
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,798 |
تعداد دریافت فایل اصل مقاله | 7,656,309 |
Incorporating Waste Material in Stone Mastic Asphalt (SMA) Mixtures: A Systematic Literature Review | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 7، دوره 13، شماره 2 - شماره پیاپی 38، مرداد 2025، صفحه 128-146 اصل مقاله (779.97 K) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2024.34670.2135 | ||
نویسندگان | ||
Christian Hadhinata؛ Ary Setyawan* ؛ Florentina Pungky Pramesti | ||
Department of Civil Engineering, Universitas Sebelas Maret, Surakarta. Central Java, Indonesia | ||
تاریخ دریافت: 18 تیر 1403، تاریخ بازنگری: 11 شهریور 1403، تاریخ پذیرش: 09 آبان 1403 | ||
چکیده | ||
Waste is one of the largest sources of environmental pollution. This situation is also made worse by waste processing which is only disposed away and piled up in open spaces. Therefore, waste handling and processing are crucial to carry out. One way to achieve those is to use waste material into the stone mastic asphalt (SMA) mixture. Based on this, this paper aims to summarize and review the use of waste materials in SMA mixtures. A systematic literature review technique was used in the research with a database obtained from three reputable sources which explained the effect of adding waste material to the SMA mixture. This paper summarizes the preparation method, mixing method, properties, and environmental perspective analysis regarding the addition of waste material to the SMA mixture. There are also recommendations for further research to explore more deeply the environmental and economic impacts of using different types and volumes of waste in the SMA mixture. | ||
کلیدواژهها | ||
Asphalt mix performance؛ asphalt pavement؛ Stone mastic asphalt؛ SMA properties؛ waste material on asphalt | ||
مراجع | ||
[1] Dehghani MH, Omrani GA, Karri RR. Solid Waste—Sources, Toxicity, and Their Consequences to Human Health. In: Karri RR, Ravindran G, Dehghani MH, editors. Soft Comput. Tech. Solid Waste Wastewater Manag., Elsevier; 2021, p. 205–13. https://doi.org/10.1016/B978-0-12-824463-0.00013-6.
[2] The World Bank. Trends in Solid Waste Management. WorldbankOrg 2023.
[3] Huang Y, Bird RN, Heidrich O. A review of the use of recycled solid waste materials in asphalt pavements. Resour Conserv Recycl 2007;52:58–73. https://doi.org/10.1016/j.resconrec.2007.02.002.
[4] Elnaml I, Liu J, Mohammad LN, Wasiuddin N, Cooper SB, Cooper SB. Developing Sustainable Asphalt Mixtures Using High-Density Polyethylene Plastic Waste Material. Sustain 2023;15. https://doi.org/10.3390/su15139897.
[5] Mehdizadeh B, Vessalas K, Ben B, Castel A, Deilami S, Asadi H. Advances in Characterization of Carbonation Behavior in Slag-Based Concrete Using Nanotomography. Nanotechnol. Constr. Circ. Econ. (NICOM 2022), Melbourne: 2023, p. 297–308. https://doi.org/10.1007/978-981-99-3330-3_30.
[6] Mehrinejad Khotbehsara M, Zadshir M, Mehdizadeh Miyandehi B, Mohseni E, Rahmannia S, Fathi S. Rheological, mechanical and durability properties of self-compacting mortar containing nano-TiO2 and fly ash. J Am Sci 2014;10:222–228.
[7] You L, Long Z, You Z, Ge D, Yang X, Xu F, et al. Review of recycling waste plastics in asphalt paving materials. J Traffic Transp Eng (English Ed 2022;9:742–64. https://doi.org/10.1016/j.jtte.2022.07.002.
[8] Polacco G, Filippi S, Merusi F, Stastna G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv Colloid Interface Sci 2015;224:72–112. https://doi.org/10.1016/j.cis.2015.07.010.
[9] Fareed A, Zaidi SBA, Ahmad N, Hafeez I, Ali A, Ahmad MF. Use of agricultural waste ashes in asphalt binder and mixture: A sustainable solution to waste management. Constr Build Mater 2020;259:120575. https://doi.org/10.1016/j.conbuildmat.2020.120575.
[10] Al-Saffar ZH, Yaacob H, Satar MKIM, Kamarudin SNN, Mahmud MZH, Ismail CR, et al. A review on the usage of waste engine oil with aged asphalt as a rejuvenating agent. Mater Today Proc 2021;42:2374–80. https://doi.org/10.1016/j.matpr.2020.12.330.
