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Abstract

In this paper, the class of nonconvex vector-valued optimization problems with inequality constraints is considered.
We introduce two constraint qualifications and derive the weak and strong Karush-Kuhn-Tucker type of necessary
conditions for a (weakly) efficient solution to the considered problem. All results are given in terms of Dini directional
derivative and Clarke subdifferential.
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1 Introduction

Let T be a compact metric space and X be a Banach space. Clearly, the space Y of all real-valued continuous
functions y : T → R endowed with the norm

∥y∥ := max
{
∥y(t)∥ | t ∈ T

}
, ∀y ∈ Y,

is a Banach space. Considering ψ : X → Y, we have ψ(x) : T → R for each x ∈ X , and so ψ(x)(t) ∈ R for all t ∈ T .
For the sake of simplicity, we denote the value of ψ(x)(t) by the symbol ψt(x), and in this way, for each t ∈ T , the
function ψt : X → R is defined as

ψt(x) := ψ(x)(t), ∀x ∈ X .

We define the nonempty cone Y+ ⊆ Y by

Y+ := {y ∈ Y | y(t) ≥ 0, ∀t ∈ T} .

This cone induces a partial order relation on Y which is defined as follows:

y1 ≤Y y2 ⇐⇒ y2 − y1 ∈ Y+.

In other word, y1 ≤Y y2 if and only if y1(t) ≤ y2(t), for all t ∈ T .
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Based on the above order on Y, we consider the following vector-valued optimization problem

(V P ) : min ψ(x) s.t. x ∈ S,

where S is a nonempty subset of X , defined by

S := {x ∈ X | gj(x) ≤ 0, j ∈ J}, (1.1)

in which J is an arbitrary nonempty index set and gj : X → R is a given function for each j ∈ J . Note that if J is a
finite set with p members, then Y is equal to Rp and the problem (V P ) can be written as

(V P1) : min
(
ψ1(x), · · · , ψp(x)

)
s.t. gj(x) ≤ 0, j ∈ J,

If J is a finite set and X = Rn, the problem (V P1) turns into the classic multiobjective programming problem
(MP, in brief) [2]. In the MP theory, three kinds of necessary optimality conditions are interested, named Fritz-John
(FJ), Karush-Kuhn-Tucker (KKT), and strong KKT (SKKT). For the cases that the functions gj as j ∈ J and
ψt as t ∈ T are differentiable (resp. convex, locally Lipschitz, lower semi-continuous), these necessary conditions are
expressed in term of their gradient (resp. convex subdifferential, Clarke subdifferential, Mordukhovich subdifferential);
see for instance, [3, 6, 13]. For study the generalizations of these optimality conditions to the case that X has infinite
dimension, see [1, 15].

If X = Rn and J is an infinite set, problem (V P1) is said multiobjective semi-infinite programming problem
(MSIP). For study the FJ, the KKT and the SKKT for MSIP, we refer to [5] for differentiable case, to [9] for linear
case, to [4] for convex case, and to [7, 8, 10, 11, 12] for locally Lipschitz case.

Recently, in [16, 17], the problem (V P ) with feasible set S defined by (1.1), has been investigated for infinite T
and finite J . It is noteworthy that in this case Y is an infinite-dimensional Banach space and (V P ) can not be shown
as (V P1). Note that in these articles, some FJ type necessary optimality conditions are presented for (V P ). Since the
KKT and the SKKT types optimality conditions for (V P ) have not been investigated so far (even for finite J), one of
the goal of the present paper is to fill this gap. In this way, we consider the net (ψt(x) : t ∈ T ) in R, and we define
the concept of optimality for the problem

(NP ) : min
(
ψt(x) : t ∈ T

)
s.t. gj(x) ≤ 0, j ∈ J,

in such a way that it is a generalization of the concept of optimality for (V P1) (in fact, if we put |T | = p in (NP ), the
problem turns into problem (V P1)). The next step will be to shown that the concept of optimality for (NP ) coincides
with the concept of optimality for (V P ). Finally, we prove the KKT and SKKT types necessary optimality conditions
for (NP ) and\or (V P ).

2 Preliminaries

In this section, we briefly overview some notions of convex analysis and nonsmooth analysis widely used in formu-
lations and proofs of main results of the paper. For more details, discussion, and applications see [1].

Throughout this section, we assume that X is a real Banach space. The dual space of X is denoted by X∗ and is
equipped with weak* topology. The zero vectors of X and X∗ are respectively denoted by 0X and 0X∗ , and the value
of functional ξ ∈ X∗ at x ∈ X is referred by ⟨ξ, x⟩. The closure, the convex hull, and the convex cone of A ⊂ X are
denoted respectively by cl(A), conv(A), and cone(A). The weak* closure of A∗ ⊂ X∗ is referred by clw

∗
(A∗).

