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Abstract

We establish the existence and uniqueness of solutions to a mean-field reflected backward stochastic differential equation
with an infinite horizon under a Lipschitz condition on the coefficient. As an application, we prove the existence of an
optimal strategy for the mean-field mixed stochastic control problem.
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1 Introduction

Let (Bt)t≥0 be a standard d-dimensional Brownian motion, defined on a probability space (Ω,F ,P). Let F = {Fs, s ≥ 0}
be the filtration generated by the process (Bs) augmented with the P-null sets of F , and F∞ = ∨

t≥0
Ft. We denote

S2(0,∞,R) := the space of continuous, Ft-adapted processes φ such that

E sup
0≤t≤∞

|φt|2 < +∞.

M2(0,∞,Rd) := the space of Ft-progressively measurable processes φ satisfying

E
∫ ∞

0

|φt|2 dt < +∞.

L2 := the space of F∞−measurable random variable ξ s.t. satisfying E |ξ|2 < +∞.

Tt := the space of Ft-stopping time v such that P− a.s. v ≥ t.

P := the σ-algebra of progressively measurable subsets of [0,∞)× Ω.

Let B2 be the Banach space of processes (Y,Z) with values in R1+d such that Y ∈ S2, Z ∈ M2 and ∥(Y, Z)∥B2 :=(
∥Y ∥2S2 + ∥Z∥2M2

)1/2
.

The space
(
Ω,F ,P

)
:= (Ω× Ω,F ⊗ F ,P⊗P) is endowed with the filtration F=

{
F t = F ⊗ F t, t ≥ 0

}
.
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The random variable ξ ∈ L0 (Ω,F ,P,R) is canonically extended to Ω by putting ξ′(ω′, ω) := ξ(ω) for (ω′, ω) ∈ Ω.
For any θ ∈ L1

(
Ω,F ,P

)
, the variable θ(., ω) : Ω → R belongs to L1 (Ω,F ,P) P(dω)− a.s. We denote its expectation

by

E′ [θ(., ω)] =

∫
Ω

θ(ω′, ω)P(dω′).

Note that E′ [θ] := E′ [θ(., ω)] ∈ L1 (Ω,F ,P) and

E [θ] =

∫
Ω

θdP =

∫
Ω

E′ [θ(., ω)]P(dω) = E [E′ [θ]] .

We consider the following assumption:

(H1)–(i) f is a mapping from Ω× R+ × R× Rd × R× Rd into R such that

(a) there exist two positive deterministic functions u1(t) and u2(t) such that for any (y′i, z
′
i, yi, zi) in R1+d+1+d,

(i = 1, 2) and any t ∈ [0, ∞], we have

|f(t, y′1, z′1, y1, z1)− f(t, y′2, z
′
2, y2, z2)| ≤u1(t) (|y′1 − y′2|+ |y1 − y2|) + u2(t) (|z′1 − z′2|+ |z1 − z2|) .

(b) E(
∫∞
0

|f(s, 0, 0, 0, 0)| ds)2 < ∞.

(c)
∫∞
0

u1(t)dt < ∞,
∫∞
0

u2
2(t)dt < ∞.

(ii) ξ is an F∞−measurable random variable ξ s.t. satisfying E |ξ|2 < +∞.

(iii) S ∈ S2 and S∞ ≤ ξ a.s.

Definition 1.1. A solution of a mean-field reflected backward stochastic differential equation (MFRBSDE), with
the data (f, ξ, S), is an (Ft)-adapted process (Y,Z,K) := (Yt, Zt,Kt)t≥0 which satisfies the following equation

(i) Y ∈ S2, Z ∈ M2,K∞ ∈ L2,

(ii) Yt = ξ +
∫ +∞
t

E′ [f(s, Y ′
s , Z

′
s, Ys, Zs)] ds+K∞ −Kt −

∫ +∞
t

ZsdBs, t ≥ 0,
(iii) ∀t ≥ 0, St ≤ Yt.

