[1] Sanders, E.A.D., Heat Exchangers, Selection, Design and Construction, p. 119, Longman Scientific & Technical, Essex, UK, 1988.
[2] Rahman, Md Atiqur, Mozammil Hasnain, S M, Prabhu. P., Abinet GA., 2024. Advancing thermal management in electronics: A review of innovative heat sink designs and optimization techniques, RSC Adv., 14, 31291-31319. https://doi.org/10.1039/D4RA05845C
[3] Rahman, M.A., Gupta, S. K., Akylbekov, N., Zhapparbergenov, R., Hasnain, S. M. M., & Zairov, R., 2024. Comprehensive overview of heat management methods for enhancing photovoltaic thermal systems. IScience, 27(10), 110950. https://doi.org/10.1016/j.isci.2024.110950
[4] Rahman, M.A., Zairov,R., Akylbekov, N., Zhapparbergenov, R., Hasnain, SMM., 2024. Pioneering heat transfer enhancements in latent thermal energy storage: Passive and active strategies unveiled. Heliyon, 10(19), e37981. https://doi.org/10.1016/j.heliyon.2024.e37981
[5] Bergles, E.A., 1993. The Imperative to Enhance Heat Transfer," in Heat Transfer Enhancement of Heat Exchangers, Springer Netherlands, pp. 13-29.
[6] Omidi, M., Farhadi, M., & Jafari, M., 2017. A comprehensive review on double pipe heat exchangers. Applied Thermal Engineering, 110, pp. 1075-1090. https://doi.org/10.1016/j.applthermaleng.2016.09.027
[7] Rukruang, A., Chimres, N., Kaew-On, J., Mesgarpour, M., Mahian, O., Wongwises, S., 2022. A critical review on the thermal performance of alternating cross-section tubes, Alexandria Engineering Journal, Vol. 61, No. 9, pp. 7315-7337, https://doi.org/10.1016/j.aej.2021.12.070
[8] Rukruang, A., Chimres, N., Kaew-On, J., & Wongwises, S., 2019. Experimental and numerical study on heat transfer and flow characteristics in an alternating cross-section flattened tube. Heat Transfer—Asian Research, 48(3), pp. 817-834. https://doi.org/10.1002/htj.21407
[9] Yang, S., Zhang, L., & Xu, H., 2011. Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes. Applied Thermal Engineering, 31(14-15), pp. 2981-2991. https://doi.org/10.1016/j.applthermaleng.2011.05.030
[10] Tan, X., Zhu, D., Zhou, G., & Zeng, L., 2012. Experimental and numerical study of convective heat transfer and fluid flow in twisted oval tubes. International Journal of Heat and Mass Transfer, 55(17-18), pp. 4701-4710. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.030
[11] Julie-Anne Zambaux, Jean-Luc Harion, Serge Russeil, Pascale Bouvier, 2015. The effect of successive alternating wall deformation on the performance of an annular heat exchanger, Applied Thermal Engineering, Vol. 90, pp. 286-295, https://doi.org/10.1016/j.applthermaleng.2015.06.091
[12] Abeer H. Falih, Basima Salman Khalaf, Basim Freegah, 2024. Investigate the impact of dimple size and distribution on the hydrothermal performance of dimpled heat exchanger tubes, Frontiers in Heat and Mass Transfer, 22(2), https://doi.org/10.32604/fhmt.2024.049812
[13] Huu-Quan, D., Mohammad Rostami, A., Shokri Rad, M., Izadi, M., Hajjar, A., & Xiong, Q., 2021. 3D numerical investigation of turbulent forced convection in a double-pipe heat exchanger with flat inner pipe. Applied Thermal Engineering, 182, 116106. https://doi.org/10.1016/j.applthermaleng.2020.116106
[14] Belay Ashagre, T., & Rakshit, D., 2023. Performance analysis of groove-cut tube-based double-pipe heat exchanger using microencapsulated phase change material slurry. Thermal Science and Engineering Progress, 46, 102156. https://doi.org/10.1016/j.tsep.2023.102156
[15] Hashemian, M., Jafarmadar, S., Nasiri, J., & Sadighi Dizaji, H., 2017. Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form. Applied Thermal Engineering, 118, 408-417. https://doi.org/10.1016/j.applthermaleng.2017.02.095
[16] Luo, C., Song, K., & Tagawa, T., 2021. Heat transfer enhancement of a double pipe heat exchanger by Co-Twisting oval pipes with unequal twist pitches. Case Studies in Thermal Engineering, 28, 101411. https://doi.org/10.1016/j.csite.2021.101411
