 22], the given expression represents an integral form of
the solution

S(x, ϱ) = cos (ϱx) +

∫ x

0

K(x, t) cos(ϱt)dt, (2.2)

for a function K(x, t) that is continuous. For sufficiently large ϱ, we can infer this solution as follows:

S(x, ϱ) = cos (ϱx) +

(
2h+

∫ x

0

p(t)dt

)
sin (ϱx)

2ϱ
+ o

(
1

ϱ
exp(|ℑϱ|x)

)
. (2.3)

Now by using (2.1) and (2.3), one gets for enough large ϱ,

∆(ϱ) = cos (2ϱπ) +O

(
1

ϱ
exp(2|ℑϱ|π)

)
, (2.4)

and then the eigenvalues ϱn,

ϱn =
n

2
+

1

4
+O(n−1),

for sufficiently large n. Denote the set Eκ by Eκ := {ϱ ∈ C; | ϱ− ϱn |≥ κ, n ∈ N} as a fix κ > 0. Applying (2.4), we
receive

|∆(ϱ)| ≥ Cκ exp(2|ℑϱ|π), ϱ ∈ Eκ, (2.5)

for some positive constant Cκ. To investigate the inverse problem for the SLP (1.1)-(1.3), alongside L = L(p), we will

consider a boundary value problem L̃ = L(p̃) in which the equation will have a similar form as before, but with a
different coefficient. Now we establish the important results of this article. At first we express the half inverse theorem
for the SLP (1.1)-(1.3).

Theorem 2.1. If λn = λ̃n as any natural numbers n and p(x) = p̃(x) on
(
π
2 , π

)
then p(x) = p̃(x) a.e. on (0, π).

Another result of this paper, the Gesztesy-Simon’s theorem for the SLP (1.1)-(1.3) is now stated.

Theorem 2.2. Assume σ(L) as the spectrum of L, G ⊆ σ(L) ∩ σ̃(L) considering

♯{ϱ ∈ G; ϱ ≤ ϱ0} ≥ (1− θ)♯{ϱ ∈ σ(L); ϱ ≤ ϱ0}+
θ

2
,

as enough large ϱ0 ∈ R, and in the case of θ ∈ (0, 1),

p(x) = p̃(x), x ∈ [π/2(1− θ), π].

Then p(x) = p̃(x), a.e. on (0, π).
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3 Proofs

In this section, we give the proof of theorems in this work. Firstly, we prove the half inverse theorem.

Proof of Theorem 2.1. S(x, ϱ) can be as the solution of

−S′′(x, ϱ) + p(x)S(x, ϱ) = λS(x, ϱ), (3.1)

S(0, ϱ) = 1, S′(0, ϱ) = 0,

and S̃(x, ϱ) represents the solution of

−S̃′′(x, ϱ) + p̃(x)S̃(x, ϱ) = λS̃(x, ϱ), (3.2)

S̃(0, ϱ) = 1, S̃′(0, ϱ) = 0.

We firstly multiply (3.1) by S̃(x, ϱ) and (3.2) by S(x, ϱ), and subtract two resulting equations from one another.
Therefore (

p(x)− p̃(x)
)
S(x, ϱ)S̃(x, ϱ) = S′′(x, ϱ)S̃(x, ϱ)− S(x, ϱ)S̃′′(x, ϱ). (3.3)

Integrating (3.3) on (0, π), one gives∫ π

0

(
p(x)− p̃(x)

)
S(x, ϱ)S̃(x, ϱ)dx = (S′(x, ϱ)S̃(x, ϱ)− S(x, ϱ)S̃′(x, ϱ))|x=π

x=0 .

Using the assumption of the theorem, we can conclude

J(ϱ) :=

∫ π
2

0

(
p(x)− p̃(x)

)
S(x, ϱ)S̃(x, ϱ)dx

= S′(π, ϱ)S̃(π, ϱ)− S(π, ϱ)S̃′(π, ϱ). (3.4)

The attributes of S(x, ϱ) and S̃(x, ϱ), as well as the boundary condition in (1.3) give that H(ϱn) = 0. Following,
we will demonstrate that J(ϱ) = 0 for whole ϱ. Using (2.2), we will have as a continuous function K ′(x, t),

S(x, ϱ)S̃(x, ϱ) =
1

2
(1 + cos (2ϱx)) +

∫ x

0

K ′(x, t) cos (2ϱt) dt, (3.5)

and then from
| cos(2ϱx)| ≤ exp(2|ℑϱ|x),

one gives for x < π
2 ,

|S(x, ϱ)S̃(x, ϱ)| ≤ M exp(|ℑϱ|π),

as a constant M > 0. Thus as enough large ϱ,

|J(ϱ)| ≤ C exp(|ℑϱ|π), (3.6)

for some constant C > 0. Put the analytic function

ϕ(ϱ) =
J(ϱ)

∆(ϱ)
.

