
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,934 |
تعداد دریافت فایل اصل مقاله | 7,656,390 |
General 3D-Jensen $\rho$-functional equation and ternary Hom-Jordan derivation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 25، دوره 16، شماره 3، خرداد 2025، صفحه 315-322 اصل مقاله (343.84 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.31374.2246 | ||
نویسندگان | ||
Sajad Abdollahnajad؛ Javad Shokri؛ Mohammad Ali Abolfathi* ؛ Ali Ebadian | ||
Department of Mathematics, Faculty of Sciences, Urmia University, P. O. Box 165, Urmia, Iran | ||
تاریخ دریافت: 28 آبان 1401، تاریخ بازنگری: 17 دی 1401، تاریخ پذیرش: 05 اسفند 1401 | ||
چکیده | ||
In this paper, we introduce the concept of ternary Hom-Jordan derivation and solve the new 3D-Jensen $\rho$-functional equations in the sense of ternary Banach algebras. Moreover, we prove its Hyers-Ulam stability using the fixed point method. | ||
مراجع | ||
[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. [2] M. Eshaghi Gordji, Z. Alizadeh, H. Khodaei, and C. Park, On approximate homomorphisms: A fixed-point approach, Math. Sci. 6 (2012), doi.org/10.1186/2251-7456-6-59. [3] M. Eshaghi Gordji, S. Bazeghi, C. Park, and S. Jang, Ternary Jordan ring derivations on Banach ternary algebras: A fixed point approach, J. Comput. Anal. Appl. 21 (2016), 829–834. [4] M. Eshaghi Gordji, A. Jabbari, A. Ebadian, and S. Ostadbashi, Automatic continuity of 3-homomorphisms on ternary Banach algebras, Int. J. Geometric Meth. Modern Phys. 10 (2013), 1320013. [5] M. Eshaghi Gordji, A. Jabbari, and G.H. Kim, Bounded approximate identities in ternary Banach algebras, Abstr. Appl. Anal. 2012 (2012), 1–6. [6] M. Eshaghi Gordji, H. Khodaei, and Th. M. Rassias, Fixed points and generalized stability for quadratic and quartic mappings in C*-algebras, J. Fixed Point Theory Appl. 17 (2018), 703–715. [7] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436. [8] I. Hwang and C. Park, Bihom derivations in Banach algebras, J. Fixed Point Theory Appl. 21 (2019), doi.org/10.1007/s11784-019-0722-y. [9] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. United States Amer. 27 (1941), 222–224. [10] A. Jabbari, Cohen’s factorization theorem for ternary Banach algebras, Math. Anal. Contemp. Appl. 1 (2019), no. 1, 62–66. [11] S. Jahedi and V. Keshavarz, Approximate generalized additive-quadratic functional equations on ternary Banach algebras, J. Math. Exten. 16 (2022), no.10, 1–11. [12] S. Jahedi, V. Keshavarz, C. Park, and S. Yun, Stability of ternary Jordan bi-derivations on C*-ternary algebras for bi-Jensen functional equation, J. Comput. Anal. Appl. 26 (2019), 140–145. [13] R. Kerner, Ternary algebraic structures and their applications in physics, Pierre Marie Curie University, Paris, Proc. BTLP, 23rd Int. Conf. Group Theor. Meth. Phys., Dubna, Russia, 2000. [14] V. Keshavarz, S. Jahedi, and M. Eshaghi Gordji, Ulam-Hyers stability of C*-ternary 3-Jordan derivations, South East Asian Bull. Math. 45 (2021), 55–64. [15] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305–309. [16] Y. Nambu, Generalized Hamiltonian mechanics, Phys. Rev. 7 (1973), 2405–2412. [17] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97. [18] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. [19] F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. [20] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York, 1940. [21] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117–143. | ||
آمار تعداد مشاهده مقاله: 126 تعداد دریافت فایل اصل مقاله: 142 |