[17] Feriel Yahiat, Pascale Bouvier, Serge Russeil, Christophe André, Daniel Bougeard, 2023. Swirl influence on thermo-hydraulic performances within a heat exchanger/reactor with macro deformed walls in laminar flow regime, Chemical Engineering and Processing - Process Intensification, Vol. 189, 109373. https://doi.org/10.1016/j.cep.2023.109373
[18] Songzhen Tang, Liang Ding, Xuehong Wu, Junjie Zhou, Lin Wang, Yinsheng Yu, 2024. Numerical investigation of thermal-hydraulic characteristics in crossflow heat exchangers with different twisted oval tubes, Case Studies in Thermal Engineering, 54, 104063, https://doi.org/10.1016/j.csite.2024.104063
[19] Liu, L., Cao, Z., Shen, T., Zhang, L., & Zhang, L., 2021. Experimental and numerical investigation on flow and heat transfer characteristics of a multi-wave internally spiral finned tube. International Journal of Heat and Mass Transfer, 172, 121104. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121104
[20] Chen, W.L., Dung, W.C., 2008. Numerical study on heat transfer characteristics of double tube heat exchangers with alternating horizontal or vertical oval cross-section pipes as inner tubes, Energy Convers. Manag. 49, 1574–1583. https://doi.org/10.1016/j.enconman.2007.12.007
[21] Bhadouriya, R., Agrawal, A., & Prabhu, S., 2015. Experimental and numerical study of fluid flow and heat transfer in an annulus of inner twisted square duct and outer circular pipe. International Journal of Thermal Sciences, 94, pp. 96-109. https://doi.org/10.1016/j.ijthermalsci.2015.02.019
[22] Žukauskas, A., 1971. Heat Transfer from Tubes in Crossflow. Advances in Heat Transfer, 8, pp. 93-160. https://doi.org/10.1016/S0065-2717(08)70038-8
[23] Kim, T., 2013. Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks. Annals of Nuclear Energy, 57, pp. 209-215. https://doi.org/10.1016/j.anucene.2013.01.060
[24] Suryanarayana, NV, 1994. Apparao, TVVR Heat transfer augmentation and pumping power in double-pipe heat exchangers. Exp. Therm. Fluid Sci., 9, pp. 436–444.
[25] Syed, K.S., 1997. Simulation of fluid flow through a double-pipe heat exchanger (Ph.D. Thesis, University of Bradford, Bradford, UK).
[26] Zhang, L., Guo, H., Wu, J. et al., 2012. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators. Heat Mass Transfer 48, pp. 1113–1124 2012. https://doi.org/10.1007/s00231-011-0959-5
[27] Hussein, H., Freegah, B., & Saleh, Q., 2023. Investigation the influence of the number and configuration of fins on the hydrothermal behavior of a double-pipe heat exchanger. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2023.11.006
[28] Hussein, H., Freegah, B., 2023. Numerical and experimental investigation of the thermal performance of the double pipe-heat exchanger. Heat Mass Transfer 59, pp. 2323–2341. https://doi.org/10.1007/s00231-023-03414-3
[29] Kahalerras, H. and Targui, N., 2008. Numerical analysis of heat transfer enhancement in a double pipe heat exchanger with porous fins, International Journal of Numerical Methods for Heat & Fluid Flow, 18(5), pp. 593-617. https://doi.org/10.1108/09615530810879738
[30] Ishaq, M., Ali, A., Amjad, M., Syed, K. S., & Iqbal, Z., 2020. Diamond-shaped extended fins for heat transfer enhancement in a double-pipe heat exchanger: An innovative design. Applied Sciences, 11(13), 5954. https://doi.org/10.3390/app11135954
[31] Ashraf, G., Bilal, S., Ishaq, M., Khalid Saifullah, S., Alqahtani, A., & Malik, M., 2024. Thermodynamic optimization in laminar and fully developed flow in double pipe heat exchanger with arrow-shaped extended surfaces: A novel design. Case Studies in Thermal Engineering, 54, 103947. https://doi.org/10.1016/j.csite.2023.103947
[32] Mohadjer, A., Nobakhti, M.H., Nezamabadi, A., Mousavi Ajarostaghi, S.S., 2024, Thermohydraulic analysis of nanofluid flow in tubular heat exchangers with multi-blade turbulators: The adverse effects, Heliyon, 10(9), e30333, https://doi.org/10.1016/j.heliyon.2024.e30333