(iv) Kt is continuous and increasing, K0 = 0 and
∫ +∞
0

(Yt − St)dKt = 0.

(1.1)

where

E′ [f(s, Y ′
s , Z

′
s, Ys, Zs)] (ω) = E′ [f(s, Y ′

s , Z
′
s, Ys(ω), Zs(ω))]

=

∫
Ω

f(ω′, ω, s, Ys(ω
′), Zs(ω

′), Ys(ω), Zs(ω))P(dω′)

ξ is called the terminal value, f the generator (or coefficient) and S the barrier (or obstacle). In the sequel the previous
equation will be labeled eq(f, ξ, S) or bsde(f, ξ, S).

The one barrier reflected backward stochastic differential equations (RBSDEs in short) were first studied by El
Karoui et al. [4]. For these RBSDEs, that is for the equations of the form

(i) Y ∈ S2, Z ∈ M2,KT ∈ L2.

(ii) Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds+KT −Kt −

∫ T

t
ZsdBs, 0 ≤ t ≤ T,

(iii) ∀t ∈ [0, T ], St ≤ Yt.

(iv) Kt is continuous and increasing, K0 = 0 and
∫ +∞
0

(Yt − St)dKt = 0.

(1.2)

In [4] the existence and uniqueness of solutions to (1.2) is proved under a square integrability of the terminal value
ξ and a Lipschitz continuous condition on the generator f while the barrier S is assumed continuous and satisfies
E
[
sup(S+

t )2
]
< +∞. In Hamadène et al. [8], the existence and uniqueness of solutions to the one barrier RBSDEs

with infinite horizon has been proved under the same assumptions in [4]. The authors of [12] have proved the existence
and uniqueness of a class of BSDEs with mean-field type of the form

Yt = ξ +

∫ +∞

t

E′ [f(s, Y ′
s , Z

′
s, Ys, Zs)] ds−

∫ +∞

t

ZsdBs, t ≥ 0. (1.3)
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The mean-field BSDEs (1.3) were introduced in Buckdahn et al. [2] in the context of a finite horizon. In finite
horizon, the existence of solutions to mean-field BSDEs (1.2) has been proved in Li and Luo [10] in the case where the
terminal value ξ is square integrable, the generator f is uniformly Lipschitz in y, z. They also show the existence and
uniqueness of solution when the data f, ξ and S satisfy assumption (H1). Our work distinguishes itself from previous
studies by addressing reflected backward stochastic differential equations of mean-field type with double barriers and
an infinite horizon.

The main result of this work consists of proving the existence and uniqueness of solutions for backward stochastic
differential equations of mean-field type in infinite horizon. This result is an extension of the results stated in [8, 10].
As an application, we establish the existence of optimal strategy for the mean-field mixed control problem in infinite
horizon.

Let us give a few explanations. Let ϕ and φ be bounded continuous functions, consider the following system{
dXt = b(t,X.,Eu [ϕ(Xs)] , ut)dt+ σ(t,X.)dB

u
t .

X0 = x ∈ Rd, t ≥ 0.
(1.4)

where u ∈ U is an admissible control and

Bu
t = Bt −

∫ t

0

σ−1(s,X.)b(s,X.,Eu [ϕ(Xs)] , us)ds, t ≥ 0,

is a Brownian motion on (Ω,F ,Pu). The probability measures P and Pu are equivalent on (Ω,F). The payoff associated
to the system (1.4) and Mean-field RBSDE eq(f, ξ, S) is defined by

J(u, τ) = Eu

[∫ τ

0

h(s,X.,Eu [φ(Xs)] , us)ds+ Sτ1{τ<+∞} + ξ1{τ=+∞}

]
, (1.5)

where Eu denotes the expectation with respect to Pu. The problem consists to find (û, τ̂) such that

J(u, τ) ≤ J(û, τ̂), ∀(u, τ) ∈ U × T (1.6)

where

τ̂ =

{
inf {t ∈ [0,+∞), Y ∗

t ≤ St}
+∞, otherwise.

