
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,929 |
تعداد دریافت فایل اصل مقاله | 7,656,387 |
اندازه گیری ثابتهای اسیدی 4-(2- تیازول آزو)رزوسینول بوسیله طیف سنجی فرابنفش و شیمی سنجی در مخلوطهای دوتایی آب-استونیتریل و آب-دیوکسان | ||
شیمى کاربردى روز | ||
دوره 19، شماره 71، تیر 1403، صفحه 151-166 اصل مقاله (1.48 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2024.25783.2039 | ||
نویسندگان | ||
منصور نمازیان* ؛ شهریار جهانبانی؛ علی بنویدی | ||
دانشکده شیمی، دانشگاه یزد، یزد، ایران | ||
تاریخ دریافت: 08 بهمن 1400، تاریخ بازنگری: 23 آبان 1402، تاریخ پذیرش: 17 تیر 1403 | ||
چکیده | ||
در این مقاله با تلفیق روش طیف سنجی فرابنفش و روش شیمی سنجی، ثابت تفکیک اسیدی 4-(2- تیازولآزو)رزوسینول اندازه-گیری شد. طیف جذبی محلول 4-(2- تیازولآزو)رزوسینول دارای همپوشانی طیفی زیادی است، بنابراین تعیین ثابت تفکیک اسیدی آن با استفاده از روش طیف سنجی معمولی مشکل خواهد بود. با استفاده از طیف سنجی فرابنفش -مرئی و روش آنالیز فاکتوری کاهش دو مرتبه (TRAFA)، ثابتهای اسیدی، تعداد گونهها، کسر مولی، نمودار انحراف استاندارد نسبی (RSD) و طیف خالص گونههای حاصل از تفکیک اسیدی 4-(2- تیازولآزو)رزوسینول در محلول 0/20 تا 0/80 درصد حجمی استونیتریل در آب و دیاکسان در آب محاسبه شد. نتایج بهدست آمده توسط روش فوق نشان دهنده کارایی این روش در تعیین محلول با همپوشانی طیفی بالاست.با بررسی ثابت تفکیک اسیدی 4-(2- تیازولآزو)رزوسینول در حلالهای مختلف مشخص میشود که با افزایش درصد حلالها ثابت اسیدی کوچکتر میشود که این را میتوان به اینصورت توضیح داد که قدرت حلالپوشی و ثابت دیالکتریک آب ، استونیتریل و دیاکسان با هم متفاوتند. مقدار این متغیرها به پارامترهای فیزیکی (ثابت دیالکتریک و عدد القایی) وابسته است. | ||
کلیدواژهها | ||
4-(2- تیازولآزو)رزوسینول؛ فاکتوری کاهش دو مرتبه؛ طیف سنجی فرابنفش -مرئی؛ ثابت تفکیک اسیدی | ||
عنوان مقاله [English] | ||
Measurement of 4-(2-thiazole azo) rososinol acidy constants by means of ultraviolet spectroscopy and chemometrics in water-acetonitrile and water-dioxane binary mixtures | ||
نویسندگان [English] | ||
Mansoor Namazian؛ Shahriar Jahanbani؛ Ali Benvidi | ||
Faculty of Chemistry, Yazd University, Yazd, Iran | ||
چکیده [English] | ||
In this paper, by combining ultraviolet spectroscopy and Chemometrics method, the acid dissociation constant of 4- (2-thiazole azo) rososinol was measured. The absorption spectra of the 4- (2-thiazole azo) rososinol solution have a large spectral overlap, so it will be difficult to determine its acid dissociation constant using conventional spectroscopy. Using ultraviolet-visible spectroscopy and two rank annihilation factor analysis (TRAFA), acid constants, number of species, molar fraction, relative standard deviation (RSD) and net species spectrum acid dissociation of 4- (2-thiazole azo) rososinol in 20 to 80% v/v of acetonitrile in water and dioxane in water was calculated. The results obtained by the two rank annihilation factor analysis method show the efficiency of this method in determining the solution with high spectral overlap. As the percentage of solvents increases, the acid constant becomes smaller, which can be explained by the fact that the solubility and dielectric constant of water, acetonitrile and dioxane are different. The value of these variables depends on the physical parameters (dielectric constant and induction number). | ||
کلیدواژهها [English] | ||
4- (2-thiazole azo) rososinol , ultraviolet spectroscopy , two rank annihilation factor analysis , acid dissociation constant | ||
مراجع | ||
[1] Momeni-Isfahani, T., & Niazi, A. (2014). Spectrophotometric determination of acidity constants of 2-(2-Thiazolylazo)-Cresol in various water–organic solvent media mixtures using chemometrics methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 120, 630-635.
[2] M. A. El-Gahami, A. E. Mekky, T. S. Saleh and A. S. Al-Bogami, Spectrochim. Acta A Mol. Biomol. Spectrosc. 129(2014) 209-218.
[3] Bordbar, M., Faal, A. Y., Ahari-Mostafavi, M. M., Gharagozlou, M., & Fazaeli, R. (2013). Multi-wavelength spectrophotometric determination of acidity constants of some salicylaldimine derivatives. Journal of Molecular Liquids, 178, 70-77.
[4] Cordero, J. A., He, K., Janya, K., Echigo, S., & Itoh, S. (2021). Predicting formation of haloacetic acids by chlorination of organic compounds using machine-learning-assisted quantitative structure-activity relationships. Journal of Hazardous Materials, 408, 124466.
