
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,819 |
تعداد دریافت فایل اصل مقاله | 7,656,334 |
ارائه الگویی برای بهبود بهرهوری ماشینآلات خاکبرداری در پروژههای زیرساختی با استفاده از الگوریتمهای یادگیری ماشین (نمونه موردی: خط لوله گاز) | ||
مهندسی زیر ساخت های حمل و نقل | ||
دوره 10، شماره 2 - شماره پیاپی 38، شهریور 1403، صفحه 71-96 اصل مقاله (3.45 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2024.34786.1681 | ||
نویسندگان | ||
روژین محقق1؛ بهنود برمایه ور* 2؛ حسین طوسی3 | ||
1گروه فناوری معماری (مدیریت پروژه و ساخت)، دانشکده معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران | ||
2دانشیار، گروه فناوری معماری (مدیریت پروژه و ساخت)، دانشکده معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران | ||
3استادیار، دانشکده معماری، دانشگاه تهران، تهران، ایران | ||
تاریخ دریافت: 27 تیر 1403، تاریخ بازنگری: 05 شهریور 1403، تاریخ پذیرش: 07 شهریور 1403 | ||
چکیده | ||
با توجه به جایگاه برجسته کشور ایران در دنیا از منظر منابع انرژی، مخصوصاً حوزه گازی، اجرای پروژههای زیرساختی انرژی، بهویژه خط لوله گاز، ضروری مینماید. با این وجود، یکی از چالشهای اساسی در این نوع از پروژهها، موضوع عدم بهرهوری مناسب منابع (ماشینآلات و...) است. از اینرو، هدف اصلی پژوهش حاضر عبارت است از بهبود بهرهوری ماشینآلات خاکبرداری پروژههای احداث خط لوله گاز، با کمک الگوریتمهای یادگیری ماشین. در این پژوهش، با بهرهگیری از مطالعات کتابخانهای، اسنادی (گزارشهای روزانه هفت پروژه خطوط انتقال گاز)، قضاوت خبرگان، روش متنکاوی (و نرمافزار رپیدماینر)، معیارهای مؤثر بر تعیین بهرهوری ماشینآلات خاکبرداری در پروژههای احداث خط لوله گاز، شناسایی و نهایی شدند. بهطور خلاصه، نتیجه اصلی پژوهش کنونی اشاره دارد که پیشبینی حجم خاکبرداری، از طریق الگوریتم پیشبینانه (بهعنوان مبنای بهینهسازی بهرهوری ماشینآلات خاکبرداری) و نیز الگوریتم دستهبندی و با استفاده از مدل یادگیری عمیق (بهعنوان مدل منتخب و دارای بهترین عملکرد در پیشبینی حجم خاکبرداری)، قابل اجرا است. در واقع، یافتههای پژوهش فعلی در راستای پیشبینی حجم خاکبرداری، پیش از شروع پروژه و تهیه برنامه زمانبندی کلی که در نهایت موجب بهبود بهرهوری ماشینآلات خاکبرداری در پروژههای خط لوله گاز میشود، قابل استفاده است. | ||
کلیدواژهها | ||
بهرهوری ماشینآلات عملیات خاکبرداری؛ الگوریتم یادگیری ماشین؛ پروژههای زیرساختی انرژی؛ پروژه احداث خط لوله گاز | ||
عنوان مقاله [English] | ||
Providing a Pattern to Improve the Productivity of Earthmoving Machinery in Infrastructure Projects Using Machine Learning Algorithms (Case Study: Gas Pipeline) | ||
نویسندگان [English] | ||
Rojin Mohaghegh1؛ Behnod Barmayehvar2؛ Hossein Toosi3 | ||
1Department of Architectural Technology (Project and Construction Management), Faculty of Architecture and Urban Planning, Iran University of Art, Tehran, Iran | ||
2Associate Professor, Department of Architectural Technology (Project and Construction Management), Faculty of Architecture and Urban Planning, Iran University of Art, Tehran, Iran | ||
3Assistant Professor, Faculty of Architecture, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
The objective of this study is to compare the effectiveness of industrial wastes including cement kiln dust (CKD), fly ash (FA), and ground granulated blast furnace slag (GGBFS) for stabilization of clay soils. To chemically stabilize the soil, optimal amounts of CKD (10%-20%), class C FA (20%-25%) and GGBFS (20%-30%) have been suggested. Considering the soil pH value with different percentages of additives, the amount of each additive was considered the same (20%) for better comparison. Standard compaction and California Bearing Ratio (CBR) tests were conducted on the mixtures. To investigate the microstructural effect of additives, the samples were subjected to scanning