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Abstract

This article provides the presence of solutions to a fractional functional integro-differential equation via measures
of non-compactness. We present and prove a novel theorem that guarantees the existence of solutions, employing
Petryshyn’s fixed point theorem in the space of continuous functions. These findings build upon previous studies by
establishing the existence of results under less stringent conditions. Furthermore, we provide illustrative examples of
such equations to showcase the efficacy of the obtained results.
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1 Introduction

Fractional differential equations with different forms of fractional derivatives play essential roles in various fields
of applied science, including elasticity, fracture mechanics, and radiative equilibrium [29] [7, 2T]. Many researchers
applied various analytical studies and numerical methods to solve these types of equations [30] [3, 26]. For instance,
the existence and the uniqueness of the solution of these equations were examined in [2, [13] 24].

The authors in [33] have solved a nonlinear fractional integro-differential equation of the Hammerstein type by
converting it to the corresponding Volterra integral equation of the second kind.

In [5], Tau proposed a method that is based on the shifted Legendre polynomial to solve a class of fractional
stochastic integro-differential equations.

Moreover, the technique of fixed point theorems has been employed to illustrate the existence of solutions to
different types of problems such as in integral equations [16] 22], fractional differential equations [I} 6], and fractional
integro-differential equations (FIDEs) [4] 25].
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The existence of the solution of the boundary value problem of fractional differential equations was discussed
in [20, B0], utilizing the measure of non-compactness (MNC) with the Ménch fixed point theorem and with Darbo
theorem in Banach space [8] [23].

In this paper, we provide and prove a new existence theorem for solving the following fractional functional integro-
differential equation

D (s(ﬂ) +a(v.c0). [ o u,s<u>>du)) (L.1)

9
= f(0,&(a(¥))) + F<19,€(5(19)),€(9(19))7/0 k(9 V,E(M(V)))dV>, Ve Jo=[0,q],

with the initial conditions ‘
£9D0)=¢, &eRT, i=01,..,n—1, (1.2)

in the space of continuous functions C([0,a], R), where ¢ D is the Caputo’s fractional derivative and ¢ : J, — R is
the unknown function and g : J, x R? = R, f:J, x R =R, h,k:J? xR — R are continuous functions.

The present article is motivated by presenting a new existence theorem for solving the equation by employing
the technique of the MNC related to Petryshyn’s fixed point theorem which performs a generalization of Darbo’s and
Schauder’s fixed point theorems [, [T0, 11} BT]. Our assumptions are more simpler and general than the ones presented
in the former studies such as we bypass the ”sub-linear conditions” presented in [§]. Finally, we provide illustrative
examples of such equations to showcase the efficacy of the obtained results.

2 Auxiliary facts and notations

Let R = (—o0,+00), J, = [0,a], and £ = C(J,) be the Banach space of continuous functions defined on J, with
the standard norm ||.||. Denoted by Bs = {z € E :|| z ||< ¢} the closed ball centered at the origin 0 of radius ¢.

The symbol dB; = {z € E :|| z ||= 6} represents a sphere in E around 0 with radius &.

Definition 2.1. [I8] The Riemann-Liouville fractional integral of order o > 0 of an integrable function ¢ is defined

as 9
¢W) = F(lo)/o W@ — )W)y, 9> 0,

where I'(0) = [~ e™"v7Ldv.

Definition 2.2. [I8] The Caputo derivative of fractional order o for an absolutely continuous function £ on J, is
defined by

9
! ) / (9 — 1)1 (v)d,

c a —
(D f)(ﬂ)*m

wheren=[c]+landn—1<o <n.

Lemma 2.3. [I8] Let 0 > 0 and n = [o] + 1. If £(¢) € C™[0, a], then

n—1 +(3) )
@) (17 Cpoe)w) =) - 3 Dy

7!
i=0

(i) (“D7I7€)(9) = ().