[5] Kishikawa, N., El-Maghrabey, M. H., & Kuroda, N. (2019). Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. Journal of Pharmaceutical and Biomedical Analysis, 175, 112782.
[6] Şöhretoğlu, D., & Renda, G. (2020). Medicinal natural products in osteoporosis. In Annual reports in medicinal chemistry (Vol. 55, pp. 327-372). Academic Press.
[7] Tanaka, H., Tachibana, T., Oda, R., & Dasgupta, P. K. (2004). Determination of acid dissociation constants based on continuous titration by feedback-based flow ratiometry. Talanta, 64(5), 1169-1174..
[8] Ghaedi, M., Hajati, S., Barazesh, B., Karimi, F., & Ghezelbash, G. (2013). Saccharomyces cerevisiae for the biosorption of basic dyes from binary component systems and the high order derivative spectrophotometric method for simultaneous analysis of Brilliant green and Methylene blue. Journal of Industrial and Engineering Chemistry, 19(1), 227-233.
[9] Al-Saidi, H. M., Gouda, G. A., & Farghaly, O. A. (2020). Potentiometric study of a new Schiff base and its metal ion complexes: preparation, characterization and biological activity. International Journal of Electrochemical Science, 15(11), 10785-10801.
[10] Berzas, J. J., Rodríguez, J., & Castañeda, G. (1997). Partial least squares method in the analysis by square wave voltammetry. Simultaneous determination of sulphamethoxypyridazine and trimethoprim. Analytica chimica acta, 349(1-3), 303-311.
[11] Tanikami, Y., Mizuguchi, H., & Takayanagi, T. (2021). Determination of Two-Steps Acid Dissociation Constants of L-Ascorbic Acid by Capillary Zone Electrophoresis. Chromatography, 42(1), 49-54.
[12] Dhongde, V. R., De, B. S., & Wasewar, K. L. (2019). Experimental study on reactive extraction of malonic acid with validation by Fourier transform infrared spectroscopy. Journal of Chemical & Engineering Data, 64(3), 1072-1084.
[13] Lopalco, A., & Stella, V. J. (2016). Effect of molecular structure on the relative hydrogen peroxide scavenging ability of some α-keto carboxylic acids. Journal of pharmaceutical sciences, 105(9), 2879-2885.
[14] Taskiran, D. T., Urut, G. O., Ayata, S., & Alp, S. (2017). Spectrofluorimetric and Potentiometric Determination of Acidity Constants of 4-(4′-Acetyloxy-3′-Methoxybenzylidene)-5-Oxazolone Derivatives. Journal of fluorescence, 27, 521-528.
[15] Shamsipur, M., Hemmateenejad, B., Akhond, M., & Sharghi, H. (2001). Quantitative structure–property relationship study of acidity constants of some 9, 10-anthraquinone derivatives using multiple linear regression and partial least-squares procedures. Talanta, 54(6), 1113-1120.
[16] Safavi, A., & Abdollahi, H. (2001). Application of the H-point standard addition method to the speciation of Fe (II) and Fe (III) with chromogenic mixed reagents. Talanta, 54(4), 727-734.
[17] Daldal, Y. D., & Demiralay, E. Ç. (2020). Chromatographic and UV–visible spectrophotometric pKa determination of some purine antimetabolites. Journal of Molecular Liquids, 317, 113930.
[18] Gans, P., Sabatini, A., & Vacca, A. (1996). Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta, 43(10), 1739-1753.
[19] Gampp, H., Maeder, M., Meyer, C. J., & Zuberbühler, A. D. (1985). Calculation of equilibrium constants from multiwavelength spectroscopic data—I: Mathematical considerations. Talanta, 32(2), 95-101.
[20] Wold, S., Albano, C. W. J. D., Dunn, W. J., Edlund, U., Esbensen, K., Geladi, P., ... & Sjöström, M. (1984). Multivariate data analysis in chemistry. Chemometrics: mathematics and statistics in chemistry, 17-95.
[21] Sharaf, M. A., Illman, D. L., & Kowalski, B. R. (1986). Chemometrics (Vol. 117). John Wiley & Sons.
[22] Bahram, M., Hasani, M., & Bahari, S. (2016). Mean centering of ratio spectra for dye degradation study in Fenton reaction. Journal of the Iranian Chemical Society, 13, 449-455.
[23] Bishop, E. (Ed.). (2013). Indicators: international series of monographs in analytical chemistry (Vol. 51). Elsevier.
[24] Skoog, D. A., & Leary, J. J. (2013). Instrumentelle Analytik: Grundlagen-Geräte-Anwendungen. Springer-Verlag.
[25] Benvidi, A., Heidari, F., Ardakani, M. M., Hajishabani, A. M., & Ghasemi, J. (2010). Spectrophotometric determination of acidity constants of 4-(2′–thiazolylazo)-resorcinol (TAR) in water–organic mixtures. Chinese Chemical Letters, 21(6), 725-729.
[26] Rived, F., Canals, I., Bosch, E., & Rosés, M. (2001). Acidity in methanol–water. Analytica chimica acta, 439(2), 315-333. | ||
آمار تعداد مشاهده مقاله: 92 تعداد دریافت فایل اصل مقاله: 90 |