
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,772 |
تعداد دریافت فایل اصل مقاله | 7,656,172 |
بررسی و مقایسه مقاومت مکانیکی انواع بتنهای خودترمیمی باکتریایی | ||
مهندسی زیر ساخت های حمل و نقل | ||
مقاله 3، دوره 10، شماره 3 - شماره پیاپی 39، آذر 1403، صفحه 37-51 اصل مقاله (1.9 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2024.34979.1682 | ||
نویسندگان | ||
ابوالفضل نوری شهرآبادی1؛ غلامعلی شفابخش* 2؛ بی تا بخشی3 | ||
1دانشجوی دکتری راه و ترابری، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران | ||
2استاد، گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران | ||
3استاد، گروه باکتریشناسی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران | ||
تاریخ دریافت: 17 مرداد 1403، تاریخ بازنگری: 10 مهر 1403، تاریخ پذیرش: 24 مهر 1403 | ||
چکیده | ||
ترکها از عوامل اصلی خرابی بتن هستند که نفوذ محلولهای شیمیایی را تسهیل کرده و بر ویژگیهای سازههای بتنی تأثیر منفی میگذارند. برای رفع این مشکل، روشهای مختلفی مانند مواد پوششی و چسبها استفاده شده است. اما به دلیل هزینهبر بودن و مشکلاتی مانند لایهبرداری، توجه به روشهای جایگزین از جمله بتنهای خودترمیمشونده افزایش یافته است. یکی از این روشها، استفاده از میکروارگانیسمها برای ترمیم ترکها است. در این پژوهش، از باکتری باسیلوس سوبتیلیس استفاده شده که برخلاف سایر باکتریها نیازی به میکروکپسول یا نانومواد ندارد و هزینه تولید آن کمتر است. استفاده از این باکتری باعث بهبود قابل توجهی در مقاومت فشاری، خمشی و کششی بتن شده است. نمونههای RB10 و RB12 بیشترین افزایش مقاومت را نشان دادهاند؛ به طوری که نمونه RB10 دارای 100٪ افزایش در مقاومت خمشی و 5/76 درصد در مقاومت فشاری بوده است. همچنین، مقاومت کششی بتن با استفاده از این باکتری تا 15٪ افزایش یافته است. | ||
کلیدواژهها | ||
مقاومت مکانیکی بتن؛ باسیلوس سوبتیلیس؛ خودترمیمی باکتریایی | ||
عنوان مقاله [English] | ||
Investigating and Comparing the Mechanical Resistance of Bacterial Self-healing Concretes | ||
نویسندگان [English] | ||
abolfazl Noori Shahr Abadi1؛ Gholamali Shafabakhsh2؛ Bita Bakhshi3 | ||
1PhD Candidate of Road and Transportation, Faculty of Civil Engineering, Semnan University, Semnan, I.R. Iran. | ||
2Professor, Department of Road and Transportation, Faculty of Civil Engineering, Semnan University, Semnan, I.R. Iran. | ||
3Professor Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran | ||
چکیده [English] | ||
Cracks are one of the main causes of concrete failure, facilitating the penetration of chemical solutions and negatively impacting the characteristics of concrete structures. To address this problem, various methods such as coatings and adhesives have been used. However, due to the high costs and issues like peeling, attention has shifted toward alternative methods, including self-healing concrete. One of these methods involves the use of microorganisms to repair cracks. In this study, Bacillus subtilis bacteria were used, which, unlike other bacteria, do not require microcapsules or nanomaterials, making it less expensive to produce. The use of this bacteria has significantly improved the compressive, flexural, and tensile strength of the concrete. The RB10 and RB12 samples showed the highest strength increases, with RB10 exhibiting a 100% increase in flexural strength and 76.5% in compressive strength. Additionally, the tensile strength of the concrete increased by up to 15% with the use of this bacteria. | ||
کلیدواژهها [English] | ||
Mechanical strength of concrete, Bacillus subtilis, Bacterial self-healing | ||
مراجع | ||
Ahmad, J., Zaid, O., P´erez, C. L. C., et al. 2022. “Experimental research on mechanical and permeability properties of nylon fiber reinforced recycled aggregate concrete with mineral admixture”. Appl. Sci., https://doi.org /10.3390/app12020554
Althoey, F., Zaid, O., de-Prado-Gil, J., et al. 2022. “Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete”. J. Build. Eng., 54: 104610. https://doi.org/10.1 016/j.jobe.2022.104610
Aslam, F., Zaid, O., Althoey, F., et al. 2022. “Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete”. Struct. Concrete, 24(2): 2440-2459. https://doi.org/10.1002/suco.2022 00183
Chahal, N., Siddique, R. and Rajor, A. 2012. “Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume”. Constr. Build. Mater., 37: 645-651.
De Muynck, W., De Belie, N. and Verstraete, W. 2009. “Microbial carbonate precipitation in construction materials: A review”. Ecol. Eng., 36: 118-136, https://doi.org/10.1016/j.ecoleng .2009.02.006
De Rooij, M., Van Tittelboom, K., De Belie, N. and Schlangen, E. 2013. “Self-healing phenomena in cement-based materials”. RILEM Technical Committee 221-SHC.
Gupta, S., Kua, H. W. and Pang, S. D. 2018. “Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration”. Cement Concrete Compos., 86: 238-254.
Huang, H., Ye, G., Qian, C. and Schlangen, E. 2016. “Self-healing in cementitious materials: Materials, methods and service conditions”. Mater. Design, 92: 499-511.