Definition 2.4. [I9] Let P C E, then a(P) refers to Kuratowski MNC, where

=1

a(P) inf{J>O:P UR with diam F; Sa,i1,2,...,n}.
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Definition 2.5. [12] Let P C E, then U(P) refers to Hausdorff MNC, where

U(P) =inf {o > 0: P has a finite o-net in F }.
Let C[0, a] be the space of all real-valued continuous functions defined on J, with the usual norm
€] = sup{|¢(s)] = s € [0,a]}.
The space C[0,a] is also the structure of Banach algebra. The modulus of continuity of £ € C|0, a] is defined as
w(§,0) = sup{[¢(s) — &(5)] : 5,5 € 0,0, |s — 5] <o}

Theorem 2.6. [12] The Hausdorff MNC is similar to

U(P) = lim sup w(&, o) (2.1)
o—0 EGP

for all bounded sets P C C[0, a].

Definition 2.7. [27] Let I' : E — E be a continuous mapping so that VP C F with P bounded, I'(P) is bounded
and G(I'P) < AG(P),A € (0,1). If
UO(TP) < UB(P), for all B(P) > 0,

then I is called condensing map.
Theorem 2.8. [28,32] Let I' : Bs — E be a condensing mapping such that:

T(€) = A, for some & € OB then \ < 1.

Then T has at least one fixed point in B;.

3 Main Results
First, allow us to present the following assumptions:
(L1) g€ O(J, xR%2R), f € C(Ju x R,R), F € O(J, x R*R), h,k € C(J? x R,R) and,
«,B3,0,u: J, — J, are continuous;
(L2) There exist non negative constants ki, k2, ¢1, ca, and c¢g, where k1 < 1 and
l9(9, w1, w2) — g(¥, @1, @2)| < ki|wi — w1] + ka|wa — wal;

|F(9, w1, wa,ws) — F(Y, w1, w2, w2)| < c1|wi — w1| + ca|we — wa| + c3|ws — w3l;

(L3) 3 0o > 0 such that

where

+g( 050) )

—sup{
=0

A= sup{|g(19,w1,w2)| VO € J,, and wy € [0, 0], jwa| < aBi},
By = sup{|h(V,v,w1)| : VO, v € J,, and wy € [, 0]},

My =sup{|f(W,w1)|: VO € J, and wi € [—do,d0]},

My = sup{|F (¥, w1,ws,ws)| : VI € J,, w1,ws € [~dp,d0), |ws| < aB}.,
B = sup{|k(¥,v,w)| : VO, v € J,, and wy € [0, 0]},

VY € J,,VE € C[O,a]},
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Now, we show the equivalence between problem ((1.1)) with the initial conditions (L.2)) and the fractional integral
equation

@0 (@) !
Zg ) 0000y 9(1975(19)»/0 h(0,v,Ew))dv)

v al/ Fv, 8By
/‘f(@( Lyl /ﬂ (v €80, €0, ¢
(0 —v)t- (o) Jo (¥ —v)

q ~—
A
v
A
\_/
——

QU

where (HE)(9) = [ k(9 v, &(u(v)))dv.

Corollary 3.1. [I8, Theorem 3.24] Under assumption (L1) and for ¢ > 0, and £ € C(J,), then &(¢¥) verifies the
problem (1.1) with the initial conditions (1.2)) if, and only if, £(+9) fulfills the fractional integral equation (3.1)).

Indeed, the proof can be easily done by applying the integral operator I? (2.1) to both sides of (1.1) and using
Lemma (2.3 with the initial conditions 1.} to get the integral equation (3.1)). For more details see [8,[I8]. Therefore,
every solutlon of (3.1)) is a solution of (1.1 and vice versa.

Theorem 3.2. With the conditions (L1)-(L3), Eq. (1.1) with the initial conditions ([1.2)) has at least one solution in
E =C(J,).

Proof . We define the operator T': Bs, — E as follows:

"1 #(i) (g 9
o) =3 OHILCLD i o)+ [ o) + GOW) + (1)),

z!
i=0

where

dv.

