| International Journal of Nonlinear Analysis and Applications | ||
| Article 22, Volume 16, Issue 4, January 0, Pages 263-270 PDF (1.87 M) | ||
| DOI: 10.22075/ijnaa.2024.32688.4865 | ||
| Receive Date: 16 November 2023, Revise Date: 02 January 2024, Accept Date: 02 January 2024 | ||
| References | ||
|
[1] M. Abd Elaziz, E.O. Abo Zaid, M.A.A. Al-qaness, and R.A. Ibrahim, Automatic superpixel-based clustering for color image segmentation using q-generalized pareto distribution under linear normalization and hunger games search, Mathematics 9 (2021), no. 19. [2] L. Abdel-Hamid, Retinal image quality assessment using transfer learning: Spatial images vs. wavelet detail subbands, Ain Shams Eng. J. 12 (2021), no. 3, 2799–2807. [3] N. Akter, J. Fletcher, S. Perry, M.P. Simunovic, N. Briggs, and M. Roy, Glaucoma diagnosis using multi-feature analysis and a deep learning technique, Sci. Rep. 12 (2022), no. 1, 8064. [4] S. Chatterjee, A. Suman, R. Gaurav, S. Banerjee, A.K. Singh, B.K. Ghosh, R.K. Mandal, M. Biswas, and D. Maji, Retinal blood vessel segmentation using edge detection method, J. Phys. Conf. Ser. 1717 (2021), no. 1, 012008. [5] P.K. Chaudhary and R.B. Pachori, Automatic diagnosis of glaucoma using two-dimensional Fourier-Bessel series expansion based empirical wavelet transform, Biomed. Signal Process. Control 64 (2021), 102237. [6] S. Chen, Z. Wang, J. Shi, B. Liu, and N. Yu, A multi-task framework with feature passing module for skin lesion classification and segmentation, IEEE 15th Int. Symp. Biomed. Imag. (ISBI 2018), Washington, DC, IEEE, 2018, pp. 1126-1129. [7] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in 2017 IEEE Conf. Comput. Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE (2017), 1800-1807. [8] S.A. David, C. Mahesh, V.D. Kumar, K. Polat, A. Alhudhaif, and M. Nour, Retinal blood vessels and optic disc segmentation using U-net, Math. Probl. Eng. 2022 (2022), no. 1, 1-11. [9] M. Deshpande, Introduction to Convolutional Neural Networks for Vision Tasks, [Online], 2017, Available: https://gamedevacademy.org/introduction-to-convolutional-neural-networks-for-vision-tasks/. [10] A. Diaz-Pinto, S. Morales, V. Naranjo, T. Kohler, J. M. Mossi, and A. Navea, CNNs for automatic glaucoma assessment using fundus images: An extensive validation, Biomed. Eng. Online 18 (2019), no. 1, 29. [11] Sh. Du, Understanding Dice Loss for Crisp Boundary Detection, AI salon [Online], 2020, Available: https: //medium.com/ai-salon/understanding-dice-loss-for-crisp-boundary-detection-bb30c2e5f62b. [12] M.S. Gargari, M.H. Seyedi, and M. Alilou, Segmentation of retinal blood vessels using U-net++ architecture and disease prediction, Electronics 11 (2022), no. 21. [13] S. Goel, S. Gupta, A. Panwar, S. Kumar, M. Verma, S. Bourouis, and M.A. Ullah, Deep learning approach for stages of severity classification in diabetic retinopathy using color fundus retinal images, Math. Probl. Eng. 2021 (2021), no. 1, 1-8. [14] I. K. Gupta, A. Choubey, and S. Choubey, Mayfly optimization with deep learning enabled retinal fundus image classification model, Comput. Electr. Eng. 102 (2022), 108176. [15] K. He, Z. Xiangyu, R. Shaoqing, and S. Jian, Deep Residual Learning for Image Recognition, Dec. 2015, [Online], Available: https://arxiv.org/pdf/1512.03385.pdf. [16] G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Weinberger, Densely connected convolutional networks, IEEE Conf. Comput. Vision Pattern Recog. (CVPR), Honolulu, HI: IEEE, 2017, pp. 2261-2269. [17] J. Kaur and P. Kaur, Automated computer-aided diagnosis of diabetic retinopathy based on segmentation and classification using K-nearest neighbor algorithm in retinal images, Comput. J. 66 (2023), no. 8, 2011–2032. [18] T. Khalil, M.U. Akram, H. Raja, A. Jameel and I. Basit, Detection of glaucoma using cup to disc ratio from spectral domain optical coherence tomography images, IEEE Access 6 (2018), 4560-4576. [19] Z. Kong, M. He, Q. Luo, X. Huang, P. Wei, Y Cheng, L Chen, Y. Liang, Y. Lu, X. Li, and J. Chen, Multi-task classification and segmentation for explicable capsule endoscopy diagnostics, Front. Mol. Biosci. 