[11] Jwaida Z, Dulaimi A, Bahrami A, Mydin MAO, Özkılıç YO, Jaya RP, et al. Analytical review on potential use of waste engine oil in asphalt and pavement engineering. Case Stud Constr Mater 2024;20:e02930. https://doi.org/10.1016/j.cscm.2024.e02930.
[12] Duarte GM, Faxina AL. Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review. Constr Build Mater 2021;312. https://doi.org/10.1016/j.conbuildmat.2021.125408.
[13] Wang GC. Slag use in asphalt paving. Util. Slag Civ. Infrastruct. Constr., Elsevier; 2016, p. 201–38. https://doi.org/10.1016/B978-0-08-100381-7.00010-0.
[14] Blazejowski K. Stone Matrix Asphalt: Theory and Practce. CRC Press; 2016.
[15] Hainin R, Reshi WF, Niroumand H. The importance of stone mastic asphalt in construction. Electron J Geotech Eng 2012;17 HR:49–56.
[16] Tataranni P, Sangiorgi C. A preliminary laboratory evaluation on the use of shredded cigarette filters as stabilizing fibers for stone mastic asphalts. Appl Sci 2021;11:5674. https://doi.org/10.3390/app11125674.
[17] Muntasher K, Halyal S. Characterization of Shredded Waste Plastic on Warm Stone Mastic Asphalt. vol. 172. Springer Singapore; 2022. https://doi.org/10.1007/978-981-16-4396-5_64.
[18] Fakhri M, Shahryari E, Ahmadi T. Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA). Constr Build Mater 2022;326:126780. https://doi.org/10.1016/j.conbuildmat.2022.126780.
[19] Naser SSM, Seyedi M, Al-Busaltan S. Enhancing Stone Mastic Asphalt through the Integration of Waste Paper and Cement Kiln Dust. J Civ Hydraul Eng 2023;1:23–37. https://doi.org/10.56578/jche010103.
[20] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg 2010;8:336–41. https://doi.org/10.1016/j.ijsu.2010.02.007.
[21] Mashaan NS, Ali AH, Koting S, Karim MR. Dynamic Properties and Fatigue Life of Stone Mastic Asphalt Mixtures Reinforced with Waste Tyre Rubber. Adv Mater Sci Eng 2013;2013:1–9. https://doi.org/10.1155/2013/319259.
[22] Mashaan NS, Karim MR. Evaluation of Permanent Deformation of CRM-Reinforced SMA and Its Correlation with Dynamic Stiffness and Dynamic Creep. Sci World J 2013;2013:1–7. https://doi.org/10.1155/2013/981637.
[23] Pourtahmasb MS, Karim MR. Utilization of Recycled Concrete Aggregates in Stone Mastic Asphalt Mixtures. Adv Mater Sci Eng 2014;2014:1–9. https://doi.org/10.1155/2014/902307.
[24] Yadykina V, Tobolenko S, Trautvain A, Zhukova A. The influence of stabilizing additives on physical and mechanical properties of stone mastic asphalt concrete. Procedia Eng., vol. 117, 2015, p. 376–81. https://doi.org/10.1016/j.proeng.2015.08.181.
[25] Sojobi AO, Nwobodo SE, Aladegboye OJ. Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Eng 2016;3. https://doi.org/10.1080/23311916.2015.1133480.
[26] Fernandes SRM, Silva HMRD, Oliveira JRM. Recycled stone mastic asphalt mixtures incorporating high rates of waste materials. Constr Build Mater 2018;187:1–13. https://doi.org/10.1016/j.conbuildmat.2018.07.157.
[27] Fernandes SRM, Silva HMRD, Oliveira JRM. Carbon dioxide emissions and heavy metal contamination analysis of stone mastic asphalt mixtures produced with high rates of different waste materials. J Clean Prod 2019;226:463–70. https://doi.org/10.1016/j.jclepro.2019.04.111.
[28] Morcillo MA, Hidalgo ME, Pastrana MC, García D, Torres J, Arroyo MB. Life SOUNDLESS: New generation of eco-friendly asphalt with recycled materials. Environ - MDPI 2019;6. https://doi.org/10.3390/environments6040048.
[29] Fernandes S, Silva HMRD, Oliveira JRM. Mechanical, surface and environmental evaluation of stone mastic asphalt mixtures with advanced asphalt binders using waste materials. Road Mater Pavement Des 2019;20:316–33. https://doi.org/10.1080/14680629.2017.1387169.