ﬂ, a(v) | /ﬁF@@wwnxww»mHo@U
0

(T1§ (19 ) I/, and (ng)(’ﬂ) = F((J’) (19 — V)l—a

Step I, we need to demonstrate that T : C(J,) — C(J,). According to our assumptions, it suffices to demonstrate
that for any function £ € C(J,) implies T1€ and T»¢ are continuous on J,.

For this, take arbitrary v¥s,9s,€ J, and fix ¢ > 0 with |95 — ¥1| < e. Without loss of generality assume that
11 < ¥o, then we obtain

[(T1€)(¥2)) — (T1€)(V1))| =

v

o [ e, 1 g,
O D O SR

L W) [ fmEew) mf@f@@))y
=) Jo (%fuﬂad'+ﬁ1@%fWPvd 0 (0o
L[ fEew)  fngew))] 1 [ | fngaw)
Sr@»ﬁ {0y D)7 v w1w10‘1+rw»41 wszlvd
M o o M (oa
< m{ﬁ + (092 — ) }+F(17+10)(192—191)
3e? M,

“T(l+4o0)
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The above inequality yields that the operator T} : C(J,) — C(J,). Also, for the operator To we have

2 v, gl v v v v
KR@Wﬂ—“%N%>{péLA F( ﬂ(&;ﬁéz( X)M”wﬁﬂé F<f“&g§%ﬁLWO(”w
1| [ Fv,&(B(v)), £(0(v)), (HE)(v)) P2 F(v,£(B(v)), £(0(v)), (HE)(v))
“T(0) | (0~ v)1-7 d”+ﬁl (0~ v)1-7 W
_/”IF@£((W)EWWD(H®(D 4
0 (191 - ’/)1 7
- 1t/%FWéwv»ﬂWWMHO@D_F@£WW»ﬂMWMH8WDdu
~T(0) Jo (92 —v)i=e (91 —v)l=e
1 (" F(v,&(B(v)),£(0(v)), (HE(v))
*rwa>JQ1 (02 — )17 W
M2 o o o M2 o
Sﬁ{ﬁl — 05+ (W2 — 1)} + F(1+J)(ﬂ2 I1)
35"M2

F( +0)

So, this yields that the operator Ty : C(Jy) — C(Jy) and T : C(Jy) — C(Jp).
Step II, we will check that T is continuous on Bj,.

Considering € > 0 and for arbitrary values &, € Bs, such that || € —n ||< e, when 9 € J, we will have

(@ ) (i ) 9
(o)) §j§ VEg 0800 i, 00) + /“<vua>>) ) + (TE))
_”*Mkm+g@mnoo
> B g 19 (¥ / h(9, v, n(v + (i) (9) + (Tn)(9)
=0 '

—ﬂwMM)
T T(0) Jo (0 -

) ﬁV(uaﬁwnfww»<H®@n444mnww»mwwanm@0hi
5, (- ’
<k | £ —n | +keaw(h,e) F(119+ )w(f,w(a £))

1 (860 €600)), (W) - F(vn(Bw).£00). (HOW)) |
0, (0 - ’

12 [F(n(800). 00D, HOM)) - F (B0 n6@). (HOW))|
5 (0 - ’
L /ﬁF@mWW»MﬂWMHO@D—F@nwmeWWHHm@Db

I() Jo W —v)i— Y
<k 1€ = | Hhaao(h ) + e elflee) + Tog— €=

s 6=+ (k).
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where

(f’E) = sup{|f(y7§) - f(Va77)| e Jmf,?? € [_50760]7 ||§ - 77” < 5}7
(k,&?) = Sup{|k(?9vl/a 5) - k(ﬁa v, 77)| : 1971/ € Ja»ﬁﬂ? € [_50a50]a Hf - 77” < 5}7
W(h,E) = sup{|h(19,1/, 5) - h(ﬂa v, 77)| : 19’1/ € Ja»fﬂ? € [750a50]a H§ - 77” < 5}'

w
w

Now, because the functions f = f(v,£),h = h(9,v,€) and k = k(J,v,£) are uniformly continuous on J, x R and
J2 x R, respectively, we conclude w(f,w(a,€)) — 0,w(h,e) — 0 and w(k,e) — 0 as ¢ — 0. Hence, the continuity of T
on Bj, results.