[33] Syed, K. S., Ishaq, M., & Bakhsh, M., 2011. Laminar convection in the annulus of a double-pipe with triangular fins. Computers & Fluids, 44(1), pp. 43-55. https://doi.org/10.1016/j.compfluid.2010.11.026
[34] Vijayaragavan, B., Asok, S. P., & Shakthi Ganesh, C. R., 2023. Heat transfer characteristics of double-pipe heat exchanger having externally enhanced inner pipe. Acta Polytechnica, 63(1), pp. 65–74. https://doi.org/10.14311/AP.2023.63.0065
[35] Eiamsa-ard, S., Pethkool, S., Thianpong, C., & Promvonge, P., 2008. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts. International Communications in Heat and Mass Transfer, 35(2), pp. 120-129. https://doi.org/10.1016/j.icheatmasstransfer.2007.07.003
[36] El Maakoul, A., Feddi, K., Saadeddine, S., Ben Abdellah, A., & El Metoui, M., 2020. Performance enhancement of finned annulus using surface interruptions in double-pipe heat exchangers. Energy Conversion and Management, 210, 112710. https://doi.org/10.1016/j.enconman.2020.112710
[37] Song, K., He, Y., Zhang, Q., Wu, X., He, A., & Hou, Q., 2023. Thermal performance promotion of a novel double-tube heat exchanger by helical fin with perforations. International Communications in Heat and Mass Transfer, 150, 107189. https://doi.org/10.1016/j.icheatmasstransfer.2023.107189
[38] Ravikumar, M., & Ashwin Raj, Y., 2020. Investigation of fin profile on the performance of the shell and tube heat exchanger. Materials Today: Proceedings, 45, pp. 7910-7916. https://doi.org/10.1016/j.matpr.2020.12.745
[39] Syed, K., Ishaq, M., Iqbal, Z., & Hassan, A., 2015. Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness. Energy Conversion and Management, 98, pp. 69-80. https://doi.org/10.1016/j.enconman.2015.03.038
[40] Sahiti, N., Krasniqi, F., Fejzullahu, X., Bunjaku, J., & Muriqi, A., 2008. Entropy generation minimization of a double-pipe pin fin heat exchanger. Applied Thermal Engineering, 28(17-18), pp. 2337-2344. https://doi.org/10.1016/j.applthermaleng.2008.01.026
[41] Tavousi, E., Perera, N., Flynn, D., & Hasan, R., 2023. Heat transfer and fluid flow characteristics of the passive method in double tube heat exchangers: A critical review. International Journal of Thermofluids, 17, 100282. https://doi.org/10.1016/j.ijft.2023.100282
[42] Eiamsa-ard S. and Kiatkittipong, K., 2014. Applied Thermal Engineering, 70, pp. 896–924.
[43] Rahman, M. A., Hasnain, S. M. M., & Zairov, R., 2024. Assessment of improving heat exchanger thermal performance through implementation of swirling flow technology. International Journal of Thermofluids, 22, 100689. https://doi.org/10.1016/j.ijft.2024.100689
[44] Manglik, R. K. and Bergles, A. E., 1993. Heat transfer and pressure drop correlation for twisted tape insert of isothermal tube part II: Transition and turbulent flow. Trans. ASME J. heat transfer 115, pp. 771-780.
[45] Naphon, P., 2006. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert. International Communications in Heat and Mass Transfer, 33(2), pp. 166-175. https://doi.org/10.1016/j.icheatmasstransfer.2005.09.007
[46] Eiamsa-ard, S., Thianpong, C., Eiamsa-ard, P., & Promvonge, P., 2009. Convective heat transfer in a circular tube with short-length twisted tape insert. International Communications in Heat and Mass Transfer, 36(4), pp. 365-371. https://doi.org/10.1016/j.icheatmasstransfer.2009.01.006
[47] Mashoofi, N., Pourahmad, S., & Pesteei, S., 2017. Study the effect of axially perforated twisted tapes on the thermal performance enhancement factor of a double tube heat exchanger. Case Studies in Thermal Engineering, 10, pp. 161-168. https://doi.org/10.1016/j.csite.2017.06.001
[48] Singh, S.K., and Kumar, A., 2021. Experimental study of heat transfer and friction factor in a double pipe heat exchanger using twisted tape with dimple inserts. Energy Sources Part A Recover. Util. Environ. Eff., pp. 1–30.