Any (û, τ̂) ∈ U × T satisfying (1.6) is called optimal strategy or saddle-point strategy. Our work extends these of
[8, 7] to the case of a mean equation.

The paper is organized as follows. In Section 2, we use the ideas developed in [8] and [10] to establish the existence
and uniqueness of a solution (Y, Z,K) for an infinite horizon mean-field reflected backward stochastic differential
equation. In Section 3, we prove the existence of an optimal strategy for the mean-field mixed control problem (1.5).

2 Mean-field reflected BSDE with infinite horizon

In this Section, we establish the existence of solutions (Y, Z,K) to the infinite horizon mean-field reflected BSDEs
eq(f, ξ, S) when assumption (H1) is satisfied. Let (y, z) ∈ S2 ×M2 and consider the mean-field reflected BSDEs

(i) Y ∈ S2, Z ∈ M2,K∞ ∈ L2.

(ii) Yt = ξ +
∫ +∞
t

E′ [f(s, y′s, z
′
s, Ys, Zs)] ds+K∞ −Kt −

∫ +∞
t

ZsdBs, t ≥ 0,
(iii) ∀t ≥ 0, St ≤ Yt.

(iv) Kt is continuous and increasing, K0 = 0 and
∫ +∞
0

(Yt − St)dKt = 0.

(2.1)

where

E′ [f(s, y′s, z
′
s, Ys, Zs)] (ω) = E′ [f(s, y′s, z

′
s, Ys(ω), Zs(ω))]

=

∫
Ω

f(ω′, ω, s, ys(ω
′), zs(ω

′), Ys(ω), Zs(ω))P(dω′)

Proposition 2.1. Assume that (H1) is satisfied. If (y, z) ∈ S2 ×M2, then there exists a unique solution (Y, Z,K) of
the mean-field reflected BSDE (2.1) such that (Y,Z) belongs to B2 × B2.
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Proof . See [8] Theorem 3.2. □

The main result of this section is the following.

Theorem 2.2. Let assumption (H1) holds. Then, the mean-field RBSDEs eq(f, ξ, S) with the data (f, ξ, S) has a
unique solution (Y, Z,K).

Proof . Thanks to Proposition 2.1, we can introduce the mapping Ψ
(
yi. , z

i
.

)
:=
(
Y i
. , Z

i
.

)
: B2 → B2, through the

following equation

Y i
t = ξ +

∫ +∞

t

E′ [f(s, yi′s , zi′s , Y i
s , Z

i
s)
]
ds+Ki

∞ −Ki
t −

∫ +∞

t

Zi
sdBs, t ≥ 0. (2.2)

The proof is divided into three steps. In step 1, under
(∫∞

0
u(t)dt

)2
+
∫∞
0

u2(t)dt < 1
72 we prove that the mapping

Ψ is a contraction. In step 2, we use assumption (H1)-(i)-(c) to show that there exists a sufficiently large constant

T0 > 0 such that
(∫∞

T0
u1(s)ds

)2
+
∫∞
T0

u2
2(s)ds <

1
72 . This shows that the infinite horizon mean-field reflected BSDEs

eq(f, ξ, S) with the data (f, ξ, S) has a unique. In step 3, we prove the uniqueness of the solution of eq(f, ξ, S).

Step 1. Contraction of the map Ψ (y, z) := (Y,Z). Assume that

L :=

(∫ ∞

0

u(t)dt

)2

+

∫ ∞

0

u2(t)dt <
1

72
.

Let (yi, zi), (i = 1, 2) be two elements of B2. We denote

(ŷ, ẑ) :=
(
y1 − y2, z1 − z2

)(
Ŷ , Ẑ, K̂

)
:=

(
Y 1 − Y 2, Z1 − Z2,K1 −K2

)
f̂ := f(s, y1s , z

1
s , Y

1
s , Z

1
s )− f(s, y2s , z

2
s , Y

2
s , Z

2
s ).