Theorem 2.1. [6] If Ω is an arbitrary index set and Aγ is a convex subset of X for each γ ∈ Ω, then

conv
(⋃
γ∈Ω

Aγ

)
=
⋃{

k∑
i=1

aγiAγi | aγi ≥ 0,
k∑
i=1

aγi = 1, γi ∈ Ω, k ∈ N

}
,

cone
(⋃
γ∈Ω

Aγ

)
=
⋃{

k∑
i=1

aγiAγi | aγi ≥ 0, γi ∈ Ω, k ∈ N

}
.
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Theorem 2.2. [15] Let A∗ and B∗ be two subsets of X∗, and A∗ be norm bounded. Then,

clw
∗(
A∗
)
+ clw

∗(
B∗
)
= clw

∗(
A∗ +B∗

)
.

Let A ⊆ X and A∗ ⊆ X∗ be given. The following sets will be used in the sequel (we write hn ↓ 0 for a sequence of

positive number {hn} with limit 0, and we write xn
A→x̂ for a sequence {xn} ⊆ A converging to x̂ ∈ X).

(i) The Bouligand tangent cone of ∅ ≠ A ⊆ X at x̂ ∈ cl(A) is

ΓB(A, x̂) :=
{
ν ∈ X | ∃hn ↓ 0, ∃νn → ν, x̂+ hnνn ∈ A, ∀n ∈ N

}
.

(ii) The Clarke tangent cone of A at x̂ ∈ cl(A) is

ΓC(A, x̂) :=
{
ν ∈ X | ∀xn

A→x̂, ∀hn ↓ 0, ∃νn → ν, xn + hnνn ∈ A, ∀n ∈ N
}
.

(iii) The polar cone of A and A∗ are respectively

A⪯ := {ξ ∈ X∗ | ⟨ξ, x⟩ ≤ 0, ∀x ∈ A}, A⪯
∗ := {x ∈ X | ⟨ξ, x⟩ ≤ 0, ∀ξ ∈ A∗}.

(iv) The strictly polar set of A and A∗ are respectively

A≺ := {ξ ∈ X∗ | ⟨ξ, x⟩ < 0, ∀x ∈ A}, A≺
∗ := {x ∈ X | ⟨ξ, x⟩ < 0, ∀ξ ∈ A∗}.

(v) The Clarke normal cone of A at x̂ ∈ cl(A) is

NC(A, x̂) = (ΓC(A, x̂))
⪯
.

It should be noted that ΓC(A, x̂), A
⪯, A≺, A⪯

∗ , A
≺
∗ , and NC(A, x̂) are always convex while ΓB(A, x̂) is not

necessarily convex. Also, A⪯ and NC(A, x̂) are weak* closed sets in X∗; ΓC(A, x̂), ΓB(A, x̂) and A
⪯
∗ are closed sets in

X, and the following equalities are true if A≺ ̸= ∅ and A≺
∗ ̸= ∅

clw
∗
(A≺) = A⪯ and cl(A≺

∗ ) = A⪯
∗ . (2.1)

For each A ⊆ X and x̂ ∈ cl(A), the following inclusion holds by the definition:

ΓC(A, x̂) ⊆ ΓB(A, x̂). (2.2)

The set A ⊆ X is said to be regular at x̂ ∈ cl(A) if ΓB(A, x̂) = ΓC(A, x̂). Note that, if A is convex, then it is
regular at all x̂ ∈ cl(A), and we have

NC(A, x̂) = N(A, x̂) := {ξ ∈ X∗ | ⟨ξ, x− x̂⟩ ≤ 0, ∀x ∈ A}. (2.3)

Theorem 2.3. [1] (bipolar) Let the nonempty sets A ⊆ X and A∗ ⊆ X∗ be given. One has

(A⪯)⪯ = cl(cone(A)) and (A⪯
∗ )

⪯ = clw
∗
(cone(A∗)).

Suppose that W is a Banach space. A function ϕ : X → W is said to be locally Lipschitz if ϕ is Lipschitz around
all x̂ ∈ X, i.e., for each x̂ ∈ X there exist a neighborhood U of x̂ and a positive real number LU > 0 such that

∥ ϕ(x)− ϕ(y) ∥≤ LU ∥ x− y ∥, ∀x, y ∈ U.

It is easy to see that if ϕ : X → W is Lipschitz around x̂, then

lim
h↓0,u→ν

ϕ(x̂+ hu)− ϕ(x̂+ hν)

h
= 0. (2.4)
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The Dini directional derivative of ϕ : X → W at x̂ ∈ X in the direction ν ∈ X is

∇ϕ(x̂; ν) := lim
h↓0

ϕ(x̂+ hν)− ϕ(x̂)

h
.