Step III, now, it is shown that T satisfies the densifying condition.

Let € be an arbitrary positive constant. For £ € P C E let ¥1,v95 € J, while 97 <99 and 99 — ¥; < e. Therefore
we obtain

n—1 (#) (2) . V2
Zg (0)+g (0,6070)193_9(1927,5(192),/0 hwz,u,g(deV)

7!
i=0

[(TE)(W2) = (TE)(h)] =

L g, /ﬂzF(u,f(ff(u»,&we(u)),(H@@))
0

" L(o) Jo (W2—v)l=e v I(o) (02 — )0 v
=l e (o () . ¥y
= £ (0) + gi! (0,50,0)19‘1 +g(191,§(191), h(ﬂl,y,g(y))dy)

i=0 0

dv

L g, 1 /ﬂlF(vw(u»,g(e(u»,(Hf)(u))
T(0) o Wi-0)— """ T(o) /o (91 — v)i-o

S:&()(O)Jrg”(o €0, )(ﬁé—ﬁ’i)

<
7!

=0

91
+o(m g, [ honmgwav) - (0.6 / (02, (v v

0
2

+ |g( V1, £(V2), h(92,v,&(v

g(ﬁg o), [ h(a,v,e())dv
0 0

( i) - )

+ 9(191,5(191)’/0192 (P2, v,&(v))dv ) 9(191 £ “h (92, v,E(v ))du)
( i) - )
1

MW [ g ew) [ fEew)
MG A e R T L A
1 F(n€B0).€00). (HOW) o F(v€(8(). £00), (HOW))
! (02— )= w (02— )= v
02 F(1,6(8()), £(0(v)), (HE)(s))
‘/o (W= V)’ Y

91 Y2
gkg‘/o h(ﬁl,u,g(y))dz/—/o (0, v, EW))do| + RalE(0) — E(82)] 410y, )
(v, &(a(v)))

1 (M ) Fr&a®) I ,
+r<a>/o (02— v)i—° (ﬂlfuwd <>/ <ru>1a a

e F(z/,f(ﬂ(u)),f(e ) ( §(0(v)), (HE) (v ))) .
+F(U)/0 (09 — v)1=c (191_1/)1 - v

dv

L /ﬂz F(n 660 §00), (HOW))
I'(o) Jy, (P2 —v)t=7
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V2

<k /Oﬁl (h(ﬁl,y,f(u)) _ h(ﬁg,u,f(y)))du [ h(0a, )|+ Raol€, ) + ()

91
1 (")  fr,éa) £(a(v)))
w1, - !

1 (2| f(v,e
R N d”r(a)/ (V2 —v)1=7
| /m F(v.6(30)).00). (HOW))  F(1n&(B(0).£00:). (HE W)
I@) Jo (@2 =) (=)

+

+

dv

dv.

1 / F (v 6(80),€00)), (HO®))
T(0) Jy, (92 —v)i=7

For simplicity, we use the following notation:

wy(Ja,€) = sup{|g(¥, w1, w2) — g(F, w1, wa)| : [ = <&, V€ Jy, wi€[50,00], |we|<aC},
wi(Ja,€) = sup{|h(V,v,w1) — h(9,v,wi)| : |9 — 9| <e, Vv s, wi €[00}

Then we have

[(T€)(V2) — (TE)(¥1)] < kzawh(Jaaﬁ)JrszBl+k‘1W(€7E)+wg(Ja,6)
M, M,

+ m{ﬁ“ + (2 —91)7} + m(ﬁg —%1)°
M o o o M
+ m{’ﬂ 192 +<'l92_'l91) }“Fm(ﬁQ_ﬁl)

3e? My 3e7 Mo

< B .
< kgawh(Ja,E) + koeB1 + k‘1w(575) +wg(Ja,5) + T +0) + Tl +0)

This yields the following estimate:
w(T§7€) < ]{1W(§,5)7 f e P

Thus, taking the supremum in P, then the limit as € — 0 we obtain
UO(TP) < khiU(P).

