
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,873 |
تعداد دریافت فایل اصل مقاله | 7,656,352 |
Regularity properties for convex-like $C(T)$-valued functions on Hilbert spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 03 مهر 1403 اصل مقاله (408.56 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.33909.5061 | ||
نویسندگان | ||
Elham Behroozizadeh؛ Zeinab Izadi* ؛ Gholamreza Moghimi؛ Javad Izadi | ||
Department of Mathematics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran | ||
تاریخ دریافت: 11 اردیبهشت 1403، تاریخ بازنگری: 07 شهریور 1403، تاریخ پذیرش: 19 شهریور 1403 | ||
چکیده | ||
In this paper, we introduce several regularity properties for the non-differentiable convex-like $C(T)$-valued functions which are defined on a Hilbert space. The relationships with various regularity properties are investigated. All results are given in terms of the convex subdifferential. Non-trivial numerical examples are incorporated to demonstrate the validity of the results established in this paper. To the best of our knowledge, this paper is the first to investigate the regularity properties for the $C(T)$-valued functions, even in the differentiable case of finite-dimensional spaces. | ||
کلیدواژهها | ||
$C(T)$-valued function؛ Regularity property؛ Hilbert space؛ Convex subdifferential | ||
مراجع | ||
[1] N. Dunford and J.T. Schwartz, Linear Operators: General Theory, Chichester, Wiley, 1988. [2] M.A. Goberna and N. Kanzi, Optimality conditions in convex multiobjective SIP, Math. Programm. 164(2017), 167–191. [3] R. Hettich and O. Kortanek, Semi-infinite programming: Theory, methods, and applications, SIAM Rev. 35 (1993), 380–429. [4] J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms. I., Fundamentals, Springer, Berlin, 1993. [5] N. Kanzi, Karush–Kuhn–Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems, J. Math. Ext. 9 (2015), 45–56. [6] N. Kanzi, Lagrange multiplier rules for non-differentiable DC generalized semiinfinite programming problems, J. Glob. Optim. 56 (2020), 417–430. [7] N. Kanzi, J. Shaker Ardekani, and G. Caristi, Optimality, scalarization and duality in linear vector semi-infinite programming, Optimization 67 (2018), 523–536. [8] N. Kanzi and M. Soleimani-Damaneh, Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization, J. Glob. Optim. 77 (2020), 627–641. [9] N. Kanzi, Necessary and sufficient conditions for (weakly) efficient of nondifferentiable multi-objective semi-infinite programming, Iran. J. Sci. Technol. Trans. A: Sci. 42 (2017), 1537—1544. [10] N. Kanzi, Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints, SIAM J. Optim. 24 (2014), 559-–572. [11] W. Li, C. Nahak, and I. Singer, Constraint qualifications in semi-infinite systems of convex inequalities, SIAM J. Optim. 11 (2000), 31–52. [12] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. [13] K.A. Winkler, Characterization of efficient and weakly efficient points in convex vector optimization, SIAM J. Optim. 19 (2008), 756–765. [14] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002. [15] K.Q. Zhao and X.M. Yang, Characterizations of efficiency in vector optimization with C(T)-valued mappings, Optim. Lett. 9 (2015), 391–401. | ||
آمار تعداد مشاهده مقاله: 74 تعداد دریافت فایل اصل مقاله: 120 |