[49] Dandoutiya, B. K., & Kumar, A., 2023. Study of thermal performance of double pipe heat exchanger using W-cut twisted tape. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), pp. 5221–5238. https://doi.org/10.1080/15567036.2023.2207497
[50] Luo, J., Alghamdi, A., Aldawi, F., Moria, H., Mouldi, A., Loukil, H., Deifalla, A. F., & Ghoushchi, S., 2023. Thermal-frictional behaviour of new special shape twisted tape and helical coiled wire turbulators in engine heat exchangers system. Case Studies in Thermal Engineering, 53, 103877. https://doi.org/10.1016/j.csite.2023.103877
[51] Durmuş, A., Durmuş, A., & Esen, M., 2002. Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance. Applied Thermal Engineering, 22(3), pp. 321-332. https://doi.org/10.1016/S1359-4311(01)00078-3
[52] Dhumal, G. S., & Havaldar, S. N., 2023. Enhancing heat transfer performance in a double tube heat exchanger: Experimental study with twisted and helical tapes. Case Studies in Thermal Engineering, 51, 103613. https://doi.org/10.1016/j.csite.2023.103613
[53] Arjmandi, H., Amiri, P., & Saffari Pour, M., 2020. Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Thermal Science and Engineering Progress, 18, 100514. https://doi.org/10.1016/j.tsep.2020.100514
[54] Abdulrasool, A.A., Aljibory, M.W., Abbas, A.K., Al-Silbi, M.M., 2023. A computational study of perforated helical tube inserted in a double pipe heat exchanger with fluid injection. International Journal of Heat and Technology, 41(1), pp. 35-45. https://doi.org/10.18280/ijht.410104
[55] Heeraman, J., Kumar, R., Chaurasiya, P. K., Gupta, N. K., & Dobrotă, D., 2023. Develop a new correlation between thermal radiation and heat source in dual-tube heat exchanger with a twist ratio insert and dimple configurations: An experimental study. Processes, 11(3), 860. https://doi.org/10.3390/pr11030860
[56] Sheikholeslami, M., Ganji, D., & Gorji-Bandpy, M., 2016. Experimental and numerical analysis for effects of using conical ring on turbulent flow and heat transfer in a double pipe air to water heat exchanger. Applied Thermal Engineering, 100, pp. 805-819. https://doi.org/10.1016/j.applthermaleng.2016.02.075
[57] Yadav, A.S., 2009. Effect of half-length twisted-tape turbulators on heat transfer and pressure drop characteristics inside a double pipe u-bend heat exchanger, JJMIE 3, 3(1), pp. 17-22.
[58] Pradecta, MR., Winarbawa, H., Suhanan, Prayitno,YAK., 2021. Performance study of nanofluids TiO2/TermoXT 32 inside double-concentric pipes heat exchanger using twisted tape insertions, J. Phys.: Conf. Ser. 1772 012057. DOI 10.1088/1742-6596/1772/1/012057
[59] Padmanabhan, S., Yuvatejeswar Reddy, O., Venkata Ajith Kumar Yadav, K., Bupesh Raja, V., & Palanikumar, K., 2020. Heat transfer analysis of double tube heat exchanger with helical inserts. Materials Today: Proceedings, 46, pp.3588-3595. https://doi.org/10.1016/j.matpr.2021.01.337
[60] Pourahmad, S., & Pesteei, S., 2016. Effectiveness-NTU analyses in a double tube heat exchanger with a wavy strip considering various angles. Energy Conversion and Management, 123, 462-469. https://doi.org/10.1016/j.enconman.2016.06.063
[61] Hussein, A. M., 2017. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Experimental Thermal and Fluid Science, 88, pp. 37–45, https://doi.org/10.1016/j.expthermflusci.2017.05.015
[62] Hasan, M. I., Salman, M. D. and Thajeel. A. L., 2018. Enhancement of thermal performance of double pipe heat exchanger by using nanofluid. Journal of Engineering and Sustainable Development, 22 (2), pp. 150–165, https://doi.org/10.31272/jeasd.2018.2.91
[63] Ponnada, S., Subrahmanyam, T., & Naidu, S., 2019. An experimental investigation on heat transfer and friction factor of Silicon Carbide/water nanofluids in a circular tube. Energy Procedia, 158, pp. 5156-5161. https://doi.org/10.1016/j.egypro.2019.01.682
[64] Lin, J.-Z., Xia, Y., Ku, X.-K., 2016. Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow. Int. J. Heat Mass Transf, 93, pp. 57–66.