Hence T is a condensing map.

Step IV, finally, let £ € OB;,. If T¢ = AE, then we have || T¢|| = A||€]| = Adp and with the condition (L3), we get

0800y (o600, [ nov.car)

P f,E(av))) 1 F(n€B0)),€0w), (HOW))
/ T e, -

ITE( |*

dv

<do, V€ Ja,

hence [|T¢]|| < &g, this means A < 1. O

4 Particular cases and examples

Now, we will extend and discuss the results presented in ([8], Theorem 3) as a particular case of our results which
discuss the following equation

9
°DY <:E(15‘) + g(9, x(ﬂ)) = f(9,z(9)) + F(ﬂ, x(ﬂ),/o k9, I/)H(:E(/L(I/)))dl/), Y€ Jg, (4.1)

with the initial conditions A
+D0)=a;, i=0,1,...,n—1. (4.2)
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Corollary 4.1. [8] Suppose
(M1) g, f € C(Js x R,R) and there exist the functions l1,ls : J, — J, being continuous such that

9(0,w1) = g(d, )| < h(W)|wr =1, B =sup{g(?,0),9 € Ja};
|f(19,w1) - f(ﬂ,wl)\ < l2(19)|w1 — w1|, B, = SU.p{f(’lg,O),lSl S Ja}.
(M2) F € C(J, x R?R), and there exists a continuous function I3 : J, — J, so that
|[F(J,w1,ws) — F(J, @1, @2)| < I3(9)(Jwr — @1] + |we — w2),  Vwi,wa, @1, @2 € R,
D =sup{F(4,0,0),9 € J,}.
Let | = max; {|l;(9)] : 9 € J,}, i = 1,2,3 and 0 < < 1. Also, let there exists a constant E > 0 such that
B,B;,D < E.
(M3) For H : C(J,) = C(J,), there exist a constant N > 0 so that
[(Hz)(9) = (Hy)(9)| < N|z(d) - y(9)|
for any ¥ € J, and for all z,y € C(J,).
(M4) There exists a function A : Ry — Ry being nondecreasing such that

[Haz| < A(flz]),

for all x € C(J,).
(M5) If | S0 MW\ < J, then there exists § > 0 of the inequali
i=0 il > = quality

o

J+E+16+—2

_ < 0.
Ty 20+ 28+ lallA@)] < 0

Then Eq. (4.1) with the initial conditions (4.2)) has at least a solution in J,.
Proof . Tt is clear that Eq. (4.1) is a particular case of Eq. (1.1)). Here a() = 8(9) = 6(¢) = 9, k(9, v, z(u(v))) =

k(ﬂa Z/)H(J)(/.L(V))), g(ﬁvwhw?) = g(ﬂa Wl), and F(’ﬂ7wla w2, W3) = F(ﬁ7w17w3)'
By employing Riemann-Liouville fractional integrating and Lemma Eq. (4.1) takes the form

it N0 D0, 29) .. v v, z(v
o) = 3 SOOI g g 0o+ o [ S,
[ P, (), (Ho)(v)
o) / @i ¥

(M2) and (M4) imply that the assumption (L2) is satisfied. It suffices to show that (L3) also holds. We have

1) (&) , It (o)) — Flu 5
()| < | 32 SO IO 2000 +lo(0.2(0)) = 9(0.0)| +19(0.0) + 7o [ SiGEl ))(ﬁ f(y)’P)L+|f( Oy,
=0 : 0
F ’ 7H _F 70,0 F ,070
L1 /M (20, (119)0)) = F0,0)] + [P 0.0)]
I'(o) (¥ —v)i-o
= 20(0) +99(0,20) Ul +Br , . Uzl +lallk|Al]) + D
Slizo i O+ 1)|z]| + B + NCEE 1)
<J+E+I+—2 (216 + 2E + la| k|| A(5)] (4.3)