8 (2021), 614277. [20] T. L. T. Le, N. Thome, S. Bernard, V. Bismuth and F. Patoureaux, Multitask Classification and Segmentation for Cancer Diagnosis in Mammography, arXiv [Online], 2019, Available: http://arxiv.org/abs/1909.05397. [21] S. Maheshwari, V. Kanhangad and R. B. Pachori, CNN-Based Approach for Glaucoma Diagnosis Using Transfer Learning and LBP-Based Data Augmentation, arXiv [Online], 2020, Available: http://arxiv.org/abs/2002.08013. [22] R. Marques, D.A. De Jesus, J. Barbosa-Breda, J. Van Eijgen, I. Stalmans, T. van Walsum, S.tefan Klein, P.G. Vaz, and L. Sanchez Brea, Automatic segmentation of the optic nerve head region in optical coherence tomography: A methodological review, Comput. Methods Programs Biomed. 220 (2022), 106801. [23] F. Milletari, N. Navab, and S. A. Ahmadi, V-Net: Fully convolutional neural networks for volumetric medical image segmentation, 2016, doi: 10.48550/ARXIV.1606.04797. [24] B. Oliveira, H.R. Torres, P. Morais, F. Veloso, A.L. Baptista, J.C. Fonseca, and J.L. Vilaca, A multi-task convolutional neural network for classification and segmentation of chronic venous disorders, Sci. Rep. 13 (2023), no. 1, 761. [25] S. Pathan, P. Kumar, R.M. Pai, and S.V. Bhandary, Automated segmentation and classification of retinal features for glaucoma diagnosis, Biomed. Signal Process. Control 63 (2021), 102244. [26] A. Ramzan, M. Usman Akram, A. Shaukat, S. Gul Khawaja, U. Ullah Yasin, and W. Haider Butt, Automated glaucoma detection using retinal layers segmentation and optic cup-to-disc ratio in optical coherence tomography images, IET Image Process 13 (2019), no. 3, 409–420. [27] A. Rosebrock, Convolutional neural networks (CNNs) and layer types, [Online], 2021, Available: https: //pyimagesearch.com/2021/05/14/convolutional-neural-networks-cnns-and-layer-types/. [28] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, 18th Int. Conf., Munich, Germany, October 5-9, 2015, Proc., part III 18. Springer International Publishing, 2015. [29] T. Saba, S. Akbar, H. Kolivand, and S. Ali Bahaj, Automatic detection of papilledema through fundus retinal images using deep learning, Microsc. Res. Tech. 84 (2021), no. 12, 3066–3077. [30] J. Sahlsten, J. Jaskari, J. Kivinen, L. Turunen, E. Jaanio, K Hietala, and K. Kaski, Deep learning fundus image analysis for diabetic retinopathy and macular edema grading, Sci. Rep. 9 (2019), no. 1. [31] A. Sarhan, J. Rokne, and R. Alhajj, Glaucoma detection using image processing techniques: A literature review, Comput. Med. Imag. Graph. 78 (2019), 101657. [32] P. Sharma, VGG Network, Codingninjas, Apr. 21, 2023, https://www.codingninjas.com/codestudio/library/vggnet. [33] D. Shen, T. Liu, T.M. Peters, L.H. Staib, C. Essert, S. Zhou, P.T. Yap, and A. Khan, Medical image computing and computer assisted intervention-MICCAI 2019: 22nd International Conference, Shenzhen, China, October, Lecture Notes in Computer Science, 2019, pp. 13–17. [34] A. Shoukat, S. Akbar, S.A. Hassan, S. Iqbal, A. Mehmood, and Q.M. Ilyas, Automatic diagnosis of glaucoma from retinal images using deep learning approach, Diagnostics 13 (2023), no. 10, 1738. [35] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014, 10.48550/ARXIV.1409.1556. [36] M.B. Sudhan, M. Sinthuja, S. Pravinth Raja, J. Amutharaj, G. Charlyn Pushpa Latha, S. Sheeba Rachel, T. Anitha, T. Rajendran, and Y. Asrat Waji, Segmentation and classification of glaucoma using U-net with deep learning model, J. Healthc. Eng. 2022 (2022), 1–10. [37] C. Szegedy, W. Liu, Y. Jia, and P. Sermanet, Going deeper with convolutions, IEEE Conf. Comput. Vis. Pattern Recogn.(CVPR), Boston, MA, USA, IEEE, 2015, pp. 1–9. [38] R. Thanki, A deep neural network and machine learning approach for retinal fundus image classification, Healthc. Anal. 3 (2023), 100140. [39] B. Xu, N. Wang, T. Chen, and M. Li, Empirical evaluation of rectified activations in convolutional network, 2015, 10.48550/ARXIV.1505.00853. [40] M.Y.T. Yip, G. Lim, Z.W. Lim, Q.D. Nguyen, C.C.Y. Chong, M. Yu, V. Bellemo, Y. Xie, X.Q. Lee, H. Hamzah, and J. Ho, Technical and imaging factors influencing performance of deep learning systems for diabetic retinopathy, Npj Digit. Med. 3 (202), no. 1, 40. [41] K. Zervoudakis and S. Tsafarakis, A mayfly optimization algorithm, Comput. Ind. Eng. 145 (2020), 106559. [42] Zh. Zhang, F. Sh. Yin, J. Liu, W.K. Wong, N.M. Tan, B.H. Lee, J. Cheng, and T.Y. Wong., Origya-light: An online retinal fundus image database for glaucoma analysis and research, Ann. Int. Conf. IEEE Engin. Med. Bio., Buenos Aires, IEEE, 2021, pp. 3065–3068. | ||
|
Statistics Article View: 645 PDF Download: 680 |
||