The square-integrable solution Y i
t of the MFRBSDE (2.2) can be be represented as follows:

Y i
t = ess sup

v∈Tt

E
[∫ v

t

E′ [f(s, yi′s , zi′s , Y i
s , Z

i
s)
]
ds+ Sv1{v<∞} + ξ1{v=∞} | Ft

]
. (2.3)

Doob’s inequality shows that∥∥∥Ŷ ∥∥∥
S2

= E
[
sup
t≥0

∣∣∣Ŷt

∣∣∣2]
≤ E

[
sup
t≥0

(
E
[∫ +∞

0

E′
[
f̂(s)

]
ds | Ft

])2
]

≤ 4E

[(∫ +∞

0

E′
[
f̂(s)

]
ds

)2
]
.

Using the fact that
∫ +∞
t

ŶsdK̂s ≤ 0, then Itô’s formula applied to
∣∣∣Ŷt

∣∣∣2 shows that

∣∣∣Ŷt

∣∣∣2 + ∫ +∞

t

∣∣∣Ẑs

∣∣∣2 ds = 2

∫ +∞

t

ŶsE′
[
f̂(s)

]
ds+ 2

∫ +∞

t

ŶsdK̂s − 2

∫ +∞

t

ŶsẐsds

≤ 2

∫ +∞

t

ŶsE′
[
f̂(s)

]
ds− 2

∫ +∞

t

ŶsẐsdBs.
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Hence,

∥∥∥Ẑ∥∥∥2
M2

= E
[∫ +∞

0

∣∣∣Ẑs

∣∣∣2 ds]
≤ 2E

[∫ +∞

0

ŶsE′
[
f̂(s)

]
ds

]
≤ 5E

[(∫ +∞

0

E′
[
f̂(s)

]
ds

)2
]
.

The Lipschitz condition allows to show that

E

[(∫ +∞

0

E′
[
f̂(s)

]
ds

)2
]
≤ 4L

[
∥(ŷ, ẑ)∥2B +

∥∥∥(Ŷ , Ẑ)
∥∥∥2
B

]
.

Hence,∥∥∥(Ŷ , Ẑ)
∥∥∥2
B2

=
∥∥∥Ŷ ∥∥∥2

S2
+
∥∥∥Ẑ∥∥∥2

M2

≤ 9E

[(∫ +∞

0

E′
[
f̂(s)

]
ds

)2
]

≤ 36L

[
∥(ŷ, ẑ)∥2B2 +

∥∥∥(Ŷ , Ẑ)
∥∥∥2
B2

]
.

Thus ∥∥∥(Ŷ , Ẑ)
∥∥∥2
B2

≤ Γ2 ∥(ŷ, ẑ)∥2B2

where

Γ2 =
36
[(∫∞

0
u1(s)ds

)2
+
(∫∞

0
u2
2(s)ds.

)]
1− 36

[(∫∞
0

u1(s)ds
)2

+
(∫∞

0
u2
2(s)ds.

)] .
Therefore, using inequality

(∫∞
0

u(t)dt
)2

+
∫∞
0

u2(t)dt < 1
72 , it follows that Ψ is a strict contraction. Hence, Ψ

has a unique fixed point (Y,Z) ∈ B2 such that (Y, Z) = Φ(Y,Z). This shows the existence and uniqueness of (Y, Z).
The existence and uniqueness of the process K are deduced from that of (Y, Z).

Step 2. For the general case.

It follows, from Step 1, that equation (2.1) has a unique solution Y,Z,K) such that (Y,Z) ∈ B2. Using assumption
(H1)-(i)-(c), one can show that there exists a sufficiently large constant T0 > 0 such that,(∫ ∞

T0

u1(s)ds

)2

+

∫ ∞

T0

u2
2(s)ds <

1

72
.

