
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,785 |
تعداد دریافت فایل اصل مقاله | 7,656,233 |
Chebyshev-type fractional inequalities via $(k, \psi )$-Hilfer operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 1، دوره 16، شماره 6، شهریور 2025، صفحه 1-8 اصل مقاله (451.17 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.33464.4987 | ||
نویسندگان | ||
Bouharket Benaissa* 1؛ Noureddine Azzouz2، 3 | ||
1Laboratory of Informatics and Mathematics, Faculty of Material Sciences, University of Tiaret, Algeria | ||
2Faculty of Sciences, University Center Nour Bachir, El Bayadh, Algeria | ||
3University Belhadj Bouchaib Ain Temouchent, Ain Temouchent, Algeria | ||
تاریخ دریافت: 17 اسفند 1402، تاریخ بازنگری: 14 فروردین 1403، تاریخ پذیرش: 16 فروردین 1403 | ||
چکیده | ||
In this paper, we use the $(k, \psi)$-Hilfer fractional integral of functions with respect to another function to generalize Chebyshev-type fractional integral inequalities. Some inequalities involving $(k, \psi)$-Hilfer fractional integrals are also to be proved. | ||
کلیدواژهها | ||
Chebyshev inequality؛ Hilfer operator؛ Fractional operator | ||
مراجع | ||
[1] A.O. Akdemir, S.I. Butt, M. Nadeem, and M.A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics 9 (2021), no. 2, 122. [2] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math. 10 (2009), no. 3, 1–12. [3] P.L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov 2 (1882), 93–98. [4] M. Houas, Z. Dahmani, and M.Z. Sarikaya, Some integral inequalities for (k, s)-Riemann-Liouville fractional operators, J. Interdiscip. Math. 21 (2018), 7-8, 1575–1585. [5] S. Iqbal, S. Mubeen, and M. Tomar, On Hadamard k-fractional integrals, J. Fractional Calc. Appl. 9 (2018), no. 2, 255–267. [6] V. Kiryakova, Generalized Fractional Calculus and Applications, vol. 301 of Pitman Research Notes in Mathematics Series, Longman Scientific et Technical, Harlow, UK, 1994. [7] Y.C. Kwun, G. Farid, W. Nazeer, S. Ullah, and S. M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access 6 (2018), 64946–64953. [8] K.S. Nisar, G. Rahman, and K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl. 2019 (2019), 245. [9] F. Qi, S. Habib, S. Mubeen, and M.N. Naeem, Generalized k-fractional conformable integrals and related inequalities, AIMS Math. 4 (2019), no. 3, 343–358. [10] A. Senouci and M. Sofrani, Generalizations of some integral inequalities for Riemann-Liouville operator, Chebyshevskii Sbornik 23 (2022), no. 2, 161–169. [11] E. Set and A. Gozpnar, Some new inequalities involving generalized fractional integral operators for several class of functions, AIP Conf. Proc. 1833 (2017), no. 1. [12] E. Set, I. Mumcu, and S. Demirbas, Conformable fractional integral inequalities of Chebyshev type, Rev. Real Acad. Cien. Exact. Fis. Natur. Ser. A. Mate. 113 (2019), 2253–2259. [13] E. Set, M.E. Ozdemir, and S. Demirbas, Chebyshev type inequalities involving extended generalized fractional integral operators, AIMS Math. 5 2020, no. 4, 3573–3583. | ||
آمار تعداد مشاهده مقاله: 155 تعداد دریافت فایل اصل مقاله: 221 |