electrocleen microscopy (SEM) and X-ray diffraction (XRD) analysis. Results showed that CKD and FA decreased maximum dry density and increased optimum moisture content. Meanwhile, GGBFS decreased optimum moisture content of the samples and increased maximum dry density. The CBR in soil stabilized with CKD, FA, and GGBFS was 21.7, 13.3, and 15.7 times that of pure soil, respectively. According to the results of the SEM and XRD analysis, the increase in strength in the stabilized soil is caused by pozzolanic reactions and creation of cementation products, and as a result, binding of soil particles and stabilizers and filling of the pores. The higher the amount of free lime in the stabilizer, the greater the increase in soil strength. In practical projects, factors such as delay time (the time between the first contact of the additive and water and the final compaction of the mixture) and moisture content that affect the strength parameters should be considered. Also, environmental issues, such as potential of these additives to enter groundwater, are important. | ||
کلیدواژهها [English] | ||
Productivity of Earthmoving Machinery, Machine Learning Algorithm, Energy Infrastructure Projects, Gas Pipeline Construction Project | ||
مراجع | ||
Aadal, H., Bagheri Fard, A., Golchin Rad, K., Ghasemi Poor Sabet, P. and Morshedi, S. R. 2014. “Impact of plants and equipment management in construction industry of Iran”. Res. J. Appl. Sci. Eng. Tech., 7(11): 2371-2375.
Amirkhanian, S. N. and Baker, N. J. 1992. “Expert system for equipment selection for earth-moving operations”. J. Constr. Eng. Manag., 118(2): 318-331.
Armaghani, D. J., Mohamad, E. T., Narayanasamy, M. S., Narita, N. and Yagiz, S. 2017. “Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition”. Tunn. Undergr. Sp Tech., 63: 29-43.
Babpoor, M. 2016. “What is the relationship between artificial intelligence, machine learning and data mining?” https://dataak.com/ blog/what-is-the-difference-between-artificial-intelligence-machine-learning-data-mining/
Biuse, R., Momeni, M. and Hamidizadeh M. R. 2018. “Identifying the most effective factor in the procurement phase of the EPC projects of oil and gas companies using the AHP method”. The Second International Conference and the Fourth Conference of the National Logistics and Supply Chain Conference, Tehran.
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. and Wirth, R. 1999. “The CRISP-DM User Guide”. In 4th CRISP-DM SIG Workshop in Brussels, Vol. 1999.
Dixit, S., Pandey, A. K., Mandal, S. N. and Bansal, S. 2017. “A study of enabling factors affecting construction productivity: Indian scnerio”. Int. J. Civ. Eng. Tech., 8(6): 741-758.
Duffy, G. A. 2009. “Linear scheduling of pipeline construction projects with varying production rates”. Oklahoma State University.
Edwards, D. J. and Holt, G. D. 2000. “ESTIVATE: a model for calculating excavator productivity and output costs”. Eng. Constr. Architect. Manag., 7(1): 52-62.
Eshthardian, A., Noorani, M., Vahidi, H. and Najafabadipour, T. 2012. “Linear programming model to optimize the number of machines with the aim of reducing the time and cost of earthworks in urban projects”. International Conference on Civil Engineering, Architecture and Sustainable Urban Development, Tabriz, Iran.
Esrafili Dizaji, B. and Kiani Harchegani, F. 2011. “Persia land of black gold”. 10.13140/2.1.42 64.0001.
Eskandari, A., Abdi, A. and Eskandari, V. 2014. “Optimization of earthmoving machines by genetic algorithm”. Third International Congress on Civil Engineering, Architecture and Urban Development, Tehran, Iran.