By definition, ϕ is said to be Dini directionally derivable at x̂ if ∇ϕ(x̂; ν) exists for all ν ∈ X. It is known that if ϕ
is Frèchet differentiable at x̂, and its Frèchet derivative is denoted by ∇ϕ(x̂) ∈ X∗, we have

∇ϕ(x̂; ν) = ⟨∇ϕ(x̂), ν⟩, ∀ν ∈ X.

Let the real-valued function ϕ : X → R be Lipschitz around x̂ ∈ X. The upper Dini directional derivative and the
upper Clarke directional derivative of ϕ at x̂ ∈ X in the direction ν ∈ X are respectively defined as:

ϕD(x̂; ν) := lim sup
h↓0

ϕ(x̂+ hν)− ϕ(x̂)

h
, ϕC(x̂; ν) := lim sup

h↓0, x→x̂

ϕ(x+ hν)− ϕ(x)

h
.

Remark 2.4. If ϕ : X → R is a real-valued function, its Dini directional derivative ∇ϕ(x̂; ν) is introduced in classical
books with the name “directional derivative” and is displayed with the symbol ϕ′(x̂, ν). Moreover, if ϕ is Lipschitz
around x̂ ∈ X, then

ϕD(x̂; ν) ≤ ϕC(x̂; ν), ∀ν ∈ X. (2.5)

Furthermore, if ϕ is directionally derivable at x̂, then ϕD(x̂; ν) = ∇ϕ(x̂; ν), for all ν ∈ X.

Let the real-valued function ϕ : X → R be Lipschitz around x̂ ∈ X. The Clarke subdifferential of ϕ at x̂ is defined
as

∂Cϕ(x̂) := {ξ ∈ X∗ | ⟨ξ, ν⟩ ≤ ϕC(x̂; ν), ∀ν ∈ X}.

Theorem 2.5. [1] Assume that ϕ1, · · · , ϕm are locally Lipschitz functions from X to R and x̂ ∈ X.

i) ∂Cϕ(x̂) is a nonempty convex weak* compact set in X∗.

ii) For all real numbers α1, · · · , αm, one has

∂C

(
m∑
i=1

αiϕi

)
(x̂) ⊆

m∑
i=1

αi∂Cϕi(x̂).

iii) If ϕ is continuously differentiable at x̂, then ∂Cϕ(x̂) = {∇ϕ(x̂)}.

iv) If ϕ is convex on X, then ∂Cϕ(x̂) = ∂ϕ(x̂), in which ∂ϕ(x̂) denotes the subdifferential of ϕ in convex analysis
sense, defined as

∂ϕ(x̂) := {ξ ∈ X∗ | ϕ(x)− ϕ(x̂) ≥ ⟨ξ, x− x̂⟩ , ∀x ∈ X} .

v) If ϕ attains its minimum on A ⊆ X at x̂ ∈ A, then ϕC(x̂; ν) ≥ 0 for all ν ∈ ΓB(A, x̂). Also, one has

0X∗ ∈ ∂Cϕ(x̂) +NC(A, x̂).

vi) The function ν → ϕC(x̂, ν) is positively homogeneous and subadditive (and hence convex) on X, and we have

∂
(
ϕC(x̂, ·)

)
(0X) = ∂Cϕ(x̂).

vii) ϕC(x̂; ν) = max{⟨ξ, ν⟩ | ξ ∈ ∂Cϕ(x̂)}.

As the final point of this section, suppose that θ : X ⇒ Z is a set-valued function, i.e., θ is a function from X to
power set of Z. The upper limit of θ when x tends to x̃ ∈ {x ∈ X | θ(x) ̸= ∅}, in the sense of Painleve-Kuratowski, is
defined as

Limsupx→x̃θ(x) =
{
z̃ ∈ Z | ∃xn → x̃, ∃zn ∈ θ(xn), lim

n→∞
zn = z̃

}
.
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Remark 2.6. Suppose that the function f : X → R is given and the set-valued function θ : X ⇒ R is defined by
θ(x) := {f(x)} for all x ∈ X. Then, the definitions of lim sup

x→x̃
f(x) and Limsupx→x̃θ(x) conclude that

lim sup
x→x̃

f(x) = max

(
Limsupx→x̃θ(x)

)
= max

(
Limsupx→x̃{f(x)}

)
= max

{
r ∈ R | ∃xn → x̃, lim

n→∞
f(xn) = r

}
.

Note that if lim
x→x̃

f(x) exists, then

Limsupx→x̃θ(x) = Limsupx→x̃{f(x)} =
{
lim
x→x̃

f(x)
}
.