[30] Babalghaith AM, Koting S, Ramli Sulong NH, Karim MR, Mohammed SA, Ibrahim MR. Effect of palm oil clinker (POC) aggregate on the mechanical properties of stone mastic asphalt (SMA) mixtures. Sustain 2020;12:2716. https://doi.org/10.3390/su12072716.
[31] Huang Q, Qian Z, Hu J, Zheng D. Evaluation of stone mastic asphalt containing ceramicwaste aggregate for cooling asphalt pavement. Materials (Basel) 2020;13:1–20. https://doi.org/10.3390/ma13132964.
[32] Terrones-Saeta JM, Suárez-Macías J, Iglesias-Godino FJ, Corpas-Iglesias FA. Evaluation of the use of electric arc furnace slag and ladle furnace slag in stone mastic asphalt mixes with discarded cellulose fibers from the papermaking industry. Metals (Basel) 2020;10:1–23. https://doi.org/10.3390/met10111548.
[33] Parimita P. Influence of Natural Fibers as Additive on Characteristics of Stone Mastic Asphalt. IOP Conf Ser Mater Sci Eng 2020;970:012021. https://doi.org/10.1088/1757-899X/970/1/012021.
[34] Pérez I, Gómez-Meijide B, Pasandín AR, García A, Airey G. Enhancement of curing properties of cold in-place recycling asphalt mixtures by induction heating. Int J Pavement Eng 2021;22:355–68. https://doi.org/10.1080/10298436.2019.1609674.
[35] Chegenizadeh A, Peters B, Nikraz H. Mechanical properties of stone mastic asphalt containing high-density polyethene: An Australian case. Case Stud Constr Mater 2021;15:e00631. https://doi.org/10.1016/j.cscm.2021.e00631.
[36] Chegenizadeh A, Shen PJ, Arumdani IS, Budihardjo MA, Nikraz H. The addition of a high dosage of rubber to asphalt mixtures: The effects on rutting and fatigue. Sustain 2021;13. https://doi.org/10.3390/su13179718.
[37] Bizarro DEG, Steinmann Z, Nieuwenhuijse I, Keijzer E, Hauck M. Potential carbon footprint reduction for reclaimed asphalt pavement innovations: Lca methodology, best available technology, and near-future reduction potential. Sustain 2021;13:1–20. https://doi.org/10.3390/su13031382.
[38] Noura S, Al Sabaeei AM, Ismat G, Mirzapour Mounes S, Muniandi R, Al-Mansob R, et al. Optimisation of Recoverable Horizontal Deformation and Size Ratio of Compacted Rubberized Stone Mastic Asphalt Based on Rubber and Binder Contents Using Response Surface Methodology. IOP Conf Ser Earth Environ Sci 2022;999:012005. https://doi.org/10.1088/1755-1315/999/1/012005.
[39] Mashaan N, Chegenizadeh A, Nikraz H. Performance of PET and nano-silica modified stone mastic asphalt mixtures. Case Stud Constr Mater 2022;16:e01044. https://doi.org/10.1016/j.cscm.2022.e01044.
[40] Bieliatynskyi A, Yang S, Pershakov V, Shao M, Ta M. Study of crushed stone-mastic asphalt concrete using fiber from fly ash of thermal power plants. Case Stud Constr Mater 2022;16:e00877. https://doi.org/10.1016/j.cscm.2022.e00877.
[41] Martinez-Soto A, Valdes-Vidal G, Calabi-Floody A, Avendaño-Vera C, Martínez-Toledo C. Comparison of Environmental Loads of Fibers Used in the Manufacture of Hot Mix Asphalt (HMA) and Stone Mastic Asphalt (SMA) Mixes Using a Life Cycle Assessment (LCA). Sustain 2022;14. https://doi.org/10.3390/su142114246.
[42] Zangooeinia P, Moazami D, Bilondi MP, Zaresefat M. Improvement of pavement engineering properties with calcium carbide residue (CCR) as filler in Stone Mastic Asphalt. Results Eng 2023;20:101501. https://doi.org/10.1016/j.rineng.2023.101501.
[43] Lee S-Y, Yun Y-M, Minh Le TH. Influence of performance-graded binders on enhancing asphalt mixture performance with epoxy resin and crumb rubber powder. Case Stud Constr Mater 2023;19:e02628. https://doi.org/10.1016/j.cscm.2023.e02628.