Now, we respectively consider the following infinite horizon and finite horizon mean-field reflected BSDE,

Y t = ξ +

∫ +∞

t

1{s≥T0}E
′
[
f(s, Y

′
s, Z

′
s, Ys, Zs)

]
ds+K∞ −Kt −

∫ +∞

t

ZsdBs, t ≥ 0, (2.4)

and

Ỹt = Y t +

∫ T0

t

E′
[
f(s, Ỹ ′

s , Z̃
′
s, Ỹs, Z̃s)

]
ds+ K̃T0

− K̃t −
∫ T0

t

Z̃sdBs, t ∈ [0, T0]. (2.5)

According to Step 1, the infinite horizon mean-field reflected BSDE (2.4) has a unique solution (Y t, Zt,Kt).

Moreover, from Li and Luo [10] Theorem 3.1, there exists a unique solution (Ŷt, Ẑt, K̃t) satisfying the finite horizon
mean-field reflected BSDE (2.5).
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Thanks to Step 1 and Step 2, the infinite horizon mean-field reflected BSDEs eq(f, ξ, S) has a unique solution
(Y,Z,K). From the uniqueness it follows that

Yt =

{
Ỹt, t ∈ [0, T0]
Y t, t ∈ [T0,∞]

; Zt =

{
Z̃t, t ∈ [0, T0]
Zt, t ∈ [T0,∞]

Kt =

{
K̃t, t ∈ [0, T0]

K̃T0 −Kt −KT0 , t ∈ [T0,∞]

Theorem 2.2 is proved. □

3 Mean-field mixed control problem with infinite horizon

In this section, we study the Mean-field mixed control problem with infinite horizon using mean-field reflected
BSDEs eq(f, ξ, S). We shall give a description of the problem. In the sequel Ω = C([0,∞[,Rd

) is the space of
continuous functions from [0,∞[ to Rd. Let X0 = x ∈ Rd and X = (Xt)t≥0 be the solution of the following standard
functional differential equation {

dXt = σ(t,X.)dBt

X0 = x ∈ Rd, t ≥ 0.
(3.1)

We consider the following assumptions:

(H2) The coefficient σ : (t, ζ) ∈ [0,∞[×Ω → σ(t, ζ) ∈ Rd ⊗ Rd satisfy

(i) σ is P-measurable.

(ii) For any t ∈ [0,+∞[ and ζ ∈ Ω, σ(t, ζ) is invertible and σ−1(t, ζ) is bounded.

(iii) There exist K > 0 such that |σ(t, ζ)− σ(t, ζ ′)| ≤ K ∥ζ − ζ ′∥t and |σ(t, ζ)| ≤ K(1 + ∥ζ∥t), where for any (ζ, ζ ′)
∈ Ω and any t ≥ 0, ∥ζ∥t = sup

s≤t
|ζs| .

Remark 3.1. Let assumption (H2). holds. Then, according to Revuz and Yor [11] pp. 375, the standard functional
differential equation (3.1) has a unique solution.

Let A be a compact metric space. Let U be the set of all P-measurable processes u := (ut)t≥0 with values in A.

Let b be a function from [0,+∞[×Ω×Rd ×A into Rd satisfy the following conditions:

(H3)

(i) b is a Borel measurable functions.

(ii) For any t ∈ [0,+∞) and (ζ, x) ∈ Ω× Rd, b(t, ζ, x, .) is continuous on A.

(iii) There exists a deterministic function C(t) satisfying
∫ +∞
0

C2(t)dt < +∞ such that

|b(t, ζ, x, u)| ≤ C(t), for a.s.ω and any t ≥ 0, (ζ, x) ∈ Ω×Rd, u ∈ A.

Let ϕ be a bounded continuous function from Rd onto Rd. For each u ∈ U , we define a probability Pu on (Ω,F) by

dPu

dP
= exp

{∫ +∞

0

σ−1(s,X.)b(s,X.,Eu [ϕ(Xs)] , us)dBs −1

2

∫ +∞

0

∣∣σ−1(s,X.)b(s,X.,Eu [ϕ(Xs)] , us)
∣∣2 ds} ,

where Eu denotes the expectation with respect to Pu. Using assumptions (H2), (H3) and Girsanov’s theorem (see
[9], [11]), we see that the process