3 Main Results

As the starting point of this section, we recall the following definition from [2].

Definition 3.1. The feasible point x̂ ∈ S is said to be a local efficient solution for (V P ) if there exists a neighborhood
U of x̂ such that

(ψ(S ∩ U)− ψ(x̂)) ∩ (−Y+) = {0Y}.

Also, x̂ ∈ S is said to be a local weakly efficient solution for (V P ) if there exists a neighborhood U of x̂ such that

(ψ(S ∩ U)− ψ(x̂)) ∩
(
−int(Y+)

)
= ∅.

The following lemma shows that the above definition expresses a generalization of the concepts local efficient
solution and local weakly efficient solution which were considered in [7, 8] for problem (V P1).

Lemma 3.2. A feasible point x̂ ∈ S is a local efficient solution for (V P ) if and only if there is a neighborhood U of
x̂, in which there is no x ∈ S ∩ U that{

ψt(x) ≤ ψt(x̂), for all t ∈ T,
ψt0(x) < ψt0(x̂), for some t0 ∈ T.

(3.1)

Also, x̂ is a local weakly efficient solution iff there is a neighborhood U of x̂, in which there is no x ∈ S ∩ U such
that ψt(x) < ψt(x̂) for all t ∈ T .

Proof . We prove for local weakly efficient solutions, and proof of local efficient solutions is similar. Suppose that
x̂ ∈ S is a local efficient solution for (V P ). By definition, we can find a neighborhood U of x̂ such that

(ψ(S ∩ U)− ψ(x̂)) ∩
(
−Y+ \ {0Y}

)
= ∅.

This implies that
ψ(x)− ψ(x̂) /∈ (−Y+ \ {0Y}), for all x ∈ S ∩ U,

which concludes that there is no x ∈ S∩U satisfying ψ(x)−ψ(x̂) ∈ (−Y+\{0Y}). Since−Y+ = {y ∈ Y | y(t) ≤ 0, ∀t ∈ T},
we have

−Y+ \ {0Y} = {y ∈ Y | y(t) ≤ 0, ∀t ∈ T, and y(t0) < 0, ∃t0 ∈ T} .

Consequently, the local efficiency of x̂ implies that there is no x ∈ S ∩ U satisfying{
(ψ(x)− ψ(x̂)) (t) ≤ 0, for all t ∈ T,
(ψ(x)− ψ(x̂)) (t0) < 0, for some t0 ∈ T,

which can be considered as a rewrite of (3.1). Conversely, if for some neighborhood U of x̂ there is no x ∈ S ∩U that
satisfies (3.1), by reversing the above proof, we can see x̂ is a local efficient solution of the problem (V P ). □

Now, we define the upper Dini directional derivative for the vector-valued function ψ : X → Y. We recall that this
concept was defined in Section 2 only for real-valued functions. In order to extend this definition to the function ψ,
we take help from set-valued functions. In fact, a natural extension to the vector-valued functions case is obtained by
using upper limits of set-valued functions in sense of Painleve-Kuratowski instead of the upper limits of single-valued
scalar functions as follows.
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Definition 3.3. The upper Dini directional derivative of Ψ : X → Y at x0 ∈ X in the direction ν ∈ X is defined as

Dψ(x0; ν) := Limsuph↓0

{
ψ(x0 + hu)− ψ(x0)

h

}
=

{
y ∈ Y | ∃hn ↓ 0, y = lim

n→∞

ψ(x0 + hnν)− ψ(x0)

hn

}
.

As a necessary optimality condition for (V P ), the following theorem presents an important result.

Theorem 3.4. Assume that x̂ ∈ S is a local weakly efficient solution for (V P ) and Ψ : X → Y is Lipschitz around x̂.
Then,

Dψ(x̂; ν) ⊆ Y \
(
−int(Y+)

)
, ∀ν ∈ ΓC(S, x̂).

Proof . On the contrary, suppose there exists a vector ν ∈ ΓC(S, x̂) that Dψ(x̂; ν) ⊈ Y \ (−int(Y+)). This means
Dψ(x̂; ν) ∩ (−int(Y+)) ̸= ∅. Let y be an element in this intersection, i.e.,

y ∈ Dψ(x̂; ν) ∩
(
−int(Y+)

)
.

