
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,783 |
تعداد دریافت فایل اصل مقاله | 7,656,227 |
Unsteady Heat Transfer in Cylindrical Encapsulated Phase Change Materials with Buoyancy Effect | ||
Journal of Heat and Mass Transfer Research | ||
دوره 11، شماره 2 - شماره پیاپی 22، بهمن 2024، صفحه 225-236 اصل مقاله (3.75 M) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2024.33230.1522 | ||
نویسنده | ||
Javad Rostami* | ||
Razi University | ||
تاریخ دریافت: 19 بهمن 1402، تاریخ بازنگری: 18 خرداد 1403، تاریخ پذیرش: 18 خرداد 1403 | ||
چکیده | ||
In this paper, the effect of buoyancy force on the temperature change of the phase change materials which has been encapsulated in two pipes in a channel, is simulated numerically using Boussinesq approximation. An application of this topic is in air-conditioning, which uses ice in the pipes as PCM for coolant and the aim is calculating the PCM discharging time. The unsteady governing equations including continuity, momentum and energy in the fluid flow and phase change material for laminar flow regime, have been solved by the well-known SIMPLE method. The needed time to phase change material reach the inlet temperature of the fluid flow has been obtained and compared to the results of the lumped temperature assumption. The results show that the discharging time is 4,000 for Gr=5,000 and 70,000 for Gr=200,000. It is 25,000 for kr=0.5 and 34,000 for kr=1.5. Also, it is 11,000 for Cpr=103 and 28,000 for Cpr=104. Finally, it has been concluded that due to the fine mixing of PCM because of buoyancy force, the results are so closed to the results of the lumped temperature assumption for PCM. | ||
کلیدواژهها | ||
PCM؛ Convective heat transfer؛ CFD؛ Latent heat, Sensible heat | ||
عنوان مقاله [English] | ||
انتقال حرارت گذرا در مواد تغییر فاز دهنده موجود در کپسولهای استوانهای با در نظر گرفتن نیروی شناوری | ||
چکیده [English] | ||
در این مقاله، اثر نیروی شناوری بر تغییر دمای مواد تغییر فاز که در دو لوله در یک کانال محصور شدهاند، به صورت عددی با استفاده از تقریب بوسینسک شبیهسازی شده است. این شبیه سازی در تهویه مطبوع کاربرد دارد. معادلات حاکم گذرا شامل پیوستگی، تکانه و انرژی در جریان سیال و مواد تغییر فاز برای جریان رژیم آرام، با روش معروف SIMPLE حل شده است. زمان لازم برای رسیدن مواد تغییر فاز به دمای ورودی جریان سیال بدست آمده و با نتایج حاصل از فرض دمای یکنواخت برای ماده تغییر فاز مقایسه شده است. نتایج نشان می دهد که زمان بی بعد ذوب برای Gr=5000 برابر با 4000 و برای Gr=200000 برابر با 70000 است. برای kr=0.5 برابر 25000 و برای kr=1.5 برابر 34000 است. همچنین برای Cpr=103 برابر 11000 و برای Cpr=104 برابر 28000 است. در نهایت نتایج نشان دادند که به علت اختلاط ماده تغییر فاز دهنده ناشی از نیروی شناوری، نتایج با نتایج روش ظرفیت کلی نزدیک و همخوانی داشت. | ||
کلیدواژهها [English] | ||
مواد تغییر فاز دهنده, انتقال حرارت جابهجایی, دینامیک سیالات محاسباتی, گرمای نهان, گرمای محسوس | ||
مراجع | ||
[1] Ho, C.J. and Cheng, Y.T., 1999. On cooling behavior of a vertical plate in a phase change material/water composite enclosure under pulsating heat load. Heat and mass transfer, 34(6), pp.509-515. [2] Yan, S.R., Fazilati, M.A., Samani, N., Ghasemi, H.R., Toghraie, D., Nguyen, Q. and Karimipour, A., 2020. Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study. Journal of Energy Storage, 30, p.101445 [3] Khan, R. J., Bhuiyan, Md. Z. H., Ahmed, D. H., 2020, Investigation of heat transfer of a building wall in the presence of phase change material (PCM). Energy and Built Environment, 1, pp. 199-206. [4] Khodadadi, J. M., Zhang, Y., 2001, Effects of buoyancy-driven convection on melting within spherical containers. International Journal of Heat and Mass Transfer, 44, pp. 1605-1618. [5] Assis, E., Katsaman, L., Ziskind, G., Letan, R., 2007, Numerical and experimental study of melting in a spherical shell. International Journal of Heat and Mass Transfer, 50, pp. 1790-1804. [6] Tan, F. L., Hosseinizadeh, S. F., Khodadadi, J. M., Fan, L., 2009, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer, 52, pp. 3464-3472. [7] Elmozughi, A. F., Solomon, L., Oztekin, A., Neti, S., 2014, Encapsulated phase change material for high temperature thermal energy storage Heat transfer analysis. International Journal of Heat and Mass Transfer, 78, pp. 1135-1144. [8] Aadmi, M., Karkri, M., Hammouti, M. E., 2015, Heat transfer characteristics of thermal energy storage for PCM (phase change material) melting in horizontal tube: Numerical and experimental investigations. Energy, 85, pp. 339-352. [9] Zeneli, M., Malgarinos, I., Nikolopoulos, A., Nikolopoulos, N., Grammelis, P., Karellas, S., Kakaras, E., 2019, Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures. Applied Energy, 242, pp. 837-853. [10] Mallya, N., Haussener, S., 2021, Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials. International Journal of Heat and Mass Transfer, 164, 120525. [11] Zhao, W., Elmozughi, A. F., Oztekin, A., Neti, S., 2013, Heat transfer analysis of encapsulated phase change material for thermal energy storage. International Journal of Heat and Mass Transfer, 63, pp. 323-335. [12] Bayat, M., Faridzadeh, M. R., Toghraie, D., 2018, Investigation of finned heat sink performance with nano enhanced phase change material (NePCM). Thermal Science and Engineering Progress, 5, pp. 50-59. [13] Shatikian, V., Ziskind, G., Letan, R., 2005, Numerical investigation of a PCM-based heat sink with internal fins. International Journal of Heat and Mass Transfer, 48, pp. 3689-3706. [14] Aziz, S., Amin, N. A. M., Abdul Majid, M. S., Belusko, M., Bruno, F., 2018, CFD simulation of a TES tank Comprising a PCM encapsulated in sphere with heat transfer enhancement. Applied Thermal Engineering, 143, pp. 1085-1092. [15] Mourad, A., Aissa, A., Abed, A. M., Smaisim, G. F., Toghraie, D., Fazilati, M. A., Younis, O., Guedri, K., Alizadeh, A., 2022, The numerical analysis of the melting process in a modified shell-and-tube phase change material heat storage system. Journal of Energy Storage, 55D, 105827. [16] Rostami, J., 2020, Optimum Diameter and Location of Pipes Containing PCMs in a Channel in Latent and Sensible Heat Transfer. AUT Journal of Mechanical Engineering, 4, pp. 551-559. [17] Hoffman, K. A., 1989, Computational Fluid Dynamics for Engineers, Engineering Education System, Austin, Texas. [18] Raisee, M., 1999, Computation of Flow and Heat Transfer Through Two- and Three-Dimensional Rib-Roughed Passages (Doctoral Thesis, University of Manchester). [19] Rhie, C. M., Chow, W. L., 1983, Numerical Study of the Turbulent Flow Past an Airfoil with Trading Edge Separation. AIAA J., 21 (11), pp. 1525-1535. [20] Versteeg, H. K., Malalasekera, W., 2007, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Harlow, England: Pearson Education Ltd. [21] Spalding, D. B., 1972, A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives. International Journal for Numerical Methods in Engineering, 4, pp. 551-559. [22] Patankar, S. V., Spalding, D. B., 1972, A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. International Journal of Heat and Mass Transfer, 15, pp. 1787-1806. [23] Taira, K., Colonius, T., 2007, The immersed boundary method: A projection approach. Journal of Computational Physics, 225, pp. 2118–2137. [24] Bejan, A., 2013, Convection Heat Transfer, John Wiley& Sons, Hoboken, New Jersey, 4th ed. [25] Holman, J. P., 1997, in: Heat Transfer, eighth ed. McGraw-Hill Inc., New York, pp. 218-282. | ||
آمار تعداد مشاهده مقاله: 160 تعداد دریافت فایل اصل مقاله: 242 |