[65] Pak, B.C., Cho, Y.I., 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf., 11, pp. 151–170.
[66] Dayou, S., Ting, T.W., Vigolo, B., 2022. Comparison of heat transfer performance of water-based graphene nanoplatelet- and multi-walled carbon nanotube-nanofluids in a concentric tube heat exchanger. Diam. Relat. Mater., 125, 108976.
[67] El-Behery, S.M., Badawy, G.H., El-Askary, W.A.; Mahfouz, F.M., 2022. Effects of nanofluids on the thermal performance of double pipe heat exchanger. ERJ Eng. Res. J., 45, pp. 13–25.
[68] Oflaz, F., Keklikcioglu, O., & Ozceyhan, V., 2022. Investigating thermal performance of combined use of SiO2-water nanofluid and newly designed conical wire inserts. Case Studies in Thermal Engineering, 38, 102378. https://doi.org/10.1016/j.csite.2022.102378
[69] Rahman, Md, A., Hasnain, SMM., Pandey, S., Tapalova, A., Akylbekov, N., Rustem Zairov, R., 2024. Review on nanofluids: Preparation, properties, stability, and thermal performance augmentation in jeat transfer applications., 9(30), ACS Omega. https://doi.org/10.1021/acsomega.4c03279
[70] Chun, BH., Kang, H.U. & Kim, S.H., 2008. Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J. Chem. Eng., 25, pp. 966–971. https://doi.org/10.1007/s11814-008-0156-5
[71] Darzi, A. R., Farhadi, M., & Sedighi, K., 2013. Heat transfer and flow characteristics of AL2O3–water nanofluid in a double tube heat exchanger. International Communications in Heat and Mass Transfer, 47, pp. 105-112. https://doi.org/10.1016/j.icheatmasstransfer.2013.06.003
[72] Wu, Z., Wang, L., & Sundén, B., 2013. Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Applied Thermal Engineering, 60(1-2), pp. 266-274. https://doi.org/10.1016/j.applthermaleng.2013.06.051
[73] Maddah, H., Alizadeh, M., Ghasemi, N., & Wan Alwi, S. R., 2014. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. International Journal of Heat and Mass Transfer, 78, pp. 1042-1054. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.059
[74] Nam, H. T., Lee, S., Kong, M., & Lee, S., 2023. Numerical study of flow and heat transfer characteristics for Al2O3 nanofluid in a double-pipe helical coil heat exchanger. Micromachines, 14(12), 2219. https://doi.org/10.3390/mi14122219
[75] Armstrong, M., Mahadevan, S., Selvapalam, N., Santulli, C., Palanisamy, S., & Fragassa, C., 2023. Augmenting the double pipe heat exchanger efficiency using varied molar Ag ornamented graphene oxide (GO) nanoparticles aqueous hybrid nanofluids. Frontiers in Materials, 10, 1240606. https://doi.org/10.3389/fmats.2023.1240606
[76] Kavitha, R., Methkal Abd Algani, Y., Kulkarni, K., & Gupta, M., 2021. Heat transfer enhancement in a double pipe heat exchanger with copper oxide nanofluid: An experimental study. Materials Today: Proceedings, 56, pp. 3446-3449. https://doi.org/10.1016/j.matpr.2021.11.096
[77] Somanchi, Naga Sarada, Gugulothu, Ravi and Tejeswar, S. V., 2024. Experimental investigations on heat transfer enhancement in a double pipe heat exchanger using hybrid nanofluids. Energy Harvesting and Systems, 11(1), pp. 20230065. https://doi.org/10.1515/ehs-2023-0065
[78] Mohamed, Hozaifa A., Alhazmy, Majed., Mansour, F., Negeed, El-Sayed R., 2023. Enhancing heat transfer inside a double pipe heat exchanger using Al2O3 nanofluid, experimental investigation under turbulent flow conditions, Journal of Nanofluids, 12(2), pp. 356-371.