Since y ∈ Dψ(x̂; ν), we can find a sequence {hn} ↓ 0 such that

lim
n→∞

ψ(x̂+ hnν)− ψ(x̂)

hn
= y. (3.2)

As ν ∈ ΓC(S, x̂), for the above {hn} and xn = x̂ for all n ∈ N, there exists a sequence {νn} → ν such that
x̂+ hnνn ∈ S for all n ∈ N. Since,

ψ(x̂+ hnνn)− ψ(x̂)

hn
=
ψ(x̂+ hnνn)− ψ(x̂+ hnν)

hn
+
ψ(x̂+ hnν)− ψ(x̂)

hn
,

and the right hand of the above equality tends to y by (2.4) and (3.2), we have

lim
n→∞

ψ(x̂+ hnνn)− ψ(x̂)

hn
= y.

As y ∈ −int(Y+), the above equality yields, for n large enough,

ψ(x̂+ hnνn)− ψ(x̂)

hn
∈ −int(Y+),

which implies there is a positive number K > 0 such that

ψ(x̂+ hnνn)− ψ(x̂) ∈ −int(Y+), ∀n ≥ K.

Note that when n ≥ K, we have x̂ + hnνn ∈ U ∩ S for some neighborhood U of x̂. Hence, the last inclusion
concludes that

(ψ(S ∩ U)− ψ(x̂)) ∩
(
−int(Y+)

)
̸= ∅,

which contradicts the assumption that x̂ is a local weakly efficient solution of (V P ). The proof is complete. □

Corollary 3.5. Let x̂ ∈ S be a local weakly efficient solution for (V P ), and ψ is Lipschitz around x̂.

(i) If S is regular at x̂, then
Dψ(x̂; ν) ⊆ Y \ (−int(Y+)), ∀ν ∈ ΓB(S, x̂).

(iii) If x̂ ∈ int(S), then
Dψ(x̂; ν) ⊆ Y \ (−int(Y+)), ∀ν ∈ X .

(iv) If ψ is Dini directionally derivable at x̂, then

−∇ψ(x̂; ν) /∈ int(Y+), ∀ν ∈ ΓC(S, x̂).
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Proof . The definition of regular sets and Theorem 3.4 imply (i). Since the condition x̂ ∈ int(S) implies that
ΓC(S, x̂) = X , (ii) is a corollary of Theorem 3.4. For prove of (iii), we first mention that if ψ is Dini directionally
derivable at x̂, by Remark 2.6 we have Dψ(x̂; ν) = {∇ψ(x̂; ν)}, for all ν ∈ X. So, Theorem 3.4 implies that ∇ψ(x̂; ν) /∈
−int(Y+), for all ν ∈ ΓC(S, x̂), the result is immediate. □

The following example shows that the assumption of “regularity of S at x̂” in Corollary 3.5(i) is necessary. In
other words, in Theorem 3.4, we can not replace the cone ΓC(S, x̂) with the cone ΓB(S, x̂).

Example 3.6. Let T = {1} (and hence Y = R), X = R, and f : R → R be defined by

f(x) = inf

{
|x− 1

2n
| | n ∈ N

}
.

Since f is distance function from A :=
{

1
2n | n ∈ N

}
, it is locally Lipschitz on R. Take

ψ : R → R, ψ(x) = f(x)− x

3
,

S =

{
3

2n+2
| n ∈ N

}
∪ {0}.

Obviously, x̂ = 0 is a local weakly efficient solution for the problem (V P ), ψ is Lipschitz around x̂, ΓC(S, x̂) = {0},
ΓB(S, x̂) = [0,+∞), and for all ν ∈ R we have Dψ(x̂; ν) = [−ν

3 , 0]. So, the following condition is not satisfied for all
ν ∈ ΓB(S, x̂), but it is true for all ν ∈ ΓC(S, x̂):

Dψ(x̂; ν) = [−ν
3
, 0] ⊆ R \ (−int(R+)) = [0,+∞).

Remark 3.7. The function f : R → R , defined in Example 3.6, shows that the equality Dϕ(x̂; ν) = {ϕD(x̂; ν)}
is not necessarily true for a locally Lipschitz real-valued function ϕ. In fact, for the mentioned function f , we have
Df(0; 1) = [0, 13 ] and f

D(0; 1) = 1
3 . Note that for a real-valued function ϕ : X → R, Remark 2.6 concludes that

ϕD(x̂, ν) = max {y | y ∈ Dϕ(x̂; ν)} , ∀ν ∈ X . (3.3)

Also, if ϕ : X → R is Dini directionally derivable at x̂ ∈ X , the equality Dϕ(x̂; ν) = {ϕD(x̂; ν)} holds by Remark
2.6.

As we know, if |T | = p (hence Y = Rp) and ψ := (ψ1, ..., ψp) : X → Rp is Dini directionally derivable at x̂ ∈ X in
the direction ν ∈ X , then

∇ψ(x̂; ν) = (∇ψ1(x̂; ν), . . . ,∇ψp(x̂; ν)) .
Since the above equality can be written in the form of

Dψ(x̂; ν) = Dψ1(x̂; ν)× . . . ,×Dψp(x̂; ν),

it is natural to ask the question “If |T | = p and the locally Lipschitz function ψ : X → Y is not Dini directionally
derivable at x̂ ∈ X , is the above equality still true or not?”. The following theorem shows that the answer to this
question is “yes”, even when T is infinite.