Iheanyichukwu, C. G., Umar, S. A. and Ekwueme, P. C. 2018. “A review on self-healing concerete using bacteria”. Sustain. Struct. Mater., 1(2): 12-20.
Joshi, S., Goyal, S., Mukherjee, A. and Reddy, M. S. 2017. “Microbial healing of cracks in concrete: A review”. J. Ind. Microbiol. Biotech., 44(11): 1511-1525.
Khaliq, W. and Ehsan, M. B. 2016. “Crack healing in concrete using various bio influenced self-healing techniques”. Constr. Build. Mater., 102: 349-357.
Krishnapriya, S., D. L. Venkatesh Babu and P. A. G (2015). "Isolation and identification of bacteria to improve the strength of concrete." Microbiol. Res., 174: 48-55.
Lee, Y. S., Kim, H. J. and Park, W. 2017. “Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus”. J. Microbiol., 55: 440-447.
Maglad, A. M., Zaid, O., Arbili, M. M., et al. 2022. “A study on the properties of geopolymer concrete modified with nano graphene oxide”. Build., 12(8): 1066. https:// doi.org/10.3390/bu ildings12081066
Martínez-García, R., Jagadesh, P., Zaid, O., et al. 2022. “The present state of the use of waste wood ash as an eco-efficient construction material: A review”. Mater., 15(15): 5349. https://doi.org/10.3390/ma15155349
Noori Shahrabadi, A., Hassani, A. and Bakhshi, B. 2021. “Effect of bacteria on self-healing of bio-concrete by increasing compressive strength”. J. Transport. Infrastruct. Eng., 7(2): 41-50. [In Persian]
Singh, N., Ahmad, J. and Mir, S. S. 2018. “Assessment of ureolytic bacteria for self-healing concrete”. Int. J. Recent Sci. Res., 9(3): 25350-25355.
Tang, W., Kardani, O. and Cui, H. 2015. “Robust evaluation of self-healing efficiency in cementitious materials- A review”. Constr. Build. Mater., 81: 233-247. https://doi.org/10 .1016/j.conbuildmat..02.054
Termkhajornkit, P., Nawa, T., Yamashiro, Y. and Saito, T. 2009. “Self-healing ability of fly ash–cement systems”. Cement Concrete Compos., 31: 195-203. https://doi.org//j.cemc oncomp. 2008.12.009
Van Tittelboom, K. and De Belie, N. 2013. “Self-healing in cementitious materials- a review”. Mater., 6(6): 2182-2217. https://doi.org/10.33 90/ma6062182
Vijay, K., Murmu, M. and Deo, S. V. 2017. “Bacteria based self healing concrete- A review”. Constr. Build. Mater., 152: 1008-1014.
Wang, J. Y., Soens, H., Verstraete, W. and De Belie, N. 2014. “Self-healing concrete by use of microencapsulated bacterial spores”. Cement Concrete Res., 56: 139-152.
Worrell, E., Price, L., Martin, N., et al. 2001. “Carbon dioxide emission from the global cement industry”. Ann. Rev. Energy Environ., 26: 303-329, https://doi.org/10.1146/annurev. energy.26.1.303
Zaid, O., Ahmad, J., Siddique, M. S., et al. 2021a. “A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate”. Sci. Rep. 11282.
Zaid, O., Ahmad, J., Siddique, M. S. and Aslam, F. 2021b. “Effect of incorporation of rice husk ash instead of cement on the performance of steel fibers reinforced concrete”. Front. Mater., 8: 665625. https://doi.org/10.3389 /fmats.2021 .665625
Zaid, O., Roshan, S., Hashmi, Z, Aslam, F. and Alabduljabbar, H. 2021c. “Experimental study on mechanical performance of recycled fine aggregate concrete reinforced with discarded carbon fibers”. Front. Mater., 8. https://doi .org/10.3389/fmats.2021.771423
Zaid, O., Hashmi, S. R. Z., Aslam, F., et al. 2022a. “Experimental study on the properties improvement of hybrid graphene oxide fiber-reinforced composite concrete”. Diam. Relat. Mater., 108883. https://doi.org/10.1016/j.diam ond.2022.108883
Zaid, O., Martínez-García, R. and Aslam, F. 2022b. “Influence of wheat straw ash as partial substitute of cement on properties of high-strength concrete incorporating graphene oxide”. J. Mater. Civ. Eng., 34(11). https://doi .org/10.1061/(ASCE)MT.1943-5533.0004415
Zaid, O., Mukhtar, F. M., Martinez García, R., et al. 2022c. “Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler”. Case Stud. Constr. Mater., e00939. https://doi.org/10.101 6/j.cscm.2022.e00939
Zaid, O., Martínez-García, R., Abadel, A. A., et al. 2022d. “To determine the performance of metakaolin-based fiber-reinforced geopolymer concrete with recycled aggregates”. Arch. Civ. Mech. Eng., 22: 114. https://doi.org/10.1007/ s43452-022-00436-2
Zhang, J., Liu, Y., Feng, T., Zhou, M., Zhao, L., Zhou, A. and Li, Z. 2017. “Immobilizing bacteria in expanded perlite for the crack self-healing in concrete”. Constr. Build. Mater., 148: 610-617.
Zhutovsky, S. and Nayman, S. 2022. “Modeling of crack-healing by hydration products of residual cement in concrete”. Constr. Build. Mater., 340: 127682. https:// doi.org/10.1016/j.conbuil dmat.2022.127682 | ||
آمار تعداد مشاهده مقاله: 250 تعداد دریافت فایل اصل مقاله: 42 |