Bu
t = Bt −

∫ t

0

σ−1(s,X.)b(s,X.,Eu [ϕ(Xs)] , us)ds, t ≥ 0,
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is a Brownian motion on (Ω,F ,Pu) and X is a weak solution of the following mean-field SDE{
dXt = b(t,X.,Eu [ϕ(Xs)] , ut)dt+ σ(t,X.)dB

u
t ,

X0 = x ∈ Rd, t ≥ 0.
(3.2)

In the present section, suppose that we have a system (3.2), whose evolution is described by process X, which has
an effect on the wealth of a controller. On the other hand the controller has no influence on the system (3.2). For
instance, the process X may represent the price of an asset on the market and the controller a small share holder or
a small investor. Here U is the set of admissible controls, the controller acts to protect his advantages by means of
u ∈ U via the probability Pu. On the other hand he has also the possibility at any time τ ∈ T to stop controlling. The
control is not free.

(H4) The function h : [0,∞[×Ω× Rd ×A → R satisfies assumption (H3).

The payoff functional J(u, τ), (u, τ) ∈ U × T , associated with the controlled mean-field SDE (3.2) is

J(u, τ) = Eu

[∫ τ

0

h(s,X.,Eu [φ(Xs)] , us)ds+ Sτ1{τ<+∞} + ξ1{τ=+∞}

]
(3.3)

where φ be a bounded continuous function from Rd to Rd, S and ξ are the same as in assumption (H1).

In this controller, the coefficients h(t,X.,Eu [φ(Xt)] , u) is the instantaneous reward, S and ξ are respectively the
rewards if he decides to stop before or until infinite time. The problem is to look for an optimal strategy for the
controller i.e. a strategy (û, τ̂) such that

J(u, τ) ≤ J(û, τ̂), ∀(u, τ) ∈ U × T

We define the usual Hamiltonian function associated with this mean-field mixed stochastic control problem H :
[0,+∞[×Ω×M1(Rd)×A → R, by

H(t,X., µ, p, u) := pb

(
t,X.,

∫
ϕdµ, p, u

)
+ h

(
t,X.,

∫
φdµ, p, u

)
, (3.4)

where M1(Rd) denotes the space of probability measures in Rd and µt is the marginal probability distribution of Xt

under the probability measure Pu. To ease the notation, we use the following notation for the Hamiltonian

H(t,X., p, u) := pb(t,X.,Eu [ϕ(Xt)] , p, u) + h(t,X.,Eu [φ(Xt)] , p, u)

The following lemma on the existence u∗ = u∗(t,X., µ, p) which maximize the Hamiltonian H, has been obtained
by Benes [1] (see also [3]).

Lemma 3.2. There exists a Borel measurable function u∗ : [0,+∞[×Ω×M1(Rd) → A such that

H(t,X., p, u
∗) = max

u∈U
(pb(t,X.,Eu [ϕ(Xt)] , p, u) + h(t,X.,Eu [φ(Xt)] , p, u))

Remark 3.3. Under assumption (H3)− (iii), H(t,X., p, u) satisfies the Lipschitz condition in p. Then, the function
H(t,X., p, u

∗) also satisfies the Lipschitz assumption (H3)− (iii) in p.

The main result of this section is given by the following theorem.

Theorem 3.4. Assume that assumption (H1)− (H4) are satisfied. Let (Y ∗, Z∗,K∗) be the solution of the infinite
horizon mean-field reflected BSDEs, with the data (H(t,X., Z

∗, u∗), ξ, S), let

τ̂ =

{
inf {t ∈ [0,+∞), Y ∗

t ≤ St}
+∞, otherwise.