Theorem 3.8. Suppose that ψ : X → Y and x̂ ∈ X are given. Then, for all ν ∈ X , one has:

Dψ(x̂; ν)(t) = Dψt(x̂; ν), ∀t ∈ T,

where Dψ(x̂; ν)(t) is defined as follows

Dψ(x̂; ν)(t) = {y(t) | y ∈ Dψ(x̂; ν)} .

Proof . By the definition, y(t) ∈ Dψ(x̂; ν)(t) if and only if y ∈ Dψ(x̂; ν), i.e., y = lim
n→∞

ψ(x̂+ hnν)− ψ(x̂)

hn
, for some

sequence {hn} ↓ 0. This is equivalent to

y(t) =

(
lim
n→∞

ψ(x̂+ hnν)− ψ(x̂)

hn

)
(t) = lim

n→∞

ψ(x̂+ hnν)(t)− ψ(x̂)(t)

hn

= lim
n→∞

ψt(x̂+ hnν)− ψt(x̂)

hn
∈ Dψt(x̂, ν),
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as required. □

Theorem 3.9. Let x̂ ∈ S be a local weakly efficient solution for (V P ) and ψ be Lipschitz around x̂. Then, for each
ν ∈ ΓC(S, x̂) we can find some t ∈ T such that ψDt (x̂; ν) ≥ 0. Equivalently,{

ν ∈ X | ψDt (x̂; ν) < 0, ∀t ∈ T
}
∩ ΓC(S, x̂) = ∅.

Proof . Suppose that ν ∈ ΓC(S, x̂) is given. Owing to Theorem 3.4, we deduce that

Dψ(x̂; ν) ⊆ Y \ (−int(Y+)) = {y ∈ Y | ∃t ∈ T, y(t) ≥ 0}.

This means that for each y ∈ Dψ(x̂; ν) there exist some t ∈ T with y(t) ≥ 0. From this and Theorem 3.8 we deduce
that Dψt(x̂; ν)∩ [0,+∞) ̸= ∅, for some t ∈ T . From this and (3.3) we conclude that ψDt (x̂; ν) ≥ 0 for some t ∈ T , and
the proof is complete. □

The following Theorem is a generalization of [7, Theorem 3.4, Step 1] to infinite T .

Theorem 3.10. Let x̂ be a local weakly efficient solution for (V P ) and ψ be Lipschitz around x̂. Then, ψt : X → R
is Lipschitz around x̂ for all t ∈ T , and (⋃

t∈T
∂Cψt(x̂)

)≺

∩ ΓC(S, x̂) = ∅.

Proof . Since ψ is Lipschitz around x̂, there exist some neighborhood U of x̂ and some constant LU > 0 such that

∥ψ(y)− ψ(x)∥ ≤ LU ∥x− y∥ , ∀x, y ∈ U.

This inequality and the definition of ∥ψ(y)− ψ(x)∥ imply

max
{∣∣ ψt(y)︷ ︸︸ ︷
ψ(y)(t)−

ψt(x)︷ ︸︸ ︷
ψ(x)(t)

∣∣ | t ∈ T
}
≤ LU ∥x− y∥ , ∀x, y ∈ U.

Hence, for all t ∈ T we have
|ψt(y)− ψt(x)| ≤ LU ∥x− y∥ , ∀x, y ∈ U,

which concludes that ψt is Lipschitz around x̂. Since x̂ is a local weakly efficient solution of (V P ), by Theorem 3.9
we have

{ν ∈ X | ψDt (x̂; ν) < 0, ∀t ∈ T} ∩ ΓC(S, x̂) = ∅.

This equality and (2.5) deduce that

{ν ∈ X | ψCt (x̂; ν) < 0, ∀t ∈ T} ∩ ΓC(S, x̂) = ∅, (3.4)

which by Theorem 2.5(vii) implies that

{ν ∈ X | ⟨ξt, ν⟩ < 0, ∀ξt ∈ ∂Cψt(x̂), ∀t ∈ T} ∩ ΓC(S, x̂) = ∅.