[44] Tayh SA, Khalif DY. Investigation of the Mechanical Performance of Stone Mastic Asphalt Mixtures Modified By Recycled Waste Polymers. J Eng Sustain Dev 2023;27:429–47. https://doi.org/10.31272/jeasd.27.4.2.
[45] Vijay BG, Madinur N, Sanganaikar RS. Laboratory Studies on Stone Mastic Asphalt with varying fillers. E3S Web Conf 2023;405:03016. https://doi.org/10.1051/e3sconf/202340503016.
[46] Alshehri HA, Wahhab HIAA, Al-Osta MA. Performance of SMA Mix modified with waste plastic and fiber. Case Stud Constr Mater 2023;19:e02566. https://doi.org/10.1016/j.cscm.2023.e02566.
[47] Alshehri HA, Al Abdul Wahhab HI, Dalhat MA, Al-Juhani AHA, Al-Osta MA. Recycled polyethylene waste as binder stabilizer for SMA mix in gulf environment. Case Stud Constr Mater 2023;18:e02177. https://doi.org/10.1016/j.cscm.2023.e02177.
[48] Gunka V, Hidei V, Sidun I, Demchuk Y, Stadnik V, Shapoval P, et al. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023;13:1183. https://doi.org/10.3390/coatings13071183.
[49] European Committee For Standardization. EN 13108-5:2016 - Bituminous mixtures - Material specifications - Part 5: Stone Mastic Asphalt. Brussels: European Committee For Standardization; 2006.
[50] Ivanov V, Stabnikov V, Kawasaki S. Ecofriendly calcium phosphate and calcium bicarbonate biogrouts. J Clean Prod 2019;218:328–34. https://doi.org/10.1016/j.jclepro.2019.01.315.
[51] Yadykina V, Tobolenko S, Trautvain A, Zhukova A. The Influence of Stabilizing Additives on Physical and Mechanical Properties of Stone Mastic Asphalt Concrete. Procedia Eng 2015;117:376–81. https://doi.org/10.1016/j.proeng.2015.08.181.
[52] Terrones-Saeta JM, Suárez-Macías J, Iglesias-Godino FJ, Corpas-Iglesias FA. Evaluation of the Use of Electric Arc Furnace Slag and Ladle Furnace Slag in Stone Mastic Asphalt Mixes with Discarded Cellulose Fibers from the Papermaking Industry. Metals (Basel) 2020;10:1548. https://doi.org/10.3390/met10111548.
[53] Morcillo MA, Hidalgo ME, Pastrana MDC, García D, Torres J, Arroyo MB. Life SOUNDLESS: New generation of eco-friendly asphalt with recycled materials. Environ - MDPI 2019;6:48. https://doi.org/10.3390/environments6040048.
[54] Fernandes S, Silva HMRD, Oliveira JRM. Mechanical, surface and environmental evaluation of stone mastic asphalt mixtures with advanced asphalt binders using waste materials. Road Mater Pavement Des 2019;20:316–33. https://doi.org/10.1080/14680629.2017.1387169.
[55] Mohammed Babalghaith A, Koting S, Ramli Sulong NH, Karim MR, Mohammed AlMashjary B. Performance evaluation of stone mastic asphalt (SMA) mixtures with palm oil clinker (POC) as fine aggregate replacement. Constr Build Mater 2020;262. https://doi.org/10.1016/j.conbuildmat.2020.120546.
[56] Riekstins A, Haritonovs V, Straupe V. Economic and environmental analysis of crumb rubber modified asphalt. Constr Build Mater 2022;335:127468. https://doi.org/10.1016/j.conbuildmat.2022.127468.
[57] Babalghaith AM, Koting S, Sulong NHR, Khan MZH, Milad A, Yusoff NIM, et al. A systematic review of the utilization of waste materials as aggregate replacement in stone matrix asphalt mixes. Environ Sci Pollut Res 2022;29:35557–82. https://doi.org/10.1007/s11356-022-19447-w.
[58] Chen H, Alamnie MM, Barbieri DM, Zhang X, Liu G, Hoff I. Comparative study of indirect tensile test and uniaxial compression test on asphalt mixtures: Dynamic modulus and stress-strain state. Constr Build Mater 2023;366:130187. https://doi.org/10.1016/j.conbuildmat.2022.130187.
[59] Cong P, Wang J, Li K, Chen S. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel 2012;97:678–84. https://doi.org/10.1016/j.fuel.2012.02.028. | ||
آمار تعداد مشاهده مقاله: 84 تعداد دریافت فایل اصل مقاله: 4 |