I(o+1)
for all ¥ € J,. From the estimates (4.3) and assumption (M5), we conclude that there exists dg = § > 0 such that

sup |z(9)] < dp.
9E Ty

Finally, Theorem [3.2] gives the desired result. [J
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Remark 4.2. The above corollary is the main result of [§], which has five conditions (M1-M5), and its expression
and proof are like Theorem 3.1 using Petryshyn’s theorem, where we reduce them to the conditions (L1-L3). The
advantage of using Petryshyn’s theorem is that we omit its statement and proof.

Now, we provide more particular cases of our outcomes.

1. If g(9, w1, we) =0, f(I9,w1) = q(I), F(V,wy,ws,ws) = ws, and pu(r) = v then Eq. (L.1)) reduced to the equation

9
CDY(EW)) = q9) + / k(0. 0, £())dv, D € o,

with ,
€90y =6;,i=0,1,...,n—1,
which has been examined in [33].
2. For g(¥,wi,wq) = 0, a(¥) = 9, F(¥,w1,ws,ws) = ws, and p(v) = v we get the following nonlinear fractional
Volterra integro-differential equations of the Hammerstein type studied in [I5]

9

CDIEW)) = F9,£0) + [ kv, Ew))dv, O € o

0

3. For g(¥,w1,ws) = p(¢,w1), a(¥) =39, F(¥,w1,ws,ws) = q(I, wr,ws), B(I) =¥,
E(9,v,8) = p(,v)H(E), and pu(v) = v we get the following equations [g].

9
¢pn (5(19) +pw,s<z9>>) — h(9,£09)) + q(ﬂ,sw), / p(ﬂw)H(&(u)))dv), 9e .,

with |
£D0)=¢, i=0,1,..,n—1.

4. Let g = 0, f(,¢€) = a(¥), and F(¥,w1,ws,w3) = w3, then we have the following nonlinear integro-differential
equations that studied in [34]

9
Du(9) = a(¥) —|—/0 h(¥, v)u(Au(v))dy,

u(0) = uyg,
where
1 19
DE0) = gy | 00 €M, 90, o< <1,
I'(l—o0) Jo
5. Let g(¥, w1, ws) = M and F = 0,then we have the following nonlinear integro-differential equations that studied
in [35] [14].
D? (u(9) = A7) = f(0, u(u(?)),
u(0) = wo,
Example 4.3. Consider
1 17 v2e 20\ /e(v) 1 £(t?) 2
C 1.25 1 1 _ —9 —In(1+9?)
D 0, 0, dv) =
(5()+5sm(g( ))+3/0 — v) ="t TR

i 0] + I€(v g (1 v
+3+31921n(1+ 2 ) 3+319/ 1+192< /0 Csing 1+5(C)d€)d% € Ja (4.4)
with

€0)=¢, i=0,1 (4.5)



102 Metwali, Kazemi, Yaghoobnia
Here, Eq. (4.4)) is a particular case of Eq. (1.1)) with 0 =1.25, n=2, a=1,
1 02,29 [F( N
g(9, w1, ws) = —sin(wy) + —wa, wy = / udz/,
0

) 3 1+9

1 _ 93 o ,
fO. £l = FEmme+ 1+€(§<39s>6 e,

192 w1 + wa ¥
9 (1
F@,wnwew0) = 5= ( T > T3

,19 —3v
w3:/0 1;92( /gsmg\/1+§ d()du

[
() =5+ [ Csincy T+,

It is clear that (L1) holds. Also, conditions (L2) and (L3) are satisfied. we have

1 1
lg(¥, w1, w2) — g(I, w1, w2)| < 5|w1 — |+ §|w2 — s

and
|F (¥, w1 w2, ws) — F(, w1, ws, ws)|

92 w1 + w2 9 92 w1 + W2 U

= In(1 — In(1 _
‘3+3192n(+ 2 ) T3 T 3raE U T T 2 3+30°°
192 w1 + w2 w1 + w2 )

< — _

= 31392 2 5 | T30 @l

<~ [+ — @) + Fluws —

=15 w1 — w1 W2 — W2 6W3 ws|.