This relation and the fact that{
ν ∈ X | ⟨ξt, ν⟩ < 0, ∀ξt ∈ ∂Cψt(x̂), ∀t ∈ T

}
=
{
ν ∈ X | ⟨ξ, ν⟩ < 0, ∀ξ ∈

⋃
t∈T

∂Cψt(x̂)
}
=

( ⋃
t∈T

∂Cψt(x̂)

)≺

,

conclude that (⋃
t∈T

∂Cψt(x̂)

)≺

∩ ΓC(S, x̂) = ∅,

as required. □

The following definition is required for stating the KKT type necessary optimality condition for the problem (V P ).
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Definition 3.11. We say that the Abadie constraint qualification holds at x̂ ∈ S if( ⋃
j∈J(x̂)

∂Cgj(x̂)

)⪯

⊆ ΓC(S, x̂),

where J(x̂) denotes the set of active constraints at x̂, i.e.,

J(x̂) :=
{
j ∈ J | gj(x̂) = 0

}
.

Note the above definition is an extension of Abadie constraint qualification, presented in [9] (resp. [4], [11, 12]) for
linear (resp. convex, nonsmooth) multiobjective semi-infinite optimization problems. Now, we can present the KKT
type necessary optimality condition at a local weakly efficient solution of (V P ).

Theorem 3.12. Assume that x̂ ∈ S is a local weakly efficient solution for (V P ), ψ and gj as j ∈ J are Lipschitz
around x̂, and the Abadie constraint qualification holds at x̂. Then, we can find some nonnegative scalars λt as t ∈ T
and µj as j ∈ J(x̂), finite number of them are nonzero, such that

∑
t∈T

λt = 1 and

0X∗ ∈ clw
∗
(∑
t∈T

λt∂Cψt(x̂) +
∑
j∈J(x̂)

µj∂Cgj(x̂)

)
.

Proof . At the first, we claim that
h(ν) ≥ 0, ∀ν ∈ ΓC(S, x̂), (3.5)

where the convex function h : X → R is defined as

h(ν) := max{ψCt (x̂; ν) | t ∈ T}.

Suppose, on the contrary, that there is a ν̂ ∈ ΓC(S, x̂) with h(ν̂) < 0. So, ψCt (x̂; ν̂) < 0 for all t ∈ T , and hence

ν̂ ∈
{
ν ∈ X | ψCt (x̂, ν) < 0, ∀t ∈ T

}
∩ ΓC(S, x̂),

which contradicts (3.4). Thus, (3.5) is true, and the Abadie constraint qualification implies that

h(ν) ≥ 0, ∀ν ∈
( ⋃
j∈J(x̂)

∂Cgj(x̂)

)⪯

.

The above inequality and h(0X ) = 0 conclude that h attaints its minimum on the convex set

( ⋃
j∈J(x̂)

∂Cgj(x̂)

)⪯

at ν∗ = 0X , and by (2.3) and Theorem 2.5 we get

0X∗ ∈ ∂h(0X ) +N

(( ⋃
j∈J(x̂)

∂Cgj(x̂)

)⪯

, 0X

)
= ∂h(0X ) + clw

∗

(
cone

( ⋃
j∈J(x̂)

∂Cgj(x̂)

))
, (3.6)

where the last equality holds by bipolar Theorem 2.3 and

N

(( ⋃
j∈J(x̂)

∂Cgj(x̂)

)⪯

, 0X

)
=

{
ν ∈ X | ⟨ξ, ν⟩ ≤ 0, ∀ξ ∈

( ⋃
j∈J(x̂)

∂Cgj(x̂)

)⪯}
=

(( ⋃
j∈J(x̂

∂Cgj(x̂)

)⪯
)⪯

.

On the other hand, the well-known Pshenichnyi-Levin-Valadire Theorem ([6, pp. 267] and Theorem 2.5(vi) conclude
that

∂h(0X ) ⊆ clw
∗

(
conv

( ⋃
t∈T∗

∂ψCt
(
x̂; ·
)
(0X )

))
= clw

∗

(
conv

( ⋃
t∈T∗

∂Cψt(x̂)

))
, (3.7)

where T∗ is defined as
T∗ := {t ∈ T | h(0X ) = ψCt (x̂; 0X ) = 0}.
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Owing to (3.6) and (3.7), we obtain that

0X∗ ∈ clw
∗

(
conv

( ⋃
t∈T∗

∂Cψt(x̂)

))
+ clw

∗

(
cone

( ⋃
j∈J(x̂)

∂Cgj(x̂)

))
.

On the other hand, conv

( ⋃
t∈T∗

∂Cψt(x̂)

)
is norm bounded by [16, Lemma 4.1]. Thus, the above inclusion and Theorem

2.2 conclude that

0X∗ ∈ clw
∗

(
conv

( ⋃
t∈T∗

∂Cψt(x̂)

)
+ cone

( ⋃
j∈J(x)

∂Cgj(x̂)

))
.