Taking (2.5) and (3.6), one can see that ϕ(ϱ) = 0 as sufficiently large ϱ. So, we can write that J(ϱ) = 0 as whole
ϱ. Substituting (3.5) in (3.4) and taking J(ϱ) = 0, we get∫ π

2

0

(
p(x)− p̃(x)

)(
1 + cos(2ϱx) +

∫ x

0

K ′(x, t) cos(2ϱt)dt

)
dx = 0,
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and so∫ π
2

0

(
p(x)− p̃(x)

)
dx+

∫ π
2

0

cos(2ϱt)

(
p(t)− p̃(t) +

∫ π
2

t

K ′(x, t)
(
p(x)− p̃(x)

)
dx

)
dt = 0.

By using the Riemann-Lebesgue Lemma, we find that∫ π
2

0

(
p(x)− p̃(x)

)
dx = 0,

∫ π
2

0

cos(2ϱt)

(
p(t)− p̃(t) +

∫ π
2

t

K ′(x, t)
(
p(x)− p̃(x)

)
dx

)
dt = 0.

Taking the completeness of ”cos”, we have

p(t)− p̃(t) +

∫ π
2

t

K ′(x, t)
(
p(x)− p̃(x)

)
dx = 0, 0 < t <

π

2
.

This equation is a type of integral equation called a homogeneous Volterra integral equation, and it has no solution
except for the trivial solution. This implies that the functions p(x) and p̃(x) are equal for a. e. x in the interval(
0, π

2

)
. The proof is now finished. □

The following is the proof of the Gesztesy-Simon’s theorem.

Proof of Theorem 2.2. Considering (3.3), because p(x) = p̃(x), x ∈ [π/2(1− θ), π], one gets∫ π/2(1−θ)

0

(
p(x)− p̃(x)

)
S(x, ϱ)S̃(x, ϱ)dx = S′ (π, ϱ) S̃ (π, ϱ)− S (π, ϱ) S̃′ (π, ϱ) . (3.7)

Putting

J1(ϱ) :=

∫ π/2(1−θ)

0

(
p(x)− p̃(x)

)
S(x, ϱ)S̃(x, ϱ)dx, (3.8)

we will have

J1(ϱ) = S′ (π, ϱ) S̃ (π, ϱ)− S (π, ϱ) S̃′ (π, ϱ) .

From the hypothesis of the theorem, one results J1(ϱn) = 0 as ϱn ∈ G. It is enough to demonstrate that J1(ϱ) = 0
as other ϱ. Using (3.5) and (3.8), it is inferred that

|J1(ϱ)| ≤ C1 exp(|ℑϱ|π(1− θ)),

as a constant C1 > 0. Further supposing λ = ib,

|J1(ib)| ≤ C ′
1 exp(ℑ

√
i|
√
b|π(1− θ)), (3.9)

for some constant C ′
1 > 0. Let the entire function

ϕ1(ϱ) =
J1(ϱ)

∆1(ϱ)
, (3.10)

where

∆1(ϱ) =
∏

λn∈G

(
1− λ

λn

)
.

Based on the hypothesis of the theorem, we can give

N∆1
(ϱ0) ≥ (1− θ)N∆(ϱ0) +

θ

2
,
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in which

N∆1
(ϱ0) = ♯{λ ∈ G;λ ≤ λ0}, N∆(ϱ0) = ♯{λ ∈ σ(L);λ ≤ λ0}.

Due to the fact that ∆(ϱ) is an analytic function, we will have

N∆1
(ϱ0) ≤ N∆(ϱ0) ≤ C

√
λ,

as a constant C > 0. Using the known calculations (see [17, 20]), the following result gets

ln|∆1(ib)| = (1− θ)ln|∆(ib)|+ θ

4
ln(1 + b2). (3.11)

From the eigenvalues of L i.e., σ(L), we will have

|∆(ib)| ≥ C exp
(
2ℑ

√
i|
√
b|π

)
, (3.12)

for sufficiently large b and some constant C > 0. Thus taking (3.11) and (3.12), we can infer

|∆1(ib)| ≥ C1b
θ
2 exp

(
2ℑ

√
i|
√
b|(1− θ)π

)
, (3.13)

for some constant C1 > 0. Applying (3.9), (3.10) and (3.13), we can write

|ϕ1(ib)| ≤ C b
−θ
2 exp

(
−ℑ

√
i|
√
b|(1− θ)π

)
,

for some constant C > 0. By Phragmn-Lindelf theorem, one gets ϕ1(ϱ) = 0 as whole ϱ. Subsequently J1(ϱ) = 0 as
whole ϱ. Now the similar discussion done in Theorem 2.1 will result that p(x) = p̃(x) a. e. on [0, π/2(1− θ)]. The
proof is now finished. □
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