
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,939 |
تعداد دریافت فایل اصل مقاله | 7,656,398 |
Weighted composition operators on extended analytic Lipschitz algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 04 آبان 1403 اصل مقاله (417.09 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.32727.4871 | ||
نویسندگان | ||
Rezvan Barzegari؛ Davood Alimohammadi* | ||
Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran | ||
تاریخ دریافت: 29 آذر 1402، تاریخ پذیرش: 13 بهمن 1402 | ||
چکیده | ||
In this paper, we study weighted composition operators on extended analytic Lipschitz algebras ${\rm Lip}_{A}(X,K,\alpha)$ where $X$ is a compact plane set, $K$ is a closed subset of $X$ with nonempty interior and $0 < \alpha \leq 1$. We first give necessary conditions and sufficient conditions on a function $u \in \mathbb{C} ^{X}$ and self-map $\varphi$ of $X$ for which $T=uc_{\varphi}$ to be a weighted composition operator on ${\rm Lip}_{A}(X,K,\alpha)$. We next give the necessary conditions for these operators to be compact and provide some sufficient conditions for the compactness of such operators. | ||
کلیدواژهها | ||
Extended analytic Lipschitz algebra؛ Analytic uniform algebra؛ Banach function algebra؛ Compact operator؛ Composition operator؛ Weighted composition operator | ||
مراجع | ||
[1] D. Alimohammadi and S. Daneshmand, Weighted composition operators between Lipschitz algebras of complex[1]valued bounded functions, Caspian J. Math. Sci. 9 (2020), no. 1, 100–123. [2] D. Alimohammadi and M. Mayghani, Unital compact homomorphisms between extended analytic Lipschitz algebras, Abstract Appl. Anal. 2011 (2011), Article ID: 146758, 15 pages. [3] D. Alimohammadi and M. Mayghani, Unital power compact and quasicompact endomorphisms of extended analytic Lipschitz algebras, Int. J. Math. Anal. 6 (2012), no. 42, 2067–2082. [4] D. Alimohammadi and S. Moradi, Sufficient conditions for density in extended Lipschitz algebras, Caspian J. Math. Sci. 3 (2014), no. 1, 141–151. [5] S. Amiri, A. Golbaharan, and H. Mahyar, Weighted composition operators on Analytic Lipschitz spaces, Results Math. 73 (2022), no. 1, Article 46. [6] R. Bagheri and D. Alimohammadi, Weighted composition operators between extended Lipschitz algebras on com[1]pact metric spaces, Sahand Commu. Math. Anal. 17 (2020), no.3, 33–70. [7] Sh. Behrouzi, A. Golbaharan, and H. Mahyar, Weighted composition operators between pointed Lipschitz spaces, Results Math. 77 (2022), no.4, Article 157. [8] F. Behrouzi and H. Mahyar, Compact endomorphisms of certain analytic Lipschitz algebras, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 301–312. [9] A. Golbaharan and H. Mahyar, Weighted composition operators on Lipschitz spaces, Houst. J. Math. 42 (2016), no. 3, 905–917. [10] A. Jimenez-Vargas and M. Villegas-Vallecillos, Compact composition operators on noncompact Lipschitz spaces, J. Math. Anal. Appl. 398 (2013), 221–229. [11] T.G. Honary and S. Moradi, On the maximal ideal space of extended analytic Lipschitz algebras, Q. Math. 30 (2007), 349–353. [12] M. Mayghani and D. Alimohammadi, The structure of ideals, point derivations, amenability and weak amenability of extended Lipschitz algebras, Int, J. Nonlinear Anal. Appl. 8 (2017), no. 1, 389–404. [13] W. Rudin, Real and Complex Analysis, McGraw-Hill, Third Edition, Singapore, 1987. [14] D.R. Sherbert, Banach algebras of Lipschitz functions, Pacific. J. Math. 13 (1963), 1387–1399. [15] D.R. Sherbert, The structure of ideals and point derivations of Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240–272. | ||
آمار تعداد مشاهده مقاله: 32 تعداد دریافت فایل اصل مقاله: 75 |