[79] Alhulaifi, A. S., 2024. Computational fluid dynamics heat transfer analysis of double pipe heat exchanger and flow Characteristics using nanofluid TiO2 with water. Designs, 8(3), 39. https://doi.org/10.3390/designs8030039
[80] Rahman, Md. A., 2023. The influence of geometrical and operational parameters on thermofluid performance of discontinuous colonial self‐swirl‐inducing baffle plate in a tubular heat exchanger. Heat Transfer, 53(2), pp. 328-345 https://doi.org/10.1002/htj.22956
[81] Rahman, M.A., Dhiman. SK., 2023. Investigations of the turbulent thermo-fluid performance in a circular heat exchanger with a novel flow deflector-type baffle plate, Bulletin of the Polish Academy of Sciences Technical Sciences., 71(4), e145939. DOI: 10.24425/bpasts.2023.145939
[82] Rahman, M. A., 2024. Thermo-Fluid Performance Comparison Of An In-Line Perforated Baffle With Oppositely Oriented Rectangular-Wing Structure In Turbulent Heat Exchanger. International Journal of Fluid Mechanics Research, 51(1), pp. 15-30. DOI: 10.1615/InterJFluidMechRes.2023051418
[83] Rahman, Md. A., 2024. Thermo-hydraulic effect of tubular heat exchanger fitted with Perforated baffle plate with rectangular shutter-type deflector, Korean Chem. Eng. Res., 62(2), pp. 1-9. https://doi.org/10.9713/kcer.2024.62.2.191
[84] Rahman, Md. A., 2023. Experimental investigations on single-phase heat transfer enhancement in an air-to-water heat exchanger with rectangular perforated flow deflector baffle plate, Int. J. Thermodyn, pp. 1-9. https://doi.org/10.5541/ijot.1285385
[85] Rahman, Md. A., Dhiman, SK., 2023. Performance evaluation of turbulent circular heat exchanger with a novel flow deflector-type baffle plate, Journal of Engineering Research, 100105, https://doi.org/10.1016/j.jer.2023.100105
[86] Rahman, Md. A., 2024. Study the effect of axially perforated baffle plate with multiple opposite-oriented trapezoidal flow deflector in an air–water tubular heat exchanger, World J. Eng., https://doi.org/10.1108/WJE-10-2023-0425
[87] Rahman, Md. A., 2023. Effectiveness of a tubular heat exchanger and a novel perforated rectangular flow-deflector type baffle plate with opposing orientation, World J. Eng. https://doi.org/10.1108/WJE-06-2023-0233
[88] Rahman, Md. A., 2023. The effect of triangular shutter type flow deflector perforated baffle plate on the thermofluid performance of a heat exchanger. Heat Transfer., 53(2) pp. 1-18. https://doi.org/10.1002/htj.22981
[89] Rahman, M. A., 2024. Thermal hydraulic performance of a tubular heat exchanger with in-line perforated baffle with shutter type saw tooth turbulator. Heat Transfer, 53(5), pp. 2234-2256. https://doi.org/10.1002/htj.23034
[90] Rahman, M. A., & Mozammil Hasnain, S. M., 2024. Enhancing heat exchanger performance with perforated/non-perforated flow modulators generating continuous/discontinuous swirl flow: A comprehensive review. Heat Transfer, 53(8) pp. 4364-4393. https://doi.org/10.1002/htj.23135
[91] Rahman, M.A., 2024. Thermal performance of tubular heat exchangers with the discontinuous swirl-inducing conical baffle with opposite-oriented flow deflectors. Archives of Thermodynamics, 45(2), pp. 195‒204. doi: 10.24425/ather.2024.150865
[92] Rahman, A., Dhiman, S. K., 2024. Thermo-fluid performance of a heat exchanger with a novel perforated flow deflector type conical baffles. Journal of Thermal Engineering, 10(4), pp. 868-879. DOI: 10.14744/thermal.0000846
[93] Rahman, M. A., & Dhiman, S. K., 2024. Investigations on thermo-fluid performance of a circular heat exchanger with a novel trapezoidal deflector-type baffle plate. Thermal Engineering, 71(10), pp.878–889. DOI: 10.56304/S0040363624700292
[94] Rahman, M.A., Hasnain, SMM., Zairov, R. 2025. Thermo-Hydraulic performance of tubular heat exchanger with opposite-oriented trapezoidal wing Perforated Baffle Plate. Tehnicki glasnik/Technical Journal. 19(3). DOI: 10.31803/tg-20230928070645
[95] Rahman, M.A., 2024, Experimental investigations on the thermo-fluid performance of perforated baffle aided with oppositely oriented sawtooth deflector in tubular heat exchanger. World Journal of Engineering, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/WJE-02-2024-0061
[96] Rahman, M.A., 2024. Thermo-fluid performance of axially perforated multiple rectangular flow deflector-type baffle plate in an tubular heat exchanger. Applications in Engineering Science, 20, 100197. https://doi.org/10.1016/j.apples.2024.100197