Fallahnejad, M. 2013. “Delay causes in Iran gas pipeline projects”. Int. J. Project Manag. 31: 136-146. 10.1016/j.ijproman.2012.06.003.
Hsiao, W. T., Lin, C. T., Wu, H. T. and Cheng, T. M. 2011. “A hybrid optimization mechanism used to generate truck fleet to perform earthmoving operations”. Road Mater. New Innov. Pavement Eng. https://doi.org/10.1061/ 47634(413)20
Jordan, M. I. and Mitchell, T. M. 2015. “Machine learning: Trends, perspectives, and prospects”. Sci., 349(6245): 255-260.
Karshenas, S. and Feng, X. 1992. “Application of neural networks in earthmoving equipment production estimating”. In: Computing in Civil Engineering and Geographic Information Systems Symposium, pp. 841-847, ASCE.
Kassem, M., Mahamedi, E., Rogage, K., Duffy, K. and Huntingdon, J. 2021. “Measuring and benchmarking the productivity of excavators in infrastructure projects: A deep neural network approach”. Automat. Constr., 124 p., 103532.
Ok, S. C. and Sinha, S. K. 2006. “Construction equipment productivity estimation using artificial neural network model”. Constr. Manag. Econ., 24(10): 1029-1044.
Omran, B. A. and Chen, Q. 2016. “Trend on the implementation of analytical techniques for big data in construction research (2000–2014)”. In: Construction Research Congress 2016, pp. 990- 999.
Oyisi Eskoi, A. H. and Ravanshadnia, M. 2012. “Simulation application in multi-objective optimization of earthworks”. 7th National Congress of Civil Engineering.
Panas, A. and Pantouvakis, J. P. 2010. “Comparative analysis of operational coefficients’ impact on excavation operations”. Eng. Constr. Architec. Manag. 17(5): 461-475.
Parchami Jalal, M., Farsatkar, A. and Forozanfar, Y. 2009. “Operation management of construction machinery”. Publication 449.
Parente, M., Correia, A. G. and Cortez, P. 2016. “A novel integrated optimization system for earthwork tasks”. Transport. Res. Proc., 14: 3601-3610.
Parthasarathy, M. K., Murugasan, R. and Murugesan, K. 2017. “A critical review of factors affecting manpower and equipment productivity in tall building construction projects”. J. Constr. Dev. Countries, 22: 1-18.
Ranjithapriya, R. and Arulselvan, S. 2020. “Study on factors affecting equipment management and its effect on productivity in building construction”. Int. J. Eng. Res. Tech. (IJERT), 9(4): 223-230.
Rashidi, A., Rashidi, H. and Maghiar, M. 2014. “Productivity estimation of bulldozers using generalized linear mixed models”. KSCE J. Civ. Eng., 18(6): 1580-1589.
Rostami, J. 2016. “Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground”. Tunn. Undergr. Sp. Tech., 57: 173-182.
Salimi, A., Rostami, J., Moormann, C. and Delisio, A. 2016. “Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs”. Tunn. Undergr. Sp. Tech., 58: 236-246.
Shahbazbeigi, M., Lotfian, F. and Rezaei-Rad, A. H. 2014. “Study of effective factors in the selection and productivity of road construction machines, case study: Hamedan-Tehran railway project”. Second Conference on National Construction and Project Management, Tehran.
Sircar, A., Yadav, K., Rayavarapu, K., Bist, N. and Oza, H. 2021. “Application of machine learning and artificial intelligence in oil and gas industry”. Petrol. Res., 6(4): 379-391.
Sweis, R., Moarefi, A., Amiri, M. H., Moarefi, S. and Rawan, S. 2019. “Causes of delay in Iranian oil and gas projects: A root cause analysis”. Int. J. Energ. Sector Manag., 13(3): 630-650.
Thomas, H. R. and Kramer, D. F. 2002. “The manual of construction productivity measurement and perfomance evaluation”. SD-35, Construction Industry Institute (CII), Austin, TX.
Wordmeter. 2024. https://www.worldometers.info /gas/gas-reserves-by-country/ | ||
آمار تعداد مشاهده مقاله: 226 تعداد دریافت فایل اصل مقاله: 114 |