Now, according to Theorem 2.1, we can find some nonnegative scalars λt as t ∈ T and µj as j ∈ J(x̂), finite number
of them are nonzero, such that

∑
t∈T

λt = 1 and

0X∗ ∈ clw
∗
(∑
t∈T

λt∂Cψt(x̂) +
∑
j∈J(x̂)

µj∂Cgj(x̂)

)
,

and the proof is complete. □

It should be noted that Theorem 3.12 is a generalization of the KKT necessary condition, presented in [1, 4, 8, 9,
10, 11, 12]. Note that the equality

∑
t∈T

λt = 1 in Theorem 3.12 implies λt > 0 for some t ∈ T . It is noteworthy that if

we have λt > 0 for all t ∈ T , the sum
∑
t∈T

λt∂Cψt(x̂) becomes meaningless, except when |T | < ∞. To get the result

λt > 0 for all t ∈ T := {1, . . . , |T |}, we need the following definition.

Definition 3.13. We say that the refined Abadie constraint qualification holds at x̂ ∈ S if( ⋃
t∈T\{t0}

∂Cψt(x̂)

)⪯

∩
( ⋃
j∈J(x̂)

∂Cgj(x̂)

)⪯

⊆ ΓC(Qt0 , x̂), ∀t0 ∈ T,

where
Qt0 :=

{
x ∈ X | gj(x) ≤ 0, ψt(x) ≤ 0, ∀j ∈ J, ∀t ∈ T \ {t0}

}
.

Now, we can present the SKKT type necessary optimality condition at a local efficient solution of (V P ).

Theorem 3.14. Assume that x̂ ∈ S is a local efficient solution for (V P ), ψ is Lipschitz around x̂, |T | < ∞, and the
refined Abadie constraint qualification holds at x̂. Then, there exist some positive numbers λt > 0 as t ∈ T and some
negative scalars µj as j ∈ J(x̂), finite number of them are nonzero, such that

0X∗ ∈ clw
∗
(∑
t∈T

λt∂Cψt(x̂) +
∑
j∈J(x̂)

µj∂Cgj(x̂)

)
.

Proof . We claim that for all t0 ∈ T , x̂ is a local minimizer of the following problem:

(Pt0) : min ψt0(x)

s.t. gj(x) ≤ 0, j ∈ J,

ψt(x) ≤ 0, t ∈ T \ {t0}.

On the contrary, suppose that there exist some t0 ∈ T such that x̂ is not minimizer of (Pt0). Thus, there are some
neighborhood U of x̂ and some x∗ ∈ U such that ψt0(x

∗) < ψt0(x̂),
ψt(x

∗) ≤ ψt(x̂), t ∈ T \ {t0}
gj(x

∗) ≤ 0, j ∈ J
=⇒

 x∗ ∈ S ∩ U,
ψt(x

∗) ≤ ψt(x̂), ∀t ∈ T,
ψt0(x

∗) < ψt0(x̂), ∃t0 ∈ T,
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which contradicts Lemma 3.2. Thus, our claim is proved. Since the refined Abadie constraint qualification holds at x̂,
we have ( ⋃

t∈T\{t0}

∂Cψt(x̂)

)⪯

∩
( ⋃
j∈J(x̂)

∂Cgj(x̂)

)⪯

⊆ ΓC(Qt0 , x̂).

Since the feasible set of (Pt0) is Qt0 , the above inclusion concludes that the Abadie constraint qualification holds

at x̂ for (Pt0), and thus, Theorem 3.12 implies that there exist some nonnegative λ
(t0)
t as t ∈ T \ {t0} and µ

(t0)
j as

j ∈ J(x̂) such that

0X∗ ∈ clw
∗
(
∂Cψt0(x̂) +

∑
t∈T\{t0}

λ
(t0)
t ∂Cψt(x̂) +

∑
j∈J(x̂)

µ
(t0)
j ∂Cgj(x̂)

)
.

By repeating the above inclusion for each t0 ∈ T = {1, · · · , |T |} and summing them, and considering [16, Lemma
4.1] and Theorem 2.2, we obtain that

0X∗ ∈ clw
∗

( ∑
t0∈T

(
∂Cψt0(x̂) +

∑
t∈T\{t0}

λ
(t0)
t ∂Cψt(x̂) +

∑
j∈J(x̂)

µ
(t0)
j ∂Cgj(x̂)

))

= clw
∗
(∑
t∈T

λt∂Cψt(x̂) +
∑
j∈J(x̂)

µj∂Cgj(x̂)

)
,

where
λk := 1 +

∑
t∈T\{k}

λ
(t)
k > 0, ∀k ∈ T and µr :=

∑
t∈T

µ(t)
r ≥ 0, ∀j ∈ J.

The result is proved. □
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