
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
A generalization of Ekeland’s variational principle by using the τ -distance and its application in equilibrium problem | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 10، دوره 16، شماره 6، شهریور 2025، صفحه 107-112 اصل مقاله (340.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.30132.4343 | ||
نویسندگان | ||
Mahmood Ghobadi؛ Ali Farajzadeh* | ||
Department of Mathematics, Razi University, Kermanshah, 67149, Iran | ||
تاریخ دریافت: 17 اسفند 1401، تاریخ بازنگری: 08 بهمن 1402، تاریخ پذیرش: 09 بهمن 1402 | ||
چکیده | ||
In this paper, a new version of Ekeland's variational principle by using the concept of $\tau$-distance for bounded from below functions which are not necessarily lower semicontinuous is provided. This new version of Ekeland's variational principle will be applied to establish an existence theorem for a solution to the equilibrium problem in the setting of complete metric spaces. | ||
کلیدواژهها | ||
Lower semicontinuous Regularization؛ Ekeland’s variational principle؛ Bounded from below؛ Equilibrium problem؛ τ -distance | ||
مراجع | ||
[1] M.R. Alfuraidan and M.A. Khamsi, Graphical Ekeland’s principle for equilibrium problems, Proc. Amer. Math. Soc. Ser B. 9 (2022), 33–40 [2] M. Bianchi, G. Kassay, and R. Pini, Existence of equilibria via Ekeland’s principle, J. Math. Anal. 305 (2005), 502–512. [3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145. [4] M. Castellani and G. Massimiliano, Ekeland’s principle for cyclically antimonotone equilibrium problems, Nonlinear Anal.: Real World Appl. 32 (2016), 213–228. [5] J. Cotrina, M. Thera, and J. Zuniga, An existence result for quasi-equilibrium problems via Ekeland’s variational principle, J. Optim. Theory Appl. 187 (2020), 336–355. [6] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. [7] K. Fan, A minimax inequality and applications, Inequalities III (Proc. Third Sympos., Univ. California, Los Angeles, Calif, 1969; dedicated to the memory of Theodore S. Motzkin), 1972, pp. 103–113. [8] A.P. Farajzadeh, S. Plubtieng, and A. Hoseinpour, A generalization of Ekeland variational principle by using the τ-distance with its applications, J. Inequal. Appl. 2017 (2017), 181. [9] Y. Feng, J. Xie, and B. Wu, A new equilibrium version of Ekeland variational principle and its applications, Axioms 11 (2022), no. 2, 68. [10] O. Kada, T. Suzuki, and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Jpn. 44 (1996), 381–391. [11] L. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. Theory Meth. Appl. 18 (1992), 1159–1166. [12] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), 440–458. [13] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, 2002. [14] D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl. 163 (1992), 345–392. [15] M. Thera, Old and new results on equilibrium and quasi-equilibrium problems, Variation. Anal. Optim. Webinars, 2020, 1–46. [16] J. von Neumann, Zur theorie der gesellschaftsspiele, Math. Ann. 100 (1928), 295–320. | ||
آمار تعداد مشاهده مقاله: 65 تعداد دریافت فایل اصل مقاله: 110 |