
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,939 |
تعداد دریافت فایل اصل مقاله | 7,656,397 |
Quantum Machine Learning Approach for the Prediction of Surface Roughness in Additive Manufactured Specimens | ||
Mechanics of Advanced Composite Structures | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 15 شهریور 1403 اصل مقاله (861.04 K) | ||
نوع مقاله: Special Issue: Mechanics of Advanced Fiber Reinforced Composite Structures | ||
شناسه دیجیتال (DOI): 10.22075/macs.2024.33798.1642 | ||
نویسندگان | ||
Akshansh Mishra1؛ Vijaykumar S. Jatti* 2 | ||
1School of Industrial and Information Engineering, Politecnico Di Milano, Milan, Italy | ||
2Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, Maharashtra, India | ||
تاریخ دریافت: 26 فروردین 1403، تاریخ بازنگری: 21 مرداد 1403، تاریخ پذیرش: 15 شهریور 1403 | ||
چکیده | ||
One of the most important factors affecting the functioning and performance of additively produced components is surface roughness. Precise estimation of surface roughness is essential for streamlining production procedures and guaranteeing product quality. Recently, quantum computing has drawn interest as a possible way to solve challenging issues and produce accurate prediction models. For the first time, we compare three quantum algorithms in-depth in this research paper for surface roughness prediction in additively manufactured specimens: the Quantum Neural Network (QNN), Quantum Forest (Q-Forest), and Variational Quantum Classifier (VQC) modified for regression. Mean Squared Error (MSE), Mean Absolute Error (MAE), and Explained Variance Score (EVS) are the assessment metrics we use to evaluate the algorithms' performance. With an MSE of 56.905, an MAE of 7.479, and an EVS of 0.2957, the Q-Forest algorithm outperforms the other algorithms, according to our data. On the other hand, the QNN method shows a negative EVS of -0.444 along with a higher MSE of 60.840 and MAE of 7.671, suggesting that it might not be the best choice for surface roughness prediction in this application. The regression-adapted VQC has an MSE of 59.121, an MAE of 7.597, and an EVS of -0.0106, indicating that it performs inferior than the Q-Forest approach as well. | ||
کلیدواژهها | ||
Additive manufacturing؛ Quantum neural network؛ Quantum forest؛ Variational quantum classifier؛ Fused deposition modelling | ||
آمار تعداد مشاهده مقاله: 69 تعداد دریافت فایل اصل مقاله: 96 |