(3.5)

Then Y ∗
0 = J(u∗, τ̂) and (u∗, τ̂) is an optimal strategy for the mean-field mixed stochastic game problem (3.3).
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Proof . According to Theorem 2.2, it is clear that under assumption (H1)− (H4), the infinite horizon mean-field
reflected BSDEs, with the data (H(t,X., Z

∗, u∗), ξ, S) has a unique solution (Y ∗, Z∗,K∗). Then for any t ≥ 0 we have,

Y ∗
t = ξ +

∫ +∞

t

H(t,X., Z
∗, u∗)ds+K∗

∞ −K∗
t −

∫ +∞

t

Z∗
sdBs, t ≥ 0, (3.6)

Since Y ∗
0 is deterministic, then we can show that

Y ∗
0 = Eu∗

[Y ∗
0 ]

= Eu∗
[
ξ +

∫ +∞

0

H(t,X., Z
∗
s , u

∗)ds+K∗
∞ −

∫ +∞

0

Z∗
sdBs

]
= Eu∗

[
Y ∗
τ̂ +

∫ τ̂

0

H(t,X., Z
∗
s , u

∗)ds+K∗
τ̂ −

∫ τ̂

0

Z∗
sdBs

]

= Eu∗

[
Y ∗
τ̂ +

∫ τ̂

0

h(s,X.,Eu∗
[φ(Xs)] , u

∗)ds+K∗
τ̂ −

∫ τ̂

0

Z∗
sdB

u∗

s

]

Assumption (H3) and Burkholder Davis-Gundy’s inequality allows to show that

Eu∗
[
sup
t≥0

∣∣∣∣∫ t

0

Z∗
sdB

u∗

s

∣∣∣∣] ≤ C

(
E

[(
dPu

dP

)2
]) 1

2
(
E

[(∫ ∞

0

Z∗
sds

)2
]) 1

2

Since E
[(

dPu

dP
)2]

< ∞, Eu∗
[
sup
t≥0

∣∣∣∫ t

0
Z∗
sdB

u∗

s

∣∣∣] < ∞. Therefore (
∫ t

0
Z∗
t dB

u∗

t , t ∈ [0,+∞]) is a Pu∗
-martingale.

Moreover, from (3.5) and the properties of reflected BSDEs, it is easy to see that the process K∗
τ̂ does not increase

between 0 and τ̂ and hence K∗
τ̂ = 0. It follows that

Y ∗
0 = Eu∗

[∫ τ̂

0

h(s,X.,Eu∗
[φ(Xs)] , u

∗)ds+ Y ∗
τ̂

]
.

Since Y ∗
τ̂ = Sτ̂1{τ̂<+∞} + ξ1{τ̂=+∞} Pu∗

-a.s, it holds that

Y ∗
0 = J(u∗, τ̂).

On the other hand, let u be an admissible control and τ be a stopping time. Since P and Pu are equivalent
probabilities on (Ω,F), we have

Y ∗
0 = Eu [Y ∗

0 ]

= Eu

[
ξ +

∫ +∞

0

H(t,X., Z
∗
s , u

∗)ds+K∗
∞ −

∫ +∞

0

Z∗
sdBs

]
= Eu

[
Y ∗
τ +

∫ τ

0

H(t,X., Z
∗
s , u

∗)ds+K∗
τ −

∫ τ

0

Z∗
sdBs

]
= Eu

[
Y ∗
τ +

∫ τ

0

h(s,X.,Eu [φ(Xs)] , u)ds+K∗
τ −

∫ τ

0

Z∗
sdB

u
s +

∫ τ

0

H(t,X., Z
∗, u∗)−H(t,X., Z

∗, u)ds

]
.

Since the terms Y ∗
τ ≥ Sτ1{τ<+∞} + ξ1{τ=+∞}, K

∗
τ and

∫ τ

0
H(t,X.,Z

∗, u∗) − H(t,X., Z, u) are positive Pu-a.s.,

(
∫ t

0
Z∗
t dB

u
t , t ∈ [0,+∞]) is a Pu-martingale, the following result holds

J(u∗, τ̂) = Y ∗
0 ≥ Eu

[∫ τ

0

h(s,X.,Eu [φ(Xs)] , u)ds+K∗
τ + Y ∗

τ −
∫ τ

0

Z∗
sdB

u
s

]
= J(u, τ).

It follows that the control (u∗, τ̂) is an optimal strategy for the mean-field mixed stochastic game problem (3.3).
□
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