Here kl <1 kg 3701 :%’62: %763:%.

Also, suppose that lI€Il < do,00 > 0 and & = 0,&; = 1, then we have

£ +g< (0,£0,0) i (1 L (72 VW)
Z ¥ — (5 sm(f(t?))—l—g/o 1_|_19d1/>

.l 1 F(n€B0),€0wm), (HE))
(1. 25 / (9 — )0 25 dv + T'(1.25) / (9 — )02 dv
7 Voo 1 1 1 ) 1.1
S+ + 1ﬂ(2-25)( +1) 4+ = T (2.25) <6° + G FVIF 60)>, VY € J,.

So, condition (L3) holds if < £+ ‘/% + m + ﬁ %0 + ﬁ(% + V14 d) ) < dp. This shows that §y = 3.947 is

a solution of the above inequality. In view of Theorem every problems (4.4)-(4.5) has at least one solution defined
on [0,1].

Example 4.4. Consider

LI KDY _ Lyonn y 280G 1 Sm(sfw%) L W)

D" (£(9) +

(0 +2)2 91+,/1+9) 5 1+93) " (4+9)1+ €W
1 7 e’ cos(£(1 —v)) ((Isin(£(9)) arctan [ &L =0 5
HENR e (P [ owenen (S g )6 )

with
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for ¥ € [0,1]. In view of Eq. (L.1)), we have 0 = 0.5, n=a=1,

1+ In(1 +[€(W)])

’196 19+1)+ 2Sln(19)§(\2/§)

9(9,£(9)) =  [(0,€(a(D))) =

(19+2) 91+ /1+9)
Usin({(V))
E(p() = sin(¢ / ﬁarctan(lfﬁg(l _)|)|>dn,
1 3w 1 |wa] 1
F(t, w1, wo,w3) = 581n(1+ﬁ3> + T 01t ] +ge W,

7 eteostell =) (wsine) 1 [ 0-01 Y\,
R AN ] < 1 +3/0 areta <1+|£(1—<)|)d<>d

Observe that (L1) holds. We show that conditions (L2) and (L3) are satisfied. we have
1
|g(19,(-&.)1) - g(ﬁ,W1)| S Z‘wl - 7ﬂ1|
and

3 1 1
|F(79,0J1,UJ2,UJ3) —F(’l?,’wl,WQ,’W3)| S g\wl —TD1| + Z|w2 —’(D2| =+ g|(4)3 —’W3|.

Here k1 = = < l,c1 = % Cco = i,c;; = % Also, suppose that ||€]|| < dg,dp > 0 and & = 0, then we have

Y e, | 1 /ﬁ F (v, €(8)), €0(v)), (HE)(v))
r'(3)Jo (0—v)2 0 (0 —v)z

1 1446 1 1 do 1 1 6 1.1 4
71‘1‘ 1 +F(g)(3(1+)>+ B <++3(4+)><5o, JeJ,.

[EW)| = |£(0) +9(0,&0) — 9(9,£(9)) + dv

IS
+

This shows dp = 5.507 is a solution of the above inequality. In view of Theorem every problems (4.6])- (4.7)
has at least one solution defined on [0, 1].

5 Conclusion and Perspective

The current study presents the existence of the solution to some fractional functional integro-differential equations,
which is based on a more general form of the non-linear FIDEs and involves some other relevant works as well. In
the proposed method, Petryshyn’s fixed point theorem and the concept of MNC with more limited conditions were
applied. The interested authors may examine and extend these results in different function spaces, such as Lebesgue,
Holder, Orlicz